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Abstract

We have examined cell-cycle dependence of chromosomal aberration induction and cell killing after high or low dose-rate c
irradiation in cells bearing DNA-PKcs mutations in the S2056 cluster, the T2609 cluster, or the kinase domain. We also
compared sister chromatid exchanges (SCE) production by very low fluences of a-particles in DNA-PKcs mutant cells, and in
homologous recombination repair (HRR) mutant cells including Rad51C, Rad51D, and Fancg/xrcc9. Generally, chromosomal
aberrations and cell killing by c-rays were similarly affected by mutations in DNA-PKcs, and these mutant cells were more
sensitive in G1 than in S/G2 phase. In G1-irradiated DNA-PKcs mutant cells, both chromosome- and chromatid-type breaks
and exchanges were in excess than wild-type cells. For cells irradiated in late S/G2 phase, mutant cells showed very high
yields of chromatid breaks compared to wild-type cells. Few exchanges were seen in DNA-PKcs-null, Ku80-null, or DNA-PKcs
kinase dead mutants, but exchanges in excess were detected in the S2506 or T2609 cluster mutants. SCE induction by very
low doses of a-particles is resulted from bystander effects in cells not traversed by a-particles. SCE seen in wild-type cells
was completely abolished in Rad51C- or Rad51D-deficient cells, but near normal in Fancg/xrcc9 cells. In marked contrast,
very high levels of SCEs were observed in DNA-PKcs-null, DNA-PKcs kinase-dead and Ku80-null mutants. SCE induction was
also abolished in T2609 cluster mutant cells, but was only slightly reduced in the S2056 cluster mutant cells. Since both non-
homologous end-joining (NHEJ) and HRR systems utilize initial DNA lesions as a substrate, these results suggest the
possibility of a competitive interference phenomenon operating between NHEJ and at least the Rad51C/D components of
HRR; the level of interaction between damaged DNA and a particular DNA-PK component may determine the level of
interaction of such DNA with a relevant HRR component.
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Introduction

The catalytic subunit of DNA dependent protein kinase (DNA-

PKcs) is the key regulator of non-homologous end-joining (NHEJ),

the predominant DNA double-strand break (DSB) repair mech-

anism in mammals. DNA-PKcs is recruited to DSBs through the

DNA-binding heterodimer Ku70/80, and together with these

factors form the kinase active DNA-PK holoenzyme [1]. The

biological significance of DNA-PKcs first became evident with the

finding that mutation within the gene encoding DNA-PKcs led to

severe combined immunodeficiency (SCID) in mice and other

animals [2,3]. The other major phenotypic trait coffered by DNA-

PKcs mutations was severe hypersensitivity to ionizing radiation

(IR) and radiomimetic chemicals [4]. Kurimasa et al. confirmed

the requirement of DNA-PKcs kinase activity for DSB rejoining

after irradiation [5]. DNA-PKcs activation upon IR or treatment

with radiomimetic chemicals rapidly results in phosphorylation of

DNA-PKcs in the S2056 and the T2069 phosphorylation cluster

regions [6–9]. Studies of DNA-PKcs mutant cell lines indicate that

these phosphorylations are required for full DSB repair capacity

and normal cellular radiosensitivity.
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DNA-PKcs and its downstream NHEJ components are active in

all cell cycle phases. In contrast, homologous recombination repair

(HRR), another major DSB repair mechanism, contributes to

DSB repair and cellular survival only during S and G2 phases

[10,11]. To clarify the significance of DNA-PKcs activities in

NHEJ-mediated DSB repair and in radiosensitivity, it is important

to study synchronous cell populations at different phases through-

out the cell cycle. We reported previously that cells expressing

DNA-PKcs with mutations in the S2056 cluster, the T2609

cluster, or the PI3K kinase domain have clear differences in

radiosensitivities when mutant cells were irradiated in the G1

phase [12]. Expression of DNA-PKcs with mutations in the T2609

cluster (L-3) or in the PI3K kinase domain (L-8, L-9, L-10, and L-

11) results in extreme radiosensitivity, similar to that of Ku70/80-

deficient xrs-5 and xrs-6 cells; however, mutations in the S2056

cluster (L-12) result in intermediate radiosensitivity [12].

DNA-PKcs mutants, V3 (DNA-PKcs null) and irs-20 (extreme

c-terminal motif mutant) cause extreme and moderate radiosen-

sitivity, respectively. These radiosensitive mutant cell strains

respond to radiation in a cell-cycle-dependent manner and display

enhanced radiation-induced cell cycle delay. In plateau phase G1

cells, a greatly reduced potentially lethal damage repair (PLDR),

sub-lethal damage repair (SLDR), and a great reduction or

absence of a dose-rate effect are observed [13–17]. Chinese

Hamster Ku70/80-deficient xrs-5 and xrs-6 cell lines are more

radiosensitive than wild-type cells and the radiosensitivity does not

depend on cell cycle stage. In addition, these cells show no PLDR

and no dose-rate effect. In these respects xrs-5 and xrs-6 are

similar to ATM-deficient cell strains [18–25].

In connection with the DNA-PKcs phosphorylation-defective

mutants described above, we have also reported other results

indicating that HRR was required for the induction of SCEs by

alpha particles [26,27]. We have further investigated this in more

detail in the present study by comparing SCE induction after very

low doses of a-particles in cells that express the mutations in DNA-

PKcs described above. The doses were sufficiently low that the

observed levels of induced SCE could be attributed to effects

produced in unirradiated ‘‘bystander’’ cells. In the present study,

we compared radiosensitivity phenotypes among cell lines that

express mutant versions of components of NHEJ system (DNA-

PKcs, Ku80) or components of HRR system. We also examined

the cell cycle dependence of chromosomal aberration induction

and cell killing after high and low dose-rate c irradiation.

Materials and Methods

Cell lines and synchrony
For these studies, we employed the wild-type Chinese hamster

cell lines CHO [28] and AA8 [29], NHEJ- deficient mutant lines

xrs-5 [30] and V3 [31], HRR mutant lines irs-3 [32], CL-V4B

[33], 51D1 [34], Fanconi anemia (FA) mutant (KO40) [35], and

cell lines derived from DNA-PKcs-null V3 cells complemented

with human DNA-PKcs cDNA containing amino acid substitu-

tions at various positions [5–7,12,36] that are described in Tables 1

and 2. The cells were maintained at 37uC in a humidified 95%

air/5% CO2 atmosphere in Eagle’s minimal essential medium

(MEM) supplemented with 10% heat-inactivated fetal bovine

serum (FBS), penicillin (50 mg/ml), and streptomycin (50 mg/ml).

When the cultures approached 30% confluence in T-25 tissue

culture flasks or Mylar-dishes, the normal growth medium was

replaced twice at 24-hour intervals with isoleucine-deficient MEM

containing 5% 36dialyzed FBS to synchronize the cells in the G1

phase [37]. G1 synchronized cells were released in normal growth

medium for 12 hours to achieve synchrony in late S/G2 phase of
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cell cycle. As shown in Table 2, G1 cell populations were relatively

pure as judged by quantification of bromo-29-deoxyuridine (BrdU)

following a 30 minute-pulse labeling; BrdU specifically labels S

phase cells. Experiments shown were performed with G1

populations containing 1–12% S phase cells.

Irradiation and colony formation
For acute high dose-rate exposures, cells were irradiated with a

J. L. Shepherd and Associates irradiator that emitted 137Cs c-rays

at a dose rate of 2.5 Gy/min. For the low dose rate 137Cs c-ray

irradiations, a J. L. Shepherd and Associates Model 81-14 beam

irradiator containing a single relatively low activity (nominal 28 Ci)
137Cs source placed 100 cm above a water-jacketed CO2

incubator that was maintained at 37uC. For the colony formation

assay, different dose rates were achieved by placing cultures on

shelves in the incubator located at different distances below the

source during 8 days of continuous low-dose-rate irradiation [17].

For a-particle irradiation, cells were cultured on the Mylar

dishes and were placed over a Mylar window in the exposure well

of specially constructed irradiator that provides a uniform source

of well-characterized 3.07 MeV a-particles. The source consisted

of 296 MBq of 238PuO2 electrodeposited onto one side of a 100-

mm diameter stainless steel disk. The cells were irradiated from

below in a helium environment, and the a-particles traversed a

reciprocating collimator before reaching the Mylar window. The

target-to-source distance is 42 mm in helium gas, 6 mm in air, and

3 mm in Mylar. Dose was controlled by a timer and precision

photographic shutter, which allowed accurate doses of irradiation

[38].

Survival curves were obtained by measuring the colony-forming

ability of irradiated cell populations. Cells were plated immediately

after irradiation onto 100-mm plastic Petri dishes and incubated

for 8–10 days. Colonies were fixed with 100% ethanol and stained

with 0.1% crystal violet solution. A colony with more than 50 cells

was scored as a survivor.

Chromosome analysis
Synchronized G1-phase cells were subcultured into three T25

plastic flasks and cultured in fresh medium containing 10 mM

BrdU for the first and second cycle cells after irradiation. At

4 hour intervals beginning 13 hours after subculture, colcemid

was added to one of the three flasks to arrest cells in the first

mitosis after subculture; total sampling time thus covered

12 hours. Most cells moved into the first and second rounds of

mitosis after 13–18 hours and 25–35 hours post irradiation,

respectively. The cells were fixed in methanol:acetic acid (3:1),

and chromosomes were spread by air dry method [39]. The

differential staining of cells in first and second rounds of mitosis

were performed by the fluorescence plus Giemsa technique [40].

Chromosome aberration was analyzed at peak mitotic indices after

irradiation. In brief, exponentially growing cells were irradiated

with 137Cs c-rays at a dose rate of 2.5 Gy/min. Colcemid was

added to a final concentration of 0.1 mg/ml at 30 min after

irradiation, and the cells were harvested 4 hours later; under these

conditions the mitotic cells collected would have been in late S/G2

phase of cell cycle at the time of irradiation [41]. For sister

chromatid exchange (SCE), irradiated cells were cultured in

complete MEM containing 10 mM BrdU for two rounds of cell

Table 2. Induction of SCE with 0.7 mGy a-particle irradiation.

Cell line Defective gene Origin MDT1 (hrs) % in S-phase SCE per chromosome

0 mGy 0.7 mGy

Wild type

CHO None Wild type 14 3.4 0.33660.030 0.43760.058

AA8 None CHO 13 1.4 0.33260.009 0.44060.016

NHEJ mutants

xrs-5 Ku802/2 CHO 18 10.5 0.44260.048 1.28160.1702

V3 DNA-PKcs2/2 AA8 18 0.8 0.38760.069 0.60760.0733

HR/FA mutants

Irs-3 Rad51C V79 14 6.3 0.16160.009 0.16960.001

CL-V48 Rad51C V79 15 3.4 0.15660.008 0.14860.006

51D1 Rad51D AA8 24 7.9 0.32660.015 0.30260.026

KO40 Fancg/xrrc9 AA8 20 13.9 0.33260.014 0.44360.0173

DNA-PKcs mutants

L-1 V3 (wild-type) V3 18 0.8 0.30360.098 0.43060.110

L-3 V3-6A (T2609 cluster to A) V3 14 7.7 0.34760.013 0.35760.028

L-6 V3-T2609A V3 17 12.2 0.30560.069 0.32760.003

L-10 V3-KC23 (kinase dead) V3 18 12.1 0.42160.042 1.31660.014

L-11 V3-KD51 (kinase dead) V3 16 2 0.50560.056 0.91660.002

L-12 V3-5A (S2056 cluster to A) V3 16 2 0.26960.012 0.42560.053

L-14 V3-3A (T2609A/T2638A/T2647A) V3 ND 6.1 0.33260.014 0.33260.014

1. MDT: mean doubling time.
2. Cells were irradiated with 0.35 mGy.
3. Cells were irradiated with 0.18 mGy;
doi:10.1371/journal.pone.0093579.t002
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replication, and colcemid was added prior to the peak of second

mitoses [42].

Statistical analysis
All statistical analyses were performed using Prism GraphPad

(version 6.02) software. Statistical significance was diagnosed by t-

test and defined as p,0.05, but values of p,0.01, p,0.001 and

p,0.0001 are shown as well to indicate level of confidence.

Results

Our previous investigation with G1-synchronized V3 cells and

derivative cell lines expressing DNA-PKcs mutants revealed the

contributions of the S2056 and T2609 clusters and the PI3K

domain to NHEJ-dependent DSB repair and clonogenic survival

[12]. In the current study, we examined the impact of DNA-PKcs

domains on radiosensitivity for cell killing and chromosomal

aberration induction following irradiation during different cell

cycle phases. Radiosensitivities for cell killing of wild-type and

various NHEJ-deficient mutant cells (Table 1) were investigated in

synchronous cell populations in G1 or late S/G2 phases of the cell

cycle. The synchronized cell populations were irradiated with c-

rays and reseeded to evaluate clonogenic survival (Fig. 1). In

comparison to the wild-type Chinese Hamster cells (CHO and

AA8), Ku70/80-deficient xrs-5 cells were extremely radiosensitive,

and, as previously reported, survival was not affected by the stage

of the cell cycle at the time of irradiation [24]. DNA-PKcs-

deficient V3 cells were also highly radiosensitive, but cells

irradiated in the late S/G2 phase of cell cycle had enhanced

survival compared to those irradiated in G1 (Fig. 1A). Similarly,

cells expressing DNA-PKcs mutants defective at the T2609 cluster

(L-3, Fig. 1B), the PI3K kinase domain (L-10 and L-11, Fig. 1C),

or the S2056 cluster (L-12, Fig. 1D) all exhibited higher cell

survival when irradiated in late S/G2 than in G1, although this

effect was not as prominent as that observed for the wild-type

CHO cells (Table 3).

Wild-type, xrs-5 and DNA-PKcs mutant cells were examined

for chromosome and chromatid-type aberrations induced by

various doses of c-rays (Fig. 2). Generally, DNA-PKcs mutant cells

displayed more chromosomal aberrations per unit dose than wild-

type CHO cells regardless whether irradiation occurred at G1 or

late S/G2 phases. When the cells were irradiated in the G1 phase,

relative to wild-type cells significantly elevated frequencies of

radiation-induced breaks and exchanges were observed; levels of

these aberrations were similar in cells with DNA-PKcs protein

defective at the T2609 cluster, the PI3K domain or the S2056

cluster and in Ku-deficient xrs-5 cells (Fig. 2A, 2B). As previously

noted, relatively few chromatid-type aberrations were induced by

G1 irradiation of wild-type cells but were numerous in NHEJ-

deficient mutant cells (Fig. 2A, 2B) [12,15]. When the cells were

irradiated in the late S/G2 phase of the cell cycle, frequencies of

radiation-induced chromosome breaks or deletions were similar in

all DNA-PKcs mutant cells and were significantly different from

wild-type cells (Fig. 2C). There were obvious differences between

xrs-5 cells and DNA-PKcs mutant cells: After irradiation with

0.5 Gy in late S/G2 phase, approximately 3 to 5 times more

chromatid breaks were observed in xrs-5 cells than in DNA-PKcs

mutant cells (Fig. 2C). It is notable that after 1 Gy irradiation

during the late S/G2 phase of the cell cycle, very few xrs-5 mitotic

cells were collected due to a long delay at the G2 checkpoint as

previously reported [43]. Results indicated that perhaps DNA-

PKcs mutant cells showed lower frequencies of chromatid type

exchanges (triradials and quadriradials) when the cells were

irradiated in the late S/G2 phase than when cells were irradiated

during the G1 phase (Figs. 2B and 2D); L-3 cells were an exception

to this, as discussed further below.

In cells proficient in so-called sub-lethal damage repair, there

are marked reductions in effect per unit dose occur when radiation

was delivered at low dose rates [44,45]. For dose rates that are

sufficiently low, repair proficient wild-type cells are able to form

colonies during continuous irradiation at this or lower dose rates.

Mutant cells with even relatively minor defects in critical repair

systems are less able to cope with the continuous irradiation, and

above a critical dose rate have reduced abilities to form colonies

during irradiation [17]. Based on these earlier observations, low

dose-rate assay was carried out for the DNA-PKcs mutant cell

lines used in the present study. In brief, exponentially growing cells

were irradiated for 8 days at dose rates ranging from 1.7 to

5.5 cGy/hour. As illustrated in Figure 3, where the ability to form

colonies is plotted against the dose rate experienced during the 8

day incubation period for colony formation, none of the three

wild-type cell lines evaluated exhibited any significant reduction in

colony forming ability during continuous irradiation at any of the

dose-rates tested relative to unirradiated cells. The cells that

express the L-3, L-10, and L-11 DNA-PKcs mutants, however,

appeared to be even more sensitive than the V3 mutant, while the

L-12 mutant appeared as intermediate in sensitivity (Fig. 3).

The baseline dose-response for SCEs induced by a-particles in

wild-type cells is shown from 0 to 1.4 mGy for CHO, and L-1 (V3

corrected) cells in Figure 4. At the extreme low end of the

sensitivity for SCE induction HRR-deficient CL-V4B (Rad51C),

irs-3 (Rad51C), and 51D1(Rad51D) cells (Fig. 4A) as well as cells

expressing DNA-PKcs with mutations in the T2609 cluster region

(L-3/L-6 cells) (Fig. 4B) showed little or no SCE induction after a-

particle irradiation. At the other extreme, the radiation sensitive

xrs-5, V3, and L-10/L-11 (PI3K domain mutant or kinase dead)

cells displayed large increases in SCE after 0.35 and 0.7 mGy a-

particle irradiation (Figs. 4A and 4B). This contrasts with the very

low or absent induction of SCEs observed in DNA-PKcs mutants

L-3 and L-6 cells. Although FA-deficient KO40 cells displayed

only intermediate radiosensitivity (P. Wilson, unpublished data), a

moderate increase in SCE was observed in KO40 cells similar to

the dose response for wild-type cells over the dose range tested

(Fig. 4A) and this also appeared to be the case for L-12 (multiple

S2056 cluster) and L-14 cells (see table 1) (Fig. 4B). Thus, greatly

increased induced SCE frequencies were found in extreme

radiosensitive xrs-5 and some of the more radiosensitive DNA-

PKcs mutant cell strains including V3, L-10, and L-11, but in

other instances the induced SCE frequencies were either similar to

that for wild-type cells or in some cases no SCEs were induced at

all. (see Figure 4 and Table 2 for induced frequencies at 0.7 mGy

or, on average, 1 track traversal per 250 cell nuclei).

Discussion

We previously reported that V3 cells that express DNA-PKcs

with substitution mutations in involving various regions of the

protein displayed differential radiosensitivities when irradiated

during the G1 phase of the cell cycle [12]. V3-derivative cells

expressing DNA-PKcs mutants at the T2609 cluster (L-2 and L-3)

and the PI3K domain (L-10 and L-11) were extremely radiosen-

sitive for cell killing when irradiated in the G1 phase. In the current

study, we observed the general trend that these DNA-PKcs mutant

cells show increased radioresistance relative to their G1 responses

when irradiated after cells had progressed into late S/G2 phase of

cell cycle (Fig. 1A–D). Ku70/80-deficient xrs-5 cell survival,

however, was independent of the cell cycle occupied at the time of

irradiation. In this, the Ku70/80-deficient cells are similar to
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Figure 1. Effect of radiosensitivities on G1- and late S/G2-phase cells. G1 (closed symbols) and late S/G2 (LS/G2, open symbols) synchronized
cells [CHO and AA8 (WT), xrs-5, (A) V3, L-1, (B) L-3, (C) L-10, L-11, and (D) L-12] were irradiated by c–rays and were reseeded immediately for analysis of
colony formation. A colony with more than 50 cells was scored as a survivor. The results are means 6 SEMs from more than three independent
experiments with each cell line.
doi:10.1371/journal.pone.0093579.g001

Table 3. Effect of cell cycle on radiosensitivity.

Cell line D10 dose (Gy)1
Ratio of sensitivities of S/G2 to G1 cells2

G1 phase S/G2 phase

CHO 4.1 6.4 1.6

AA8 4.6 7.7 1.7

xrs-5 0.8 0.8 1

V3 0.9 1.2 1.3

L-3 0.9 1.3 1.4

L-10 0.9 1.3 1.4

L-11 0.7 1.2 1.7

L-12 2.2 3.3 1.5

1. D10, radiation dose required to reduce survival to 10% in G1 or S/G2 synchronized cells.
2. Calculated by dividing D10 of S/G2 phase by D10 of G1 phase.
doi:10.1371/journal.pone.0093579.t003
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ATM-deficient cells, which are extremely sensitive to radiation,

display no cell-cycle dependence of radiosensitivity, are deficient in

SLD and PLD repair, and have a high frequency of radiation-

induced chromosomal aberrations relative to wild-type cells [18–

25,46].

The lack of a cell-cycle effect in ATM-deficient cells is likely due

to the fact that ATM is involved in repair of DSB in both NHEJ

and HRR pathways [47,48]. On the other hand, Ku protein is

essential for DSB recognition and DNA-PKcs recruitment through

only the NHEJ mechanism [1]. The lack of cell cycle effect on cell

survival in xrs-5 cells could be explained by the fact that Ku

protects DSB ends from non-specific processing [49], and thereby

reduces the frequency of chromosomal exchange aberrations that

might otherwise develop. The lack of Ku then might further

reduce the proportion of break-pairs that are able to form

exchanges, while at the same time resulting in more chromosomal

breaks that fail to rejoin altogether resulting in deletion type

aberrations. Such a blocking effect on DSB mis-rejoining may

occur throughout all cell cycle phases as Ku exhibits similar

kinetics for DSB rejoining regardless cell cycle status [50]. As we

report here and previously Ku-deficient xrs-5 cells show dramat-

ically increased induction of chromatid breaks but virtually no

exchange aberrations when the cells are irradiated in late S/G2

phase of cell cycle [41]. Interestingly, large increases in both

chromosome breaks and exchanges were seen per unit dose in irs-5

cells when irradiated in G1 (figure 2A and 2B). Additionally, Ku

possesses 59deoxyribose-5-phosphate (59-dRP)/AP lyase activity

that results in excision of abasic sites near DSBs in vitro [51],

although it is not clear whether this activity contributes to cell cycle

effects or aberration formation.

Low linear energy transfer (LET) irradiation induces base

damage, single-strand breaks (SSBs), DSBs, and cross-links

immediately after irradiation [41,45]. SSBs are rejoined in wild-

type cells with a half-time of approximately 10 minutes. DSBs are

more slowly rejoined with a half time of 1 to 2 hours [15,52,53].

Several reports have indicated that a two-component DSB

rejoining system operates with a fast component (t1/2 ,15 min-

utes) and slow component (t1/2 ,1 to 2 hours) [15,52]. Mutations

Figure 2. Gamma-ray induced chromosomal aberrations in G1 and S/G2 phases. Wild-type (CHO), NHEJ-deficient mutant lines (xrs-5, V3),
and DNA-PKcs mutant strains were irradiated with doses of 0, 0.25, 0.5 or 1.0 Gy c–rays during the G1 or late S/G2 phases of cell cycle. Chromatid-type
(%) and chromosome-type (&) aberrations were analyzed and scored as breaks (A, C) or exchanges (B, D). The results are means 6 SEMs from more
than three independent experiments. Statistical analyses on the 0.5 Gy or 1 Gy-induced aberrations relative to CHO cells were performed using t-test.
*, p,0.05; #, p,0.01; &, p,0.001; the black and gray symbols indicate the significant differences in chromosome-type and chromatid-type
aberrations, respectively.
doi:10.1371/journal.pone.0093579.g002
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leading to defects in dealing with dsbs strongly argue that prompt

(or immediate) production of these dsbs by ionizing irradiation are

the most important DNA lesions in cell killing, mutation, and

tumor promotion for carcinogenesis by irradiation [15,45,54].

A close correlation between cell killing and the induction of

chromosomal aberrations has also been reported in a number of

investigations [46,52,55–61]. Our results agree with this conclu-

sion. Cells with mutations in components of the NHEJ system

were hypersensitive with respect to cell killing and chromosomal

aberration induction by c radiation. The degree of hypersensitivity

varied depending on the nature of the mutation, but increases in

numbers of chromosomal aberrations were correlated with

increases in cell death in each of the cell lines.

In addition to the correlation between cell killing and

chromosomal aberration induction, in most, although not all,

radiosensitive mutant cells we observed high frequencies of

chromosome-type aberrations after G1 irradiation and also a very

high frequency of chromatid-types aberrations. In wild-type cells,

most aberrations were of chromosome types when cells were

irradiated in G1. This general observation has been reported for

many radiosensitive DNA-PKcs mutant cells as well as for

lymphocyte and fibroblast cells from ataxia-telangiectasia patients

who have mutations in ATM [20,22,23,46,54,62–67]. Because

virtually all base damaging agents that do not produce prompt

DNA DSBs result in the production of only chromatid-type

aberrations after treatment of G1-phase cells, this suggests that

ionizing radiation-sensitive mutant cells (e.g. NHEJ and ATM

mutations) show both chromatid- and chromosome-type aberra-

tions after G1 irradiation because of a concomitant or partially

overlapping deficiency or competitive inhibition between DSB and

SSB rejoining systems. Late S/G2-phase Ku80-deficient xrs-5 cells

irradiated with doses of 25 and 50 cGy showed extremely high

frequencies of total aberrations, and 80–90% were chromatid-type

Figure 3. Effect of continuous low-dose-rate irradiation on
colony formation. Asynchronous cells were continuously irradiated at
a variety of low-dose rates for 8 days. A colony with more than 50 cells
was scored as a survivor. Means 6 SEMs from more than three
independent experiments are shown.
doi:10.1371/journal.pone.0093579.g003

Figure 4. Induction of sister chromatid exchanges with extremely low dose a-irradiation. (A) Wild-type (CHO) and cells deficient in NHEJ
(xrs-5), HRR (irs-3, CL-V48, 51D1), and FA (KO40) pathways and (B) V3 cells complemented with wild-type DNA-PKcs (L-1) or with mutants defective in
T2609 cluster (L-3/6/14), S2056 cluster (L-12), or PI3K domain (L-10/11) were irradiated with extremely low doses of a-particles. SCEs were scored and
normalized to the basal level of SCEs. Means 6 SEMs from more than three independent experiments are given. Statistical analyses on the induced
frequencies of SCE relative to CHO cells were performed using t-test. **, p,0.01; ***, p,0.001.
doi:10.1371/journal.pone.0093579.g004
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aberrations (Fig. 2). Although xrs-5 cells had an extremely long G2

delay as compared with most other cell lines analyzed upon

treatment with relatively low dose irradiation, these cells did

progress from the G2 checkpoint into mitosis [43]. Hashimoto and

colleagues reported that the Ku 80-deficient cells apparently do

not adequately repair DSBs before moving into mitosis [68]. They

suggested that incompletely repaired DSBs result in SSBs that may

appear as chromatid-type breaks in mitosis. This may be pertinent

to the mechanism of G2-chromosomal hypersensitivity originally

suggested by Sanford and colleagues [69] and by Scott [70].

Three types of dose response curves for SCE induction were

observed when DNA-PKcs mutant cells were irradiated by

extremely low-dose a-particle irradiation (Fig. 4). Moderately

radiosensitive L-12 (S2056 cluster mutant) cells showed similar

(perhaps slightly lower) frequencies of SCEs relative to wild type

(CHO and L-1) cells with up to 1.4 mGy a-particle irradiation

(Fig. 4B). Only 0.8% of the nuclei were traversed by an a-particle

by this dose (i.e., only one cell nucleus in 125 cells was traversed by

an a-particle), so most of the surviving cells expressing SCEs

occurred in unirradiated bystander cells. There were very few or

no SCEs in L-3, L-6, and L-14 cells (T2609 cluster mutant) with

up to 1.4 mGy a-particle irradiation (Fig. 4B). This suggests an

overlap in the functional operation of the HRR system and the

DNA-PKcs T2609 cluster mutant cells of the NHEJ system. The

lack of SCE induction with extremely low dose a-particle fluences

has been previously reported in CHO cell lines deficient in Rad51

paralogs (Rad51C, xrcc2, xrcc3) as well as another essential HRR

protein Brca2 [26,27,71]. This was confirmed for other HRR

mutant cells (irs-3, CL-V4B, and 51D1), which also lacked the

ability to form SCEs in this study (Fig. 4A). We previously reported

that mouse DNA-PKcs 3A knock-in mutant cells (identical design

to the L-14 cell line used in this study) were defective in both HRR

and FA repair pathways [72]. The lack of SCE induction in L-3,

L-6, and perhaps L-14 cells suggests that each individual

phosphorylatable residue in the T2609 cluster might contribute

specifically and distinctively to the functional efficiency of the

HRR process.

When cells were irradiated during the G1 phase, the extent of

cell killing depended on the number of amino acid replacements

within the T2609 cluster. We previously reported that L-6 cells

with a single residue replaced had near wild-type sensitivity, L-14

with three residues replaced was of intermediate sensitivity, and L-

3 cells with six residues replaced was very radiosensitive [12]. The

high radiosensitivity of the L-3 mutant was confirmed in the

present study. Therefore, each phosphorylation in the T2609

cluster contributes to radiosensitivity after low LET irradiation

based on their functionality underlying the NHEJ mechanism, and

phosphorylation of these T2609 residues also influences the

interaction with the HRR system to allow SCE induction after low

dose a-particle irradiation.

In contrast to the lack of SCE induction in L-3, L-6, and L-14

cells (T2609 cluster mutants), a significant increase in SCEs

relative to wild-type cells were observed in L-10 and L-11 (PI3K

mutant) cells. The L-10 and L-11 mutations led to approximately

3 and 10 times higher a-particle induced SCE frequencies,

respectively, than observed in wild-type cells after treatment with

0.7 mGy (i.e., 0.4% of nuclei traversed by an a-particle) (Fig. 4B).

Furthermore, relative to wild-type cells, Ku70/80-deficient xrs-5

cells showed enormously increased SCE frequencies at 0.13 or

0.17 mGy of a-particle irradiation, where on average less than 1

cell nucleus per 1000 cells was traversed by an a-particle. The

reason for difference in sensitivity of one set of NHEJ mutants

relative to the other with respect to SCE induction suggests the

possibility that the wild-type NHEJ system has a minor modulating

effect on the HRR system which is required for SCE formation

after a-particle irradiation [26,27]. Severely reducing or eliminat-

ing the NHEJ function resulted in extreme hypersensitivity to cell

killing and chromosomal aberration induction by low LET

radiation but also removed any interference with the HRR system

required for a-particle-induced SCE. The mutation in DNA-PKcs

that affected phosphorylation of five residues in the S2056 cluster

had only a modest effect on sensitivity of cells to c-rays and no

effect on HRR-dependent induction of SCE by a-particles.

In summary, the present study investigated the differential

radiosensitivity phenotypes of cells expressing different DNA-PKcs

mutants with comparison to cell lines defective in NHEJ or HRR

components. Our new analyses are critical as we proceed with

further mechanistic studies of DNA-PKcs mutations and their

implication in carcinogenesis or other diseases. Significant

alteration of DNA-PKcs expression has been correlated with

cancer progression and resistance to radio- and/or chemotherapy

treatment [73], although less emphasis has been put on mutation

spectra analysis of DNA-PKcs probably due to the difficulty of

analyzing the enormous DNA-PKcs-encoding PRKDC gene.

Nonetheless, several point mutations in DNA-PKcs have been

identified from breast tumor biopsies including a missense

mutation that results in a Thr to Pro substitution at residue

2609 [74]. It is highly plausible that this substitution in the T2609

cluster is the driver for mutation accumulation, genome instability,

and eventually carcinogenesis. With the advancement in deep

sequencing techniques, it is foreseeable that DNA-PKcs mutations

will be identified from tumor biopsies or other diseases. Our

current analyses provide information necessary to delineate the

molecular mechanism of phenotypic differences resulting from

mutations in DNA-PKcs. Phenotypes and molecular mechanisms

underlying them are not always predictable from genotypes.
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