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Abstract

To estimate the spatial intensity (density) of plants and animals, ecologists often sample populations by pre-

specifing a spatial array of points, then measuring the distance from each point to the k nearest organisms,

a so-called k -tree sampling method. A variety of ad hoc methods are available for estimating intensity from

k -tree sampling data, but they assume that two distinct points of the array do not share nearest neighbors.

However, nearest neighbors are likely to be shared when the population intensity is low, as it is in our appli-

cation. The purpose of this paper is twofold: a) to derive and use for estimation the likelihood function for a

k-tree sample under an inhomogeneous Poisson point-process model and b) to estimate spatial intensity when

nearest neighbors are shared. We derive the likelihood function for an inhomogeneous Poisson point-process

with intensity λ(x, y) and propose a likelihood-based, kernel-smoothed estimator λ̂(x, y). Performance of the

method for k = 1 is tested on four types of simulated populations: two homogeneous populations with low

and high intensity, a population simulated from a bivariate normal distribution of intensity, and a “cliff”

population in which the region is divided into high– and low–intensity subregions. The method correctly

detected spatial variation in intensity across different subregions of the simulated populations. Application

to 1-tree samples of carnivorous pitcher plants populations in four New England peat bogs suggests that

the method adequately captures empirical patterns of spatial intensity. However, our method suffers from

two evident sources of bias. First, like other kernel smoothers, it underestimates peaks and overestimates

valleys. Second, it has positive bias analogous to that of the MLE for the rate parameter of Exponential

random variables.



1 Introduction

Spatial intensity (commonly, “population density”) is a fundamental property of plant and animal popula-

tions, but is challenging to estimate accurately (e.g. Barbour et al., 1999; Byth and Ripley, 1980; Damggard,

2009; Diggle, 1975, 1977; Murdoch, 1994; Patil et al., 1979; Pyle and Ehrlich, 2010). The most straight-

forward way to estimate spatial intensity is to count all the organisms in a fixed area at a particular time.

However, two constraints commonly limit the use of such a “simple” method. First, if the numbers are

high, a complete census may not be possible in a limited amount of time even if the sampled area is small.

Second, even if time is unlimited, some individuals may not be detected because they are small, hidden, or

overlooked (e.g. Mackenzie et al., 2006).

For conspicuous life-history stages of sessile organisms such as most rooted plants, encrusting algae,

and many aquatic invertebrates, detection probability may be high but populations are often very dense.

Ecologists have developed a number of flexible and cost-effective plotless sampling methods to estimate

population density (e.g. Kleinn and Vilčko, 2006) and other parameters (e.g. Augustin et al., 2009). These

so-called k-tree sampling methods are based on a sample of the k nearest individual organisms to each of

a predetermined fixed or randomly located set of n points (e.g. Diggle, 1975, 1977; Nothdurft et al., 2010;

Magnussen et al., 2012). A large number of estimators for population density based on k-tree samples have

been proposed (Magnussen, 2012; Magnussen et al., 2012), but all of them assume that the k individuals

associated with one predetermined point are distinct from the individuals associated with every other fixed

point. In practice, this can occur only if sample points are widely spaced relative to the distances between

pairs of individuals or, equivalently, if individuals are relatively dense and reliably seen.

The work described here — to estimate spatial intensity of a population of plants from a k-tree sample

with at least one individual plant being nearest-neighbor to at least two sample points — was motivated by

an ecological study of carnivorous pitcher plants (Sarracenia purpurea) that grow in rain-fed peatlands (bogs)

in eastern North America. Bogs are fragile habitats and research within them is carefully regulated by state

permitting authorities, so plotless sampling in relatively small areas is preferred because it minimizes damage

to the habitat. At the same time, because of common short-range seed dispersal and rare long-distance

dispersal (Ellison and Parker, 2002), pitcher plants are often sparsely distributed and spatial intensity can

vary dramatically from place to place. The combination of small areas in which sampling is permitted and,

on average, low plant population intensity means that even for 1-tree samples, many of the sample points

share the nearest neighboring plant: a situation not encountered in the more common applications of k-tree

sampling. Thus, existing methods for estimating intensity from k-tree samples are inapplicable.
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(b) The result of sampling

Figure 1: 1-tree sampling. In the left, pre-sampling, panel, objects are denoted by red ×’s and the pre-
determined sampling points are denoted by black circles and subscripts indicating order. In the right,
post-sampling, panel, nearest objects are denoted by black ×’s while non-nearest objects remain red. Col-
ored regions indicate Ai (k = 1, so the second subscript is omitted.): red is A1, green is A5, purple is A6,
and pink is A7. A2 is empty. The circle around s2 is denoted by the dotted blue line.

This paper models the locations of the k-tree sample as arising from an inhomogeneous Poisson process

with intensity parameter λ(x, y). After deriving the likelihood function in Section 3, we show how to compute

a kernel estimate λ̂(x, y) in Section 4. The accuracy and bias of our method are examined in a simulation

study with four different types of intensity functions in Section 5. Section 6 discusses computational issues

and Section 7 applies our method to 1-tree samples of pitcher plant populations in four New England bogs.

2 Notation

In k-tree sampling, we first specify n sample sites, {(x∗1, y∗1), . . . , (x∗n, y
∗
n)} ≡ {s1, s2, ..., sn} ≡ S, then sample

the nearest k objects to each si. The si could be chosen either deterministically, say in a rectangular array,

or randomly, say uniformly over a region of interest. Let Oij = (xij , yij) be the location of the j’th nearest

object (nearest neighbor) to si and let O = {Oij}. If k = 1, then j = 1 by necessity and we omit the second

subscript. Some of the Oij ’s may be repeats, as a single object may be a neighbor of both si and si′ . As

both polar and Cartesian coordinates will be needed, let (rij , θij) denote the polar coordinates of Oij with

respect to an origin at point si. To be clear, (rij , θij) 6= (ri′j′ , θi′j′) even if Oij = Oi′j′ because the polar
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coordinates are with respect to different origins. Referring to Figure 1, the object at (−0.2, 0) is the nearest

object to both s1 and s2; thus O1 = O2 = (−0.2, 0), but (r1, θ1) = (1.2, π) and (r2, θ2) = (0.2, π). (The

second subscript is omitted because the figure displays only first-nearest neighbors.)

Here, we consider the 2-dimensional spatial point process describing the distribution of O in a region

encompassing S. We focus on an inhomogeneous Poisson spatial point process with parameter, or intensity

function, λ(x, y). For any region A, the number of points NA that occur in A has a Poisson distribution

with parameter λA ≡
∫
A
λ(x, y) dx dy and, if A and B are disjoint regions, NA is independent of NB . Our

goal is to estimate λ, a function of location (x, y).

3 The Likelihood Function

The derivation of the likelihood function L(λ), though not L(λ) itself, depends on the order in which objects

are considered. We use lexicographic order and write (i, j) < (i′, j′) if either i < i′ or i = i′; j < j′.

The likelihood function is

L(λ) = p(O11 |λ)× p(O12 |O11, λ)× · · · × p(Onk | {Oij : (i, j) < (n, k)}, λ). (1)

When we consider Oij , we learn not only that there is an object at Oij , but also that there are no other

previously undiscovered objects within radius rij of sample site si. But, as illustrated in the right-hand side

of Figure 1, some of the circle of radius rij may already be known to contain no objects. Define Aij to be

that part of the circle of radius rij centered at si, not accounted for by {Oi′j′ : (i′j′) < (i, j)}. That is,

Aij is the region we discover to be empty when we consider Oij and that we did not already discover to be

empty by considering objects earlier in the lexicographic order. The colored sub-regions in Figure 1 show

A1, . . . , A9. (The figure depicts a case with k = 1, so the second subscript is omitted.) A11 will always be

a circle centered at s1 with radius r11. But the other Aij need not be circles, need not be connected, and

could be empty. Let A =
⋃
Aij be the entire region searched. The individual Aij ’s depend on the order in

which sample points are considered, but their union A does not.

The first term in (1), p(O11|λ), is the limit, as δ, ε → 0, of the probability that (x11, y11) is in the small
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Figure 2: The black × is the nearest object to s1.
The red circle encloses the region containing no
objects formed by radius r1. The box is defined
by {(r1 − ε, r1 + ε)× (θ1 − δ, θ1 + δ)}.

Figure 3: The black × at (.25,−0.6) is the near-
est object to s2. The red region is A2.

black box in Figure 2, divided by the size of that box:

p(O11 |λ) = p(x11, y11 |λ) = lim
ε→0
δ→0

Pr[(x11, y11) ∈ box |λ]

size of box

= lim
ε→0
δ→0

Pr[no objects with r < r11 − ε |λ]

× Pr[no objects with r ∈ (r11 − ε, r11 + ε) and outside of box |λ]

× Pr[one object in box |λ]

size of box

= lim
ε→0
δ→0

exp

(
−
∫
r<r11+ε, outside of box

λ(x, y) dx dy

)

×
exp

(
−
∫
box

λ(x, y) dx dy
)
×
∫
box

λ(x, y) dx dy

size of box

= lim
ε→0
δ→0

exp

(
−
∫
r<r11+ε

λ(x, y) dx dy

)
× λ(x11, y11)× size of box

size of box

= λ(x11, y11)× exp

(
−
∫
r<r11

λ(x, y) dx dy

)
= λ(O11)× e−λA11 .

(2)

Subsequent terms are of two types. One type occurs when Oij represents a newly-discovered object, not

among the previous {Oi′j′}. For such terms, the derivation is similar to (2) and yields λ(Oij)e
−λAij . The

second type occurs when Oij represents a previously discovered object. For the second type we learn only
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that there are no other objects in Aij and the corresponding term in the likelihood function is the probability

that a particular Poisson random variable equals 0: e−λAij . To summarize,

p (Oij | {Oi′j′ : (i′, j′) < (i, j)}, λ) =


λ(Oij)e

−λAij Oij is new

e−λAij Oij is old

The likelihood function is the product of all these terms, or

L(λ) = e−λA

∏
(i,j)∈U

λ(Oij) (3)

where U is the set of (i, j) for which Oij is not a duplicate: U = {(i, j) : Oij 6= Oi′j′ for any (i′, j′) < (i, j)}.

The likelihood function (3) requires only slight modification to handle some common variants.

1. Instead of searching arbitrarily far for a nearest neighbor, we might search only for neighbors that lie

within a prespecified distance d of the original set of points S or that lie within a prespecified sampling

region. In particular, the sampling region might have an boundary and we might be concerned about

edge effects. In that case, instead of finding all k nearest neighbors of si, we may find fewer than k

and some of the ones we find may be more distant than neighbors beyond the search boundary. Then

(3) requires no modification — i.e. there are no edge effects — except to note that λA refers to the

integral of λ over the area searched, which may be less than the area required to find all k neighbors

of every si. Accuracy might be impaired near the boundary because we search less area and find fewer

neighbors, but the method requires no adjustment.

2. We might find a chain of nearest neighbors, as in some types of adaptive sampling for rare species

(Seber and Salehi, 2012). That is, we begin with either a fixed or random location s, then find its

nearest neighbor O1, then find O1’s nearest neighbor O2, and so on, for k steps. Because a Poisson

process has independent increments, (3) requires no modification.

Two additional points are worth noting.

1. Eq. (3) is the same likelihood that would have been obtained had we decided in advance to sample

region A. It is irrelevant for L(λ), and hence for inferences in accord with the likelihood principle,

whether A was fixed a priori by the experimenter or arose randomly as a result of k-tree sampling.

2. Though (3) was derived for an inhomogeneous Poisson process, it also applies to the homogeneous
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Symbol Meaning

Si one of the validation sets, for i ∈ 1, . . . , v
S−i S \ Si: the elements of S not in Si
OSi

the locations of the k-nearest objects to the points in Si
A(Si) the region searched under k-tree sampling with Si as the set of predetermined points
ASi A(Si) \A(S−i)

USi
indices of the unique elements of OSi

\OS−i

λ̂
S−i

σ2 an estimate of λ based on OS−i
with tuning parameter σ2

Table 1: Notation for v -fold cross-validation

Poisson process, should we choose to adopt that model. In the homogeneous case two simplifications,

λA = λ|A| and
∏

(i,j)∈U

λ(Oij) = λt,

where |A| is the area of A, t is the total number of objects found, and λ is the (scalar) rate, lead to

the usual formula L(λ) = λte−λ|A|.

4 Estimating the Intensity Function λ

Eq. (3) is maximized when λ(Oij)→∞ at the Oij ; λ(x, y)→ 0 elsewhere within A; and λ(x, y) is arbitrary

outside of A. Such an inference would be implausible in most applications, so regularization is desirable.

There are many means to regularization, such as maximizing (3) subject to constraints or imposing a model

on λ such as a thin-plate spline or a polynomial of specified degree, but we use kernel estimation guided by

cross-validation. Also see Augustin et al. (2009). For an arbitrary location (x′, y′) we define

λ̂(x′, y′) =

∑
(i,j)∈U

K(x′,y′),σ2(xij , yij)∫
A
K(x′,y′),σ2(x, y) dx dy

(4)

where K is a kernel. In what follows, K(x′,y′),σ2 is the bivariate Gaussian density with mean (x′, y′) and

covariance matrix Σ = σ2I2.

The estimator (4) depends on the tuning parameter σ2, which we determine by v -fold cross validation.

The set of predetermined sampling sites S is partitioned into validation sets S1, S2, ..., Sv. We use the

notation in Table 1, illustrated in Figure 4.
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In cross-validation, we take each of the Si in turn and calculate p(OSi | λ̂
S−i

σ2 ). As in (3),

p(OSi | λ̂
S−i

σ2 ) = e−λ̂ASi

∏
(j,k)∈USi

λ̂(Ojk) (5)

where we have omitted some super- and subscripts on λ̂ for, we hope, clarity. When dealing with validation

set Si we have already found the nearest objects OS−i
to S−i and have already searched the region A(S−1)

to find them. The region we newly search to find OSi is ASi ≡ A(Si) \A(S−i). Therefore, in (5), λ̂ASi refers

to the integral of λ̂
S−i

σ2 over the region ASi which, as noted in Table 1, excludes A(S−i). Similarly, USi
is the

set of indices (i, j) for which Oij is not a duplicate, either of an earlier Oi′j′ (as in (3)) or of one of the OS−i
.

The tuning parameter σ2 is chosen to maximize
∏v
i=1 p(OSi | λ̂

S−i

σ2 ).

As our simulations in Section 5 demonstrate, our estimator is biased. Point-wise bias and MSE can be

arbitrarily large. To see why, consider a sequence of intensity functions

λr,w(x, y) =


w x2 + y2 < r

0 x2 + y2 ≥ r
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and let w →∞ and r → 0 in such a way that πr2w → 0. Then as r gets small and w gets large we expect to

see very close to 0 objects in the entire plane and point-wise estimates λ̂(x, y) will converge to 0 everywhere,

including at the origin where the true λ(0, 0) is w, so the bias at (0, 0) will be close to −w. The reverse,

with λ(x, y) = 0 inside a small circle and λ(x, y) = w outside the circle results in a bias of positive w.

In addition to point-wise estimates, it is often desired to estimate the total number of objects in a region

of interest. That estimate, too, can be arbitrarily bad. For example, let

λr,w(x, y) =


w x2 + y2 < r

c x2 + y2 ≥ r

for some constant c and some small radius r. Let |A| be the area of the region of interest and let w → ∞.

Suppose S is on the lattice of odd integers, so the si’s closest to the origin are (−1,−1), (−1, 1), (1,−1), and

(1, 1). If c is reasonably large compared to k, say c ≈ 20 and k = 1, then the nearest neighbors of S are very

likely to be outside the circle of radius r in which the intensity is high. Therefore we will sample only that

region of the plane where λ(x, y) = c and we will estimate the total number of objects in the area of interest

as about c|A| when the true value is on the order of c|A| + wπr2. For arbitrarily large w, our estimate is,

with high probability, arbitrarily bad.

Our examples of large bias and poor MSE for point-wise and areal estimates of λ rely on bizarre intensity

functions. For estimating bias and MSE in practical settings we recommend simulations with more realistic

versions of λ, as illustrated in Section 5.

5 Simulation Study

We simulated artificial datasets with four different types of λ’s on the square [−1, 12]× [−1, 12]: a) homoge-

neous with λ = 0.5; b) homogeneous with λ = 4.0; c) inhomogeneous with λ(x, y) = 100×the N2

(
( 5
5 ) ,
(

3 .5
√
6

.5
√
6 2

))
density evaluated at (x, y); and d) inhomogeneous with λ(x, y) = 0.2 for x < 6 and λ(x, y) = 4 for x > 6.

This last inhomogeneous case yields a “cliff” population with objects split sharply into two regions—one with

high spatial intensity and one with low spatial intensity. Using the rpoispp function from the spatstat

package in R, we simulated 100 populations with each type of λ and analyzed them with 1-tree sampling

using prespecified points on the integer lattice S = {1, . . . , 10} × {1, . . . , 10}. We never searched beyond

the boundary of a supposed region of interest [−1, 12] × [−1, 12]. For each of the four hundred simulated

populations we estimated λ at three points near the corner of the region, three points near the midpoint of a
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side, and three points near the center. Results are in Tables 2–5 and Figures 5–7. Two points are especially

worth noting.

1. Estimates of λ tend to have positive bias. The bias is most easily seen in the homogeneous case where,

for both λ = 0.5 and λ = 4.0, the mean λ̂ was greater than the true λ for all 9 points. The bias can be

understood heuristically by considering the one-dimensional case. Let X be a homogeneous Poisson

process on R+ with rate λ and Y1 be the time of the first arrival. Y1 is also the random variable that

would be observed in 1-tree sampling with predetermined point S = s1 = 0. It is well-known that

Y1 ∼ Exp(λ); the MLE is λ̂ = y−11 ; and that E[λ̂] = ∞. Similarly, if Y = Y1 + · · ·+ Yn is the time to

record n arrivals, then the MLE is λ̂ = 1/ȳ, which is positively biased. See also Diggle (1975, 1977).

2. Like all kernel estimators, this one smooths out peaks and troughs. The smoothing is easily seen in the

bivariate Normal population. Near the center of the plot, the true intensity is approximately 7 but the

estimated intensity is approximately 5. At the corner of the plot, the true intensity is approximately

10−6 or 10−7 but the estimated intensity is two orders of magnitude larger. Similarly for the cliff

population; the cliff at x = 6 is smoothed into a gradual descent from x ≈ 8 to x ≈ 4.

(x, y) λ(x, y) λ̂(x, y) RMSE Bias Relative RMSE Relative Bias
(1, 10) .5 .683 .595 0.183 1.190 .366

(1.5, 10) .5 .642 .523 0.142 1.046 .284
(1.5, 9.5) .5 .591 .457 0.091 0.914 .181

(1, 5) .5 .597 .414 0.097 0.828 .193
(1, 4.5) .5 .619 .446 0.119 0.892 .237

(1.5, 4.5) .5 .599 .394 0.099 0.788 .199
(5.5, 5.5) .5 .540 .344 0.040 0.688 .079
(6, 5.5) .5 .525 .344 0.025 0.688 .050
(6, 6) .5 .513 .311 0.013 0.622 .027

Table 2: Simulation results for nine points with a homogeneous λ = .5 intensity, where λ̂(x, y) is the average

value of λ̂(x, y), RMSE is Root Mean Squared Error, Relative RMSE = RMSE/λ(x, y), and Relative Bias
= Bias/λ(x, y).
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Point (x, y) λ(x, y) λ̂(x, y) RMSE Bias Relative RMSE Relative Bias
(1, 10) 4 5.529 3.964 1.529 0.991 .382

(1.5, 10) 4 5.151 2.995 1.151 0.749 .288
(1.5, 9.5) 4 5.0581 2.452 1.058 0.613 .265

(1, 5) 4 4.550 1.821 .550 0.455 .137
(1, 4.5) 4 4.500 1.878 .500 0.469 .125

(1.5, 4.5) 4 4.354 1.456 .354 0.364 .089
(5.5, 5.5) 4 4.197 1.289 .197 0.322 .049
(6, 5.5) 4 4.127 1.235 .127 0.309 .032
(6, 6) 4 4.177 1.363 .177 0.341 .044

Table 3: Simulation results for nine points with a homogeneous λ = 4 intensity, where λ̂(x, y) is the average

value of λ̂(x, y), RMSE is Root Mean Squared Error, Relative RMSE = RMSE/λ(x, y), and Relative Bias
= Bias/λ(x, y).

Point (x, y) λ(x, y) λ̂(x, y) RMSE Bias Relative RMSE Relative Bias
(1, 10) 2.228e-07 2.231e-05 1.086e-04 2.208e-05 487.557 99.112

(1.5, 10) 1.012e-06 6.430e-05 2.660e-04 6.329e-05 262.872 62.511
(1.5, 9.5) 7.940e-06 3.894e-04 1.480e-03 3.814e-04 186.338 48.036

(1, 5) .214 .427 .371 .212 1.736 .990
(1, 4.5) .340 .595 .484 .255 1.423 .751

(1.5, 4.5) .731 .851 .446 .120 0.610 .165
(5.5, 5.5) 6.989 5.092 2.542 -1.897 0.364 -.271
(6, 5.5) 6.333 4.617 2.314 -1.716 0.365 -.271
(6, 6) 5.651 3.939 2.132 -1.713 0.377 -.303

Table 4: Simulation results for nine points with a Normally shaped intensity, where λ̂(x, y) is the average

value of λ̂(x, y), RMSE is Root Mean Squared Error, Relative RMSE = RMSE/λ(x, y), and Relative Bias
= Bias/λ(x, y).
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Contour Plot: Homogeneous Population (.5)

(a) Contour of the mean λ̂ when λ = 0.5.
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Contour Plot: Homogeneous Population (4)

(b) Contour of the mean λ̂ when λ = 4.

Figure 5: The estimated contour plots of the homogeneous populations.

Point (x, y) λ(x, y) λ̂(x, y) RMSE Bias Relative RMSE Relative Bias
(1, 10) .2 274 .298 .074 1.492 .371

(1.5, 10) .2 .242 .219 .042 1.095 .211
(1.5, 9.5) .2 .240 .202 .040 1.012 .202

(1, 5) .2 .220 .195 .020 0.975 .099
(1, 4.5) .2 .224 .200 .024 1.000 .121

(1.5, 4.5) .2 .210 .176 .010 0.880 .050
(5.5, 5.5) .2 .713 .561 .513 2.806 2.564
(6, 5.5) 4 1.270 2.749 -2.730 0.687 -.683
(6, 6) 4 1.282 2.737 -2.718 0.684 -.679

Table 5: Simulation results for nine points with a cliff shaped intensity, where λ̂(x, y) is the average value

of λ̂(x, y), RMSE is Root Mean Squared Error, Relative RMSE = RMSE/λ(x, y), and Relative Bias =
Bias/λ(x, y).

In addition to point-wise estimates of λ(x, y), we also estimated Λ ≡
∫
[−1,12]×[−1,12] λ(x, y) dx dy, or the

expected total number of objects within the region of interest. Our estimator is Λ̂ ≡
∫
[−1,12]×[−1,12] λ̂(x, y) dx dy.

That is, we followed the common practice of integrating λ̂ over the entire region of interest; we did not in-

tegrate only over the unsearched region and add the result to the observed total t in the searched region.

Results are in Table 6. The positive bias shown in Table 6 of Λ̂ for the homogeneous populations is consistent

with the positive biases in Tables 2 and 3 and Figure 5. Similarly, the negative bias of Λ̂ is consistent with

the large, negative point-wise biases in Table 4 and Figure 6. The bias for the cliff population comes from
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Contour Plot: Normal Population True

(a) Contour of λ.
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Contour Plot: Normal Population Estimated

(b) Contour of the mean λ̂.

Figure 6: The true and estimated contour plots of the normal population.

positive bias for x > 8 and x < 6 coupled with negative bias for x ∈ (6, 8).

λ Type Λ Λ̂ RMSE Bias Relative RMSE Relative Bias
homogeneous λ = 0.5 84.5 106.748 28.263 22.248 0.334 0.263
homogeneous λ = 4.0 676 823.504 223.907 147.504 0.331 0.218

cliff 330.2 411.056 171.200 80.856 0.518 0.245
Normal 99.97 82.913 21.715 -17.057 0.217 -0.171

Table 6: Simulation results for expected population totals with 4 types of intensity, where Λ̂ is the average
value of Λ̂, RMSE is Root Mean Squared Error, Relative RMSE = RMSE/Λ, and Relative Bias = Bias/Λ.

Table 7 shows summary statistics of the σ̂2’s, as determined by cross-validation, that were used to estimate

λ and Λ in our simulations.

6 Computation

Evaluating expressions like (3) and (5) requires exp(−λA) or exp(−λ̂ASi ): the integral of λ or λ̂ over a

complicated region. Evaluating (4) requires integrating a kernel over the same region. The region is known so

in principle the integral can be evaluated analytically. But in practice, the region is sufficiently complicated

that we prefer Monte Carlo integration. We distribute npts points uniformly over the region of interest:

[−1, 12]2 in our simulations. For each (x, y), it is easy to evaluate λ̂(x, y) and to determine whether (x, y)
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Contour Plot: Cliff Population True

(a) Contour of λ.
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Contour Plot: Cliff Population Estimated

(b) Contour of the mean λ̂.

Figure 7: The true and estimated contour plots of the cliff population.

λ Type σ2 Var(σ̂2)
homogeneous λ = 0.5 0.536 0.001
homogeneous λ = 4.0 1.571 1.038

cliff 0.691 0.026
Normal 0.555 0.002

Table 7: Simulation results: mean and variance of the σ2 determined by cross-validation for 4 types of
population intensity

is in ASi . To choose npts, we simulated 1-tree sampling on one region and estimated the area searched, A,

many times by Monte Carlo integration, each time using a different set of npts points. Table 8 shows the

SD and the total computing time, on a computer one of us used at the time, for four values of npts. Results

will vary for different problems on different computers. Based on Table 8, we set npts = 10, 000 because the

standard deviation of Â is satisfactorily low and the time required for computation is reasonable.

Number of Points Standard Deviation of Â Total Computing Time (seconds)
1000 5.76 88.35
5000 5.25 244.56
10000 5.19 615.54
15000 5.13 1164.70

Table 8: Standard Deviations of Â and Total Computing Time
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7 Case Studies

The developments presented here were motivated by plotless data collected from pitcher plant (Sarracenia

purpurea) populations in New England bogs. In each bog, pitcher plants were located by 1-tree sampling

on a 10× 10 meter lattice with 1 meter spacing as the set of sampling sites S. We illustrate our method of

estimating spatial intensity with data from four bogs having different patterns of spatial intensity.

Twelve-mile Bog Figure 8a shows the lattice of sample sites, the plants observed and the estimated

spatial intensity of plants at Twelve-mile bog. At this site, as in virtually all of the 77 bogs we sampled,

fewer than 100 plants were found because some of the plants were nearest neighbors of more than one si.

For example, there are no red dots near the points (3,5), (3,6), and (3,7). The estimated intensity shows a

corresponding dip in that region, and similarly for the points (7,4), (7,5), (8,1), and (8,2). In contrast, the

estimated intensity in the upper right corner rises steeply because plants were found very close to the points

at (10,8), (10,9), and (10,10). Except for the upper right corner, the intensity does not vary much and its

fluctuations are very smooth. It looks much like the homogeneous bogs we simulated with λ = 4.

Errol Brook Bog This bog, Figure 8b, has a region of high intensity centered around (6, 4) and low

intensity elsewhere in the sample plot. It looks similar to our simulations with intensity proportional to a

bivariate Normal density.

Branch Pond Bog The data from this lakeside bog, Figure 8c, appears to follow a cliff distribution.

There are no observed plants except in the northwest corner of the grid.

Number Five Bog This bog, Figure 8d, had very few S. purpurea plants. The kernel algorithm estimated

local maxima near the few points where plants were found.

8 Discussion

This paper is the first we know of that both derives an explicit likelihood function for k-tree sampling and

addresses the common problem that pre-defined sampling points may share nearest-neighboring objects.

Our derivation of the likelihood function under an inhomogeneous Poisson process model provides generality

beyond the more commonly considered homogenous Poisson case (Magnussen (2012) and Magnussen et al.

(2012) provide notable exceptions) or the nonparametric intensity estimators developed by, e.g., Diggle (1975,
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(a) Twelve-mile Bog. λ̂ estimated using σ2 = 0.67.
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(b) Errol Brook Bog. λ̂ estimated using σ2 = 0.56.
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(c) Branch Pond Bog. λ̂ estimated using σ2 = 0.75.
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(d) Number Five Bog. λ̂ estimated using σ2 = 0.60.

Figure 8: Four case studies. Black dots: S. Red dots: O. Contours: λ̂.
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1977) for Poisson, regular, and clumped distributions. Further, we develop a kernel estimator λ̂(x, y) that

acts as a smoother and provides contours of local spatial intensities (cf. Augustin et al., 2009) and that can

be integrated for an estimate Λ̂ of the total population size in a region.

Our estimators can be biased, even when the true intensity is spatially invariant, for reasons explained

in Section 5. The biases can be arbitrarily large, as explained in Section 4. We have not investigated any

corrective measures. It is also possible that bias may be affected by whether the sampling points are chosen

randomly or deterministically. Ours were chosen deterministically, but our method applies also to random

selection, and simulations to calculate bias can incorporate that randomness.

Our study was motivated by a k = 1 sample of pitcher plants and we used k = 1 in our simulations.

However, our method applies equally well to k > 1. We have not explored the value of the information

gained by setting k greater than 1, but that is a direction for future research.

Our estimates use a circularly symmetric kernel: a Normal density with covariance Σ = σ2I2. In some

situations — if gradients are expected to be parallel to a linear feature such as a stream, a ridge, or a forest

boundary, for example — circular symmetry might not be warranted and it would be better to optimize the

kernel over all three parameters of the N2 covariance matrix. We have not explored other types of estimators

such as polynomials or splines for λ. Also, we have also not explored k-tree sampling for inference in other

point process models (cf. Augustin et al., 2009) or the implications of imperfect detection, questions which

may lead to fruitful research in the future.
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