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Abstract

Objectives: As computing technology and image analysis techniques have advanced, the practice of histology has grown
from a purely qualitative method to one that is highly quantified. Current image analysis software is imprecise and prone to
wide variation due to common artifacts and histological limitations. In order to minimize the impact of these artifacts, a
more robust method for quantitative image analysis is required.

Methods and Results: Here we present a novel image analysis software, based on the hue saturation value color space, to
be applied to a wide variety of histological stains and tissue types. By using hue, saturation, and value variables instead of
the more common red, green, and blue variables, our software offers some distinct advantages over other commercially
available programs. We tested the program by analyzing several common histological stains, performed on tissue sections
that ranged from 4 mm to 10 mm in thickness, using both a red green blue color space and a hue saturation value color
space.

Conclusion: We demonstrated that our new software is a simple method for quantitative analysis of histological sections,
which is highly robust to variations in section thickness, sectioning artifacts, and stain quality, eliminating sample-to-sample
variation.
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Introduction

For over a century, histological analysis of biological samples

has led to greater understanding of biological mechanisms. The

ability of researchers to interpret the data present in histological

images has been the limiting factor to the usefulness and power of

histology and histopathology. Histological assessment is often used

as a qualitative method by clinical pathologists and within research

settings, localizing a specific biomarker in the tissue or exploring

tissue morphology and remodeling. Qualitative histological

analyses have contributed importantly to our knowledge of cellular

and tissue anatomy. The well-known Golgi method elucidated the

structure of the nervous system at the turn of the 20th century, and

by combining advanced fluorescent stains with time-lapse

photography, modern researchers can track the migration of

individual sub-cellular structures such as mitochondria [1] or

matrix vesicles [2]. Qualitative analyses remain useful for

diagnosing disease; frozen section biopsies are commonly used to

identify cancers, and analysis of cultures can help identify bacterial

species. However, as methods of immunohistochemical staining

have advanced, histological diagnoses and research have become

more refined. Instead of merely testing for the presence or absence

of a biomarker, experimental pathologists and histologists began

utilizing semiquantitative techniques [3]. The most common form

of such analysis in histology requires that a researcher create a

rubric for assigning a score to each experimental tissue sample.

These scores may rely on a histologist’s experience and intuition

and could be imprecise or subjective, and difficult to recreate

exactly [4].

In order to affix frozen tissue samples to slides, histologists use

cryotomes, specialized devices that can slice frozen samples into

sections only a few microns thick. Cryotomes can be adjusted to

cut sections to a range of thicknesses as necessary. Certain tissues

or histological stains may call for sections as thin as 2 mm, while

others may require sections greater than 20 mm thick. However,
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cryotomes are imperfect machines. Studies have shown that

standard laboratory cryotomes may produce sections that vary in

thickness by 11% on average [5], or in the best case scenario

sections may have a coefficient of variation of 3.3% [6]. Individual

cryostats may be more or less precise, depending on manufactur-

ing quality, age, level of maintenance, and cutting temperature.

Similar concerns can be applied to microtomes specialized to

section paraffin-embedded tissues.

While variation in section thickness is relatively small, it can

impact quantitative image analysis by changing the color

properties of light transmitted through the tissue sample. Thicker

sections will bind more stain (increasing the saturation) and will

increase in opacity (decreasing the value and intensity of the

sample). The impact of these variations can be lessened by staining

replicate sections, but this may be difficult in experiments where

sections are hard to obtain, or a limited amount of sectionable

tissue is available. Resolving these problems requires new methods

for quantification of histological images that do not depend on

tissue thickness or observer expertise.

The availability of recent digital image analysis software has

enabled fully quantitative, observer independent histological

analyses. Instead of assigning arbitrary scores to stained samples,

researchers can use computers to assess each pixel of a digital

image and determine whether it displays stain character or not,

and calculate the percent area that displays the target stain.

Despite its usefulness, the quality of the digital photograph and the

method used to identify positive stain limit the power of this

technique. In addition, tissue section thickness variation still

impairs the results. We therefore developed method, utilizing hue

saturation value (HSV) color space, which provides accurate

quantitative data independent of observer biases and section

thickness.

A ‘‘color space’’ is any mathematical representation of perceived

colors. Most modern computer monitors physically represent color

in red-green-blue (RGB) space: each pixel of a computer screen

emits narrowband light at three frequencies: red, green, and blue.

In standard color digital photography, an image is stored as

information describing an ordered collection of pixels, each of

which can be defined by its location in the image and its position

in the RGB color space. However, in a standard color digital

image, each pixel can instead be defined by three other

characteristics: hue is related to the dominant wavelength

displayed by the pixel; saturation is a basic measure of the purity

of the hue (or apparent grayness of the pixel); value is a measure of

the intensity of light shining from the pixel. Each of these

characteristics has a finite range of possible values, and therefore

the entire color space can be represented by a 3-D graph with its

three axes representing the three characteristics. Points within this

graph that lie near each other represent colors that are very similar

to each other; points that are extremely close together may

represent colors that are indistinguishable to the naked eye. Here

we present a novel program, Color Selection HSV (CSH), which uses

the HSV color space to analyze histological images.

Methods

To test our program, CSH, we used it to perform color

separation and positive area selection on various sample images.

We obtained all of the experimental images for this study using a

Nikon Eclipse 50i light microscope and a Nikon Digital Sight DS

Fi1c digital camera. We compared the output from CSH to the

output from a conventional RGB-based image analysis program.

Our program, Color Selection HSV, is available for use as a web

application at http://cics.bwh.harvard.edu. It accepts most image

files as an input, including .jpg, .png, .tiff, .gif, and .bmp. Users can

set up to three sets of thresholding parameters, allowing three

distinct color ranges to be extracted from an image.

Color separation
We used two color spaces, the RGB color space and the HSV

color space, to separate colors in our experimental images. The

RGB color space has 3 color dimensions, comprising red (R),

green (G), and blue (B), and any digitally recorded color can be

expressed by a unique combination of these 3 values. Almost all

digital imaging devices, including digital cameras and image

scanners, use the RGB color space to store colors in image files as

numerical values. The HSV color space also has 3 color

dimensions, comprising hue (H), saturation (S), and value (V).

The principal wavelength expressed by a color is entirely

represented by hue. Saturation specifies how pure or gray a color

is, and value specifies the brightness of the color. Because the vast

majority of electronic images are stored as RGB values, we

performed a mathematical conversion from the RGB color space

to the HSV color space. Conversions from RGB to HSV are

unique, repeatable, and reversible. The detailed explanation for

our specific color conversion formulae can be found in Methods

S1, along with some examples in Table S1.

Using these two color spaces, we prepared two software tools,

Color Selection HSV, which converts image data to the HSV color

space, and a similar program which leaves images in the RGB

color space for analysis. These tools automatically extract certain

colors from images by locating every pixel which falls within

specified threshold ranges in each of the three dimensions of the

relevant color space. We designed the tools to be able to extract

three different colors from an image by preparing three

independent sets of threshold ranges within each of the color

dimensions. We show how the thresholding procedure works in

Figure S1, and the appearance of the graphical user interface of

our software is shown in Figure S2.

Histological approach
All tissues used to test our program were mouse tissues frozen in

Optimal Cutting Temperature (OCT) compound. Tissue was

harvested from animal experiments approved by the Beth Israel

Deaconess Medical Center Institutional Animal Care and Use

Committee, Protocols # 010-2013, 048-2010, and 017-2010.

Unless otherwise specified, samples were cut to 6 mm slices, and

were fixed with 10% neutral buffered formalin for 5 minutes

immediately prior to staining.

Masson’s Trichrome (collagen accumulation detection): Sample

slides were immersed in Bouin’s fluid for 30 minutes, then washed

thoroughly in tap water. Samples were then immersed in Weigert’s

Hematoxylin solution for 5 minutes before being washed in tap

water again, then placed in Biebrich scarlet-acid fuchsin solution

for 10 minutes. After another round of tap water washing, samples

were moved into phosphotungstic-phosphomolybdic acid for

30 seconds, washed, and stained with aniline blue for 5 minutes.

Slides were then dehydrated in progressive alcohol washes, and

placed in xylene before coverslipping.

MAC3 Immunohistochemistry (macrophage detection): Sample

sections were fixed in cold acetone (230uC) for 5 minutes in lieu of

formalin, then allowed to dry at room temperature for 15 minutes.

Slides were placed in 0.3% hydrogen peroxide for 20 minutes,

washed in tap water, then placed in phosphate buffered saline

(PBS). Sections were then incubated at room temperature for

30 minutes with 4% normal rabbit serum. Anti-mouse MAC3

antibody was applied to each section at a dilution of 1:900, and

sections were allowed to incubate for 90 minutes. Sections were
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washed in PBS, and incubated with a rabbit anti-rat secondary

antibody for 45 minutes. Sections were then washed in PBS and

incubated with horseradish derived peroxidase streptavidin for

20 minutes and washed again. Sections were developed using a 3-

amino-9-ethylcarbazole (AEC) substrate-chromagen development

solution from Dako. Nuclear staining was achieved using Gill’s

hematoxylin followed by ammonium water. The slides were

coverslipped using an aqueous mounting medium.

Picrosirius Red (fibrillar collagen detection): Sample slides were

immersed in picrosirius red solution (0.1 g Sirius red per 100 mL

picric acid) for 90 minutes, then washed in 0.01 N hydrochloric

acid twice. Sections were dehydrated using progressive alcohol

washes, placed in xylene, coverslipped, and visualized using a

polarizing light microscope (Nikon eclipse 80i).

Alkaline Phosphatase (ALP): Reagents from Vector Labs’

Vector Red Alkaline Phosphatase Substrate Kit I were mixed

with 5 mL of 100 mM Tris-hydrochloride and used to cover

sample sections for 60 minutes. Slides were rinsed first in 100 mM

Tris-hydrochloride, then in water. To achieve nuclear counter-

staining, slides were dipped in Gill’s hematoxylin for 5 seconds,

rinsed in water, and submerged in ammonium water for 1 minute.

Slides were rinsed with water, dehydrated using progressive

alcohol washes, placed in xylene, and coverslipped.

Statistical analysis
Statistics was performed using t test. Data are presented as mean

6 SEM. P values less than 0.05 were considered significant.

Results

Color selection HSV maps images to the HSV color space
Figure 1 shows the analysis process CSH performed on an

infarcted mouse heart stained with Masson’s trichrome method.

CSH mapped each pixel in the original image (Figure 1 A) to the

HSV space using the mathematical equivalency described in

Methods S1 and Table S1. CSH then generated two thresholding

cuboids within the HSV space in order to identify pixels that are of

similar color to one another and are of experimental interest; in

this case, pixels marked as red represent muscle tissue while pixels

marked as blue represent collagen fibers. CSH displays the original

input image as well as the modified image, where pixels of interest

have been recolored (Figure 1B). Figure 1 shows the mathematical

mapping of the original image, including a 3-D plot of HSV space

(Figure 1C) as well as the maps looking down the Value axis

(Figure 1D), the Saturation axis (Figure 1E) and the Hue axis

(Figure 1F). Selected pixels can be redefined to new, user-assigned

color values in order to be easily visually identified. CSH also

counts the total number of pixels that fall into each threshold and

Figure 1. CSH processing on an infarcted mouse heart. A) An infarcted mouse heart section cut 8 mm thick. Muscle tissue is scarlet red, while
collagen fibers appear blue, and necrotic regions are purple-black. Insets show enlarged areas of muscle, collagen and necrotic region. B) The same
mouse heart, post-processing by CSH. The areas that CSH determined as collagen are blue, and the areas that CSH determined as muscle are red. The
background is yellow. C) A plot of the pixels from the original heart image mapped to HSV space. The gray arrows indicate the direction from which
this 3-D graph will be displayed in the following 2-D images. D) A plot of the pixels from the original image in the Hue-Saturation plane. The borders
collagen and the muscle rectangular thresholds are visible at Hue = {200, 300, 385}. E) A plot of the pixels from the original image in the Hue-Value
plane. F) A plot of the pixels from the original image in the Value-Saturation plane. This graph most clearly shows the different shapes of the collagen
peak (blue) and the muscle peak (red).
doi:10.1371/journal.pone.0089627.g001
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displays this number as both a scalar and as a percentage of the

region of interest (ROI).

CSH shows consistent measurements of collagen
accumulation independent of section thicknesses,
magnification, pixel size, artifacts, and image focus

In order to test the analytic power and consistency of CSH, we

analyzed adjacent tissue samples that differed only in thickness.

Four mouse hearts, each with significant myocardial infarction,

were embedded in OCT compound and frozen. Using a

cryotome, triplicate sections of the hearts were cut to 4 mm,

6 mm, and 8 mm (Figures 2 A–C). As seen in the first row of

Figure 2, these sections were stained with Masson’s trichrome

simultaneously and under identical conditions. Digital images were

taken of these sections using a 26 scanning power objective lens.

We performed image quantification analysis on these photographs

using both a classic RGB-thresholding method as shown in the

second row of Figure 2, and our new HSV-thresholding method as

seen in the third row of Figure 2. We optimized the thresholding

Figure 2. Analytic performance across diverse section thicknesses. A) A section of infarcted mouse heart cut to 4 mm and stained with
Masson’s trichrome. Descending from the original image, we see the RGB binary image, the HSV binary image, a density map of the pixels mapped to
the RGB color space, and a density map of the pixels mapped to the HSV color space. B) A section of infarcted mouse heart cut to 6 mm and stained
with Masson’s trichrome. C) A section of infarcted mouse heart cut to 8 mm and stained with Masson’s trichrome. D) For each of four experimental
hearts and each of the three section thicknesses, the area identified as muscle is plotted next to the area identified as collagen using the RGB method.
Because each heart has a different size infarction, these results for each heart are normalized as a percentage of the measured area in the 6 mm
sample. As the section thickness increases, RGB analysis decreases the perceived collagen area, despite analyzing adjacent sections of heart. E) For
each of four experimental hearts and each of the three section thicknesses, the area identified as muscle is plotted next to the area identified as
collagen using the HSV method. Because each heart has a different size infarction, these results for each heart are normalized as a percentage of the
measured area in the 6 mm sample. There is no discernible change in perceived muscle or collagen area as the section thickness increases when using
the HSV method.
doi:10.1371/journal.pone.0089627.g002
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parameters for each method using a single image, then left those

parameters constant for all subsequent analyses. The RGB analysis

method returned inconsistently diverse areas, which were identi-

fied as collagen vs. muscle as section thickness changed (Figure 2D).

The HSV method showed more consistency within each section

thicknesses (Figure 2E).

Next, we analyzed CSH’s ability to accurately process images at

various magnifications. We took digital images of regions of MI

mouse hearts, stained with Masson’s trichrome, which included

the border between muscle tissue and collagen, using 26, 106,

and 206 objective lenses (Figure S3). We cropped the lower

magnification images so that they each featured the same heart

portion. We analyzed these images with both the RGB method

and CSH. The RGB method provided drastically different results

depending on magnification, while CSH remained constant across

all magnifications.

Similarly, we tested CSH’s ability to withstand decreased image

resolution. To accomplish this, we took a representative MI mouse

heart image (300063000 = 9 million pixels), taken with a 26
objective lens, and serially decreased its size, in pixels, by one-half

in each dimension (Figure S4). CSH only began returning

inconsistent results once the image was reduced to

3756375 = 140,625 pixels, while the RGB method provided

inconsistent results with images as large as 7506750 =

562,500 pixels.

Certain common histological artifacts, such as ripples, tears, and

folds, can impede quantification of images. We tested CSH’s ability

to overcome even large folds in tissue sections. We examined a

portion of an MI mouse heart section with a large fold which

passed through both muscle and collagen areas (Figure S5). CSH

was able to accurately discern muscle tissue from collagen, even in

the folded portion of the section. The RGB method was unable to

do that; instead it excluded the entirety of the fold from analysis.

Occasionally, due to imperfections in sectioning, slides, or

imaging, portions of a sample image may be out of focus. We

tested CSH, as well as an RGB method of analysis, on a partially

defocused image by tilting a sample slide by 6u, and taking

multiple photographs of it with a shifting focal plane (Figure S6).

CSH provided highly conserved analyses between focal planes,

whereas the RGB method struggled to consistently measure

collagen area.

CSH provides measurements of detailed features
To further display the potential advantages of CSH, we set a

third thresholding cuboid in order to identify necrotic regions, in

addition to muscle and collagen, within our mouse hearts

(Figure 3A). Given the narrow, fusiform shape of the color

distribution of the hearts in RGB space, it is difficult to set an

accurate threshold for the dark necrotic tissue (Figure 3B). By

transforming the color data into HSV space (Figure 3C), the shape

of the color map changes and spreads out, revealing distinct

clusters of pixels that correspond to the different tissue types

present in the section. Dark necrotic regions can therefore be

easily identified by the software, yielding more detailed and useful

information about the section.

CSH is suitable for accurate quantitative
immunohistochemistry

The advantages CSH offers over RGB methods are not

restricted to sections of variable thickness. CSH also provides

greater consistency and power whenever individual samples

display a wide variety of stain intensity. To show this, we

performed immunohistochemistry on the innominate arteries of

two ApoE2/2 mice, using MAC3 (macrophage detection) as a

primary antibody (Figure 4). We labeled HSV signal as red and

RGB as green, and overlap between the two shown as yellow. The

plaque present in cross section 1 displays a more spread out and

less intense signal than the plaque from cross section 2, making it

hard to set useful thresholds for RGB analysis. When the RGB

threshold was optimized for cross section 1, the program falsely

identified large areas from cross section 2 as positive, as shown in

the cross section 2 panel labeled ‘‘Merge1 (HSV+RGB1)’’ (green

shows overestimation). Conversely, when the threshold was

optimized for cross section 2, large portions of positive signal

were falsely identified as negative in cross section 1, as shown in

the cross section 1 panel labeled ‘‘Merge 2 (HSV+RGB2)’’ (red

shows underestimation). Using CSH, when the threshold was

Figure 3. Additional thresholds are possible with CSH. An
infarcted mouse heart, analyzed by CSH for collagen, muscle, and
necrotic tissue. A) A post-processed image of an infarcted mouse heart
using the HSV method that includes a binary for necrotic tissue. B) 2-D
plots of the original pixels mapped to the RGB color space, but with the
same binary applied as in Figure 3A. C) 2-D plots of the original pixels
mapped to the HSV color space.
doi:10.1371/journal.pone.0089627.g003
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optimized for cross section 1, it remained accurate and appropri-

ate for the cross section 2 as well.

CSH is suitable for accurate quantification of specialized
stains

CSH remains powerful and accurate across a variety of

histological stains, including some stains that have traditionally

been difficult to interpret quantitatively. Figure 5 (top panels)

shows the power of CSH when analyzing a mouse aortic arch

stained with alkaline phosphatase (ALP, red), despite similarity in

appearance between positive (ALP) and negative (Hematoxilyn,

purple) plaque areas. Figure 5 (bottom panels) also shows the

fidelity with which CSH can accurately detect a high contrast

signal provided by picrosirius red-positive collagen staining. Green

shows overestimated results on both ‘‘Merge’’ images.

Discussion

The human eye can detect color thanks to three types of cone

cells in the retina, each of which absorbs light most readily at a

specific wavelength: long-wavelength (l= 575 nm), middle-wave-

length (l= 535 nm), and short wavelength (l= 430 nm) cones. By

analyzing the strength of signal received from each type of cone

cell, the brain can infer the intensity spectrum of incident light. In

theory, all colors that can be interpreted by humans can be

represented faithfully by describing the intensity of long, middle,

Figure 4. CSH is consistent between individuals. Apoe2/2 mouse innominate arteries stained with MAC3 antibody for detection of
macrophages. RGB1(threshold1) was optimized for Cross Section 1, and overestimates the positive area when applied to Cross Section 2.
RGB2(threshold2) was optimized for Cross Section 2, and underestimates the positive area when applied to Cross Section 1. CSH was able to
effectively use a single HSV threshold on both cross sections. In the overlays between the HSV and RGB1 and RGB2, yellow area shows where there is
agreement between the HSV method and the RGB method. Green area in the overlays may indicate false positive area reported by the RGB method,
while red area in the overlays may represent false negative area reported by the RGB method.
doi:10.1371/journal.pone.0089627.g004
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and short-wavelength light. However, physical and technical

limitations currently disallow a perfect representation of color as

interpreted by the brain.

A ‘‘color space’’ is any mathematical representation of perceived

colors. The RGB (red-green-blue) color space is one of the most

common color spaces. In RGB space, the intensities of red, green,

and blue light are each used to define an axis on a three-

dimensional graph. Because the pure colors red, green, and blue

are close to the absorbance peaks of the three cone cells of the eye,

nearly any visible color can be emulated. Most modern computer

monitors physically represent color in RGB space: each pixel of a

computer screen emits narrowband light at three frequencies –

red, green, and blue. Due to the trichromatic nature of monitors,

RGB space is the most common method for digitally storing color

data [7]. There are four other basic color spaces that are

commonly used, each offering advantages and disadvantages for a

variety of tasks.

Using the HSV color space during quantitative image analysis is

more robust and useful than performing similar analyses using an

unaltered RGB color space. Our program, CSH, which makes use

of the HSV color space, returned significantly more robust

analyses across a range of section thicknesses than the RGB

method, and was visibly more consistent. Using HSV thresholding

instead of RGB enabled CSH to identify necrotic tissues in MI

mouse hearts; necrotic tissue identification would be impossible in

the RGB space, and would have to be performed manually by

tracing the infarction to eliminate it from the ROI.

A handful of commercially available image analysis programs

allow users to select a binary thresholding method, including

options for RGB, HSV, Hue Saturation Lightness (HSL), or other,

less common color spaces. However, these programs do not

typically offer intuitive and descriptive toolbars to allow thresh-

olding parameters to be set manually the way CSH does, and many

of them do not allow for as many simultaneously applied

thresholds. CSH has the added benefit of being available online

for free as a web application. Analysis is fast, reliable, and easy.

We have not tested CSH on images larger than 1024067680 (78

million) pixels, or file sizes larger than 225MB. However, there is

no theoretical limit to the file size of images CSH can process, but,

as with any image analysis program, exceptionally large images,

such as those produced by slide scanners, may take a long time to

process. There are circumstances where an HSV analysis will offer

no benefits over a classic RGB analysis. In single immunofluores-

cence staining, colors are often pure, falling into clearly distinct

groups in RGB space as well as in HSV. However, in the case of

multiple fluorescent stains, and when a stain may be detected in

multiple color channels, CSH may offer more nuanced analyses

compared to RGB methods.

In conclusion, we have presented a new fast and reliable method

for histological image analysis. Our program, Color Selection HSV,

can be used as an analytical tool by researchers and clinical

pathologists to quantify histological images. It remains accurate

despite variability in sample thickness and stain saturation, making

it more reliable than other common image analysis methods and

programs.

Supporting Information

Figure S1 Creating an image binary. RGB analysis method,

used as an example to demonstrate how thresholding parameters

work. In most cases, histological stains make use of bright,

noticeable colors that emphasize the target area to be easily

visualized. However, the stain color is not all or nothing. There is

always a gradient of color expression due to the variation in

density of a stain’s target. This means that we need to be able

detect a range of color elements, and recognize slightly varied

colors as positive area. The left panel in the figure shows a

theoretical tiny pixel-array (363 = 9 pixels) in an image. Each

Figure 5. CSH is a powerful tool for a variety of stains. Common histological stains, displaying the fidelity of CSH. (Top panels): A mouse aorta
stained with alkaline phosphatase (ALP, red) for detection of early calcification, with Gill’s hematoxylin as counterstaining (purple), which depicts
advanced calcification. ALP stain is scarlet red (denoted ‘‘A’’ in the top left panel), while hematoxylin is a shade of purple (denoted ‘‘H’’ in the top left
panel). Visually, the hematoxylin interferes with the ALP, making it difficult to see where the ALP stain begins and ends. We analyzed the section for
ALP-positive area using both CSH and an RGB-based method. (Bottom panels): A mouse liver stained with picrosirius red staining visualized using
polarized light microscopy for detection of fibrosis. We analyzed the section using both CSH and an RGB-based method. The RGB method was unable
to register the brightest parts of the stain as positive (gray), and falsely interpreted stain artifacts as positive areas (green in both ‘‘Merge’’ images).
doi:10.1371/journal.pone.0089627.g005
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pixel has a unique set of RGB values, each of which is some shade

of purple. The central panel shows the thresholding-range set for

each of the three color-elements. This means that for any pixel in

the array to be considered positive, it must express a red color-

element (R) at an intensity between 180 and 240, a green color-

element (G) intensity between 0 and 50, and a blue color-element

(B) intensity between 160 and 200. The right panel shows the

result after thresholding. Only if all three conditions are met is a

pixel considered to be positive area. This process is repeated for all

pixels in a sample image, and may be repeated up to three times

using three different thresholding parameter sets if we need to

extract three different colors from an image.

(TIF)

Figure S2 Setting threshold parameters. The appearance of our

software tools for color separation by the HSV thresholding

method (upper) and by the RGB thresholding method (bottom).

Three thresholding parameters in each color space can be seen

above the sample image in each panel.

(TIF)

Figure S3 The effect of image resolution on analysis. Part of 26-

and 106-Images were cut out to be able to show same area that a

206-image covers. To conveniently compare each image, the 26-

images (RGB method, MT and HSV method) were enlarged 10

times and the 106-images were enlarged 2 times in length. The

percentages of area extraction were normalized so that the

measured areas in the 26-images would represent 100%. The

error bars show standard deviations from 3 different sections from

different mouse heart samples. The percent area extraction shows

an increase in measured muscle area and a decrease in measured

collagen area when the RGB method was performed at higher

magnifications. However, the HSV method only induced slight

increase in collagen area even when the method analyzed higher-

magnification images.

(TIF)

Figure S4 The effect of image downsizing on analysis. Left

Panel: An original, 300063000 pixel image (MT) was downsized

serially by half (in each dimension) down to 1/16 size

(1886188 pixel). Each downsized image was analyzed by the

RGB method and the HSV method using constant parameters.

Right Panel: The percent areas of muscle and collagen extracted

by both methods were normalized to the values of original image.

The HSV method was more consistent than the RGB method, as

it showed only a 5% deviation from the original image values, even

when analyzing an image 1/16 of the original size.

(TIF)

Figure S5 The effect of artifacts on analysis. We examined the

place where the section was folded (the darker area located at the

center in the top left panel). The illustration (bottom right panel)

shows how the section was folded, and we recognized that there

were three patterns: 1) the collagen area (C) was folded to 2 layers,

indicated as C+C; 2) the muscle area (M) was folded to 3 layers,

indicated as M+M+M; 3) one collagen area, one muscle area and

the mixed area were folded to 3 layers, indicated as C+C/M+M.

The RGB method showed only negative space at the fold. This

means that the RGB analysis was unable to identify any positive

tissue at the site of the fold. However, CSH showed very consistent

results in the all three patterns. Only the red color was observed in

the area specified with ‘‘M+M+M’’, and the blue color was seen at

the area specified with ‘‘C+C’’. In the mixed area (C+C/M+M),

both red and blue are observed.

(TIF)

Figure S6 The effect of focal plane on analysis. To test the

consistency of CSH when analyzing defocused images, we

prepared serial defocused images by tilting the slide glass

(h= 6u). This made 100 mm height difference in focal points

between upper side and bottom side of the image (106 objective

lens, 256061920 pixels image size). We took 6 serial out-of-focus

pictures, focusing on points every 384 pixels along the direction of

the slope. The frequencies of area extraction of the muscle and the

collagen were normalized to the average measured muscle and

collagen areas. CSH showed more consistent results than those of

the RGB method.

(TIF)

Methods S1 Color space conversion. Equation 1, max(R, G, B),

returns the maximum value (MAX) of the three RGB color

elements (R; red, G; green, B; blue). Similarly, equation 2, min(R,

G, B), returns the minimum (MIN) value of the three color

elements, R, G, or B. Hue (H) is then determined by one of the

four options, equation 3A – eq. 3D, as determined by which of the

three color elements has the greatest value. Based on these

equations, it is possible for H to be between 0 and 360. The

saturation (S) and the value (V) are determined by the equations 4

and 5. They range from 0 to 255. For convenience, we show here

some examples of the actual color conversion process (Table S1).

(DOC)

Table S1 Examples showing actual color conversion from the

RGB colors to the HSV colors. In order to deepen the

understanding how the actual color conversion from the RGB

colors to the HSV colors is performed we provided Table S1. Each

RGB color has unique set of red (R), green (G) and blue (B)

ranging from 0 to 255 (8-bit). From the equations (eq. 1, 2) in

Methods S1 the values of MAX, MIN and Option are obtained.

Through the calculation using equations eq. 3 – 5 (eq. 3 is

specified with the Option) hue (H), saturation (S) and value (V) are

obtained. For example the first color ‘‘Red’’ on the list uniquely

having a RGB color-element set of {R: 255, G: 0, B: 0} is

converting to a HSV color-element set of {H: 0, S: 255, V: 255}. It

should be noticed that violet colors show same hue no matter if

they are pale or dark (compare colors numbered 6 to 8, they have

same hue = 300).

(TIF)
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