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Growth factors play important roles in synapse formation. Mouse models of
neuropsychiatric diseases suggest that defects in synaptogenic growth factors, their
receptors, and signaling pathways can lead to disordered neural development and various
behavioral phenotypes, including anxiety, memory problems, and social deficits. Genetic
association studies in humans have found evidence for similar relationships between
growth factor signaling pathways and neuropsychiatric phenotypes. Accumulating data
suggest that dysfunction in neuronal circuitry, caused by defects in growth factor-mediated
synapse formation, contributes to the susceptibility to multiple neuropsychiatric diseases,
including epilepsy, autism, and disorders of thought and mood (e.g., schizophrenia and
bipolar disorder, respectively). In this review, we will focus on how specific synaptogenic
growth factors and their downstream signaling pathways might be involved in the
development of neuropsychiatric diseases.
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INTRODUCTION
Neuropsychiatric diseases are increasingly recognized to have
developmental origins. Some of these illnesses, such as autism and
ADHD, must be diagnosed based on symptoms identified dur-
ing early childhood (Association, 2013). Others, such as bipolar
disorder and schizophrenia, are usually diagnosed in adulthood,
but are recognized to have some manifestations in childhood
as well (Martin and Smith, 2013; Schulz et al., 2014). Although
these illnesses were initially studied in isolation from each other,
there is increasing evidence that these clinically disparate dis-
eases may have common genetic origins (Smoller and Finn, 2003;
Lichtenstein et al., 2010; Sullivan et al., 2012; Cross-Disorder
Group of the Psychiatric Genomics et al., 2013). To take this idea
further, if these diseases begin early in development and have
identifiable common genetic origins, it is possible, and perhaps
even likely, that perturbations in some common developmental
pathways may be involved in their pathogenesis.

One major set of signaling molecules that are important
in neural development are synaptogenic growth factors. These
growth factors, including brain-derived neurotrophic factor
(BDNF), the fibroblast growth factor (FGF) family, Wnts, and
insulin-like growth factors (IGFs), are important not only in
cell fate specification and neurogenesis, but specifically in the
formation and maintenance of synapses (Vicario-Abejon et al.,
1998; Barros et al., 2009; Terauchi et al., 2010; Guillemot and
Zimmer, 2011; Corvin et al., 2012; Rosso and Inestrosa, 2013).
Appropriate partnering of pre- and postsynaptic neurons is criti-
cal for the establishment of individual neuronal circuits, which in
turn is the fundamental basis of overall wiring of the functional
brain. Problems in these synaptogenic signaling pathways, which
could occur either due to mutations in individual growth factors
or their receptors, or inappropriate conduction of those signals

through intracellular signaling pathways, could lead to abnor-
mal connections between neurons or aberrant neuronal circuitry
(Figure 1).

Several lines of evidence suggest that synaptogenic growth fac-
tors are involved in the pathogenesis of neuropsychiatric diseases.
First, it is known that many mouse models with mutations in
synaptogenic growth factors or their receptors have behavioral
abnormalities, which may be analogous to neuropsychiatric dis-
ease in humans. For example, mice lacking FGF7 are predisposed
to epilepsy in a kindling protocol (Terauchi et al., 2010). Second,
some humans with mutations in growth factors have observ-
able behavioral and cognitive problems. For example, people with
a valine to methionine substitution at position 66 (V66M) in
the proBDNF polypeptide have impaired episodic memory and
increased risk of mood disorders (Egan et al., 2003; Schumacher
et al., 2005). Finally, there is growing evidence that mainte-
nance of proper networks and synaptogenesis and plasticity are
impaired in neuropsychiatric illnesses (Brennand et al., 2011;
Uddin et al., 2013), and growth factors are known to have a major
role in all of these processes.

We propose that the critical stage of interest for studying
these illnesses is during synaptogenesis, as this is when neu-
rons are wired together to form functional circuits. For our
purposes, “synaptogenesis” includes synapse development, mat-
uration, and maintenance, as these steps are all essential for a
mature, functional synapse. It is important to note that synapse
maturation and modulation occur throughout life, and are likely
to contribute to variations in disease presentation as development
progresses. For example, FGF2 has been hypothesized as an “on-
line” modulator of mood and anxiety in adults (Turner et al.,
2006). Synaptogenic growth factors are released from both the
pre- and postsynaptic neurons to assist synaptogenesis (Figure 2).
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Williams and Umemori Synaptogenic signaling in neuropsychiatric disease

FIGURE 1 | Dysregulated growth factor signaling can lead to

synaptic-level defects and neuropsychiatric disease. Synaptogenic growth
factors signal in both anterograde and retrograde directions, depending on
the specific growth factor involved. If this signaling is disrupted, due to
genetic mutations, changes in expression level, or changes in secretion
pattern, synapses will not be established properly. Some growth factors exert
trophic functions at the level of the synapse, and dysregulated signaling could
lead to the death of the presynaptic cell or retraction of that axon from its
appropriate postsynaptic partner. Even if the presynaptic axon is not
retracted, impaired growth factor signaling between synaptic partners could
cause changes in synaptic morphology and density, and ultimately to a
non-functional synapse. Impaired signaling could also lead an axon to bypass

its correct partner entirely and establish a synapse with a non-preferred
partner, leading to aberrant neuronal circuitry. If appropriate signals are not
passed between pre- and postsynaptic cells, this could lead to changes in
action potential firing rates and altered communication between cells. It is
still unclear which of these processes contribute to which neuropsychiatric
diseases, although there are data to support neuron and synapse loss in
certain cortical and hippocampal areas in mood disorders like depression and
bipolar disorder (Manji et al., 2001; Stockmeier et al., 2004; Stockmeier and
Rajkowska, 2004), aberrant brain connectivity in autism (Chung et al., 2013;
Lynch et al., 2013; Uddin et al., 2013), and aberrant feed-forward loops
(Yilmazer-Hanke et al., 2007) and neuronal circuitry (Aliashkevich et al., 2003)
in epilepsy.

Other developmental processes, such as neurogenesis and pro-
grammed cell death are also important in brain development, and
occur throughout life; their potential contributions to the patho-
genesis of neuropsychiatric diseases have been reviewed elsewhere
(Margolis et al., 1994; Mennerick and Zorumski, 2000; Gigante
et al., 2011; Petrik et al., 2012).

There are many molecules that act as synaptogenic growth fac-
tors in the brain. The most well-studied of these is BDNF, which
has been linked to multiple neuropsychiatric diseases including
bipolar disorder, depression, and schizophrenia (Neves-Pereira
et al., 2002, 2005; Schumacher et al., 2005). The FGFs are a large
family of growth factors, which are important in many processes
throughout development. FGFs have recently been shown to be
important in the development of glutamatergic and GABAergic
synapses (Flajolet et al., 2008; Stevens et al., 2010; Terauchi et al.,
2010) and have been implicated in a wide number of neuropsy-
chiatric diseases (Evans et al., 2004; Perez et al., 2009; Terwisscha
Van Scheltinga et al., 2010; Yamanaka et al., 2011; Turner et al.,
2012). Wnts and their receptors have been implicated in learning
and memory (Tabatadze et al., 2012; Fortress et al., 2013), autism

(Wassink et al., 2001), and some forms of epilepsy (Lako et al.,
1998). Although the insulin-like growth factor (IGF) family of
factors and receptors was previously recognized primarily for its
importance in neurogenesis, development, and aging, this fam-
ily is also now known to have roles in cortical plasticity (Tropea
et al., 2006) and memory (Chen et al., 2011). Other families of
growth factors have also been shown to be active in synapto-
genesis and brain development, such as the TGFβ, GDNF, and
EGF/neuregulin families (Mei and Xiong, 2008; Paratcha and
Ledda, 2008; Williamson and Hiesinger, 2008; Van Kesteren et al.,
2008; Krieglstein et al., 2011). The contributions of growth factors
are summarized in Table 1.

Growth factor signaling between pre- and postsynaptic neu-
rons ensures that proper connections between both individual
neurons and brain regions are made. Here we describe how dys-
regulation of these systems may lead to neuropsychiatric disease.
Since many of these synaptogenic growth factors promote intra-
cellular signaling through common signal transduction pathways,
it is possible that modulation of one or a few of these pathways
could lead to significant improvement of clinical symptoms.
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FIGURE 2 | Synaptogenic growth factors in normal synapse formation

and maintenance. Synaptogenic growth factors, including neurotrophins,
Wnts, and FGFs, are secreted from the postsynaptic cell to induce
appropriate differentiation of the presynaptic terminal, including clustering
of synaptic vesicles. In turn, growth factors, including neurotrophins, and
Wnts, can be released from the presynaptic cell to organize the
differentiation of the postsynaptic density. IGFs are thought to act in a
paracrine or autocrine fashion, and may be able to bind receptors within the
synapse as well as at extrasynaptic sites. Abbreviations used: FGF,
fibroblast growth factor; FGFR, fibroblast growth factor receptor; Fz,
Frizzled receptor; IGF, insulin-like growth factor; IGFR, insulin-like growth
factor receptor; NT, neurotrophin; NTR, neurotrophin receptor.

BDNF AND THE NEUROTROPHIN FAMILY OF GROWTH
FACTORS
The neurotrophin family of growth factors includes BDNF, pro-
BDNF, NGF, NT-3, and NT-4. Neurotrophins bind to the Trk
family of receptors, as well as the p75 receptor, to activate mul-
tiple intracellular signaling cascades. BDNF binds primarily to
TrkB, NGF to TrkA, NT-3 to TrkC and TrkB, and NT-4 primar-
ily to TrkB. All neurotrophins bind with relatively low affinity
to the p75 receptor, and proBDNF binds only the p75 recep-
tor. When neurotrophins bind to Trks, they support the sur-
vival and growth of neurons. Neurotrophins secreted from the
postsynaptic cell promote the survival and health of the presy-
naptic neuron, and maintain a synapse between the two cells.
One exception to this rule is the binding of proBDNF to p75,
which is usually a pro-apoptotic signal to neurons (Teng et al.,
2005). BDNF may also participate in postsynaptic organization
(Johnson-Venkatesh and Umemori, 2010; Yoshii et al., 2011),
but it is unclear whether this is independent of its presynaptic
organizational activities.

BDNF signaling plays a major role in CNS synaptogenesis.
It is involved in development of both excitatory and inhibitory
synapses (Itami et al., 2000; Fiorentino et al., 2009), and is
important for strengthening excitatory synapses through long-
term potentiation, a form of cellular and network learning
and memory (Minichiello, 2009). BDNF is released from neu-
rons both constitutively and in an activity-dependent fashion
(Farhadi et al., 2000; Zha et al., 2001; Egan et al., 2003), and its
activity-dependent expression is important for the development

and maintenance of cortical inhibitory synapses (Hong et al.,
2008). Mice with a hypomorphic or null TrkB allele in hindbrain
neurons demonstrate impaired climbing fiber pruning at the
climbing fiber-Purkinje cell synapse (Johnson et al., 2007), sug-
gesting that TrkB signaling is important for developmental synap-
tic pruning, possibly in an activity-dependent fashion. BDNF
also plays a role in shaping dendritic morphology, which is an
important aspect of synaptogenesis. Mice homozygous (knock-
in) for the V66M BDNF mutation show decreased cortical spine
density and diameter (Liu et al., 2012), as well as decreased hip-
pocampal and cortical dendritic complexity (Chen et al., 2006b;
Yu et al., 2009). BDNF is upregulated in mouse hippocampus
under conditions of environmental enrichment (Hu et al., 2013),
which is known to enhance dendritic arborization (Turner et al.,
2003) and number of hippocampal synapses (Gogolla et al., 2009;
Babic and Zinsmaier, 2011). BDNF may have differential effects
depending on where its mRNA is translated in the cell; recent
evidence shows that somatic BDNF is important for dendritic
spine formation, whereas dendritic BDNF expression is impor-
tant for spine head growth and spine pruning (Orefice et al.,
2013). Other neurotrophins, including NT-3 and NT-4, have not
been shown conclusively to be involved in synaptogenesis; these
do have importance in neurogenesis and other aspects of CNS
development (Table 1).

BDNF has been implicated in the pathogenesis of multi-
ple neuropsychiatric diseases, including depression (Schumacher
et al., 2005), schizophrenia (Zintzaras, 2007), and Rett syndrome,
a severe developmental disorder with autistic features (Larimore
et al., 2009; Zeev et al., 2009). The V66M mutation in BDNF
impairs activity-dependent release of BDNF in hippocampal cul-
tures and is associated with impaired episodic memory, both in
patients with schizophrenia and people without neurologic or
psychiatric illness (Egan et al., 2003). Interestingly, this muta-
tion may be both a risk factor for depression (Schumacher et al.,
2005) and a protective factor against bipolar disorder (Geller
et al., 2004), although not all genetic studies in humans support
these associations (Neves-Pereira et al., 2002). Data from post-
mortem patient tissue supports changes in mRNA and protein
levels of BDNF and TrkB in patients with mood and psychotic
disorders (Issa et al., 2010; Thompson Ray et al., 2011; Tripp et al.,
2012; Qi et al., 2013). Data from animal models with deficits
in neurotrophin signaling support the links between BDNF sig-
naling and behavior. Mice lacking TrkB in forebrain neurons
show impaired spatial learning, delay in fear conditioning, and
impaired hippocampal LTP (Minichiello et al., 1999), as well
as behavioral rigidity when faced with changing environmen-
tal conditions (Vyssotski et al., 2002). Another group, using the
same forebrain-specific TrkB knockout mice, observed increased
behavioral hyperactivity and impulsivity (Zorner et al., 2003).
Mice with reduced BDNF expression levels display increased alco-
hol consumption (Hensler et al., 2003; McGough et al., 2004).
The same is observed in mice when trkB expression levels are
reduced (Jeanblanc et al., 2006). Although it is unknown whether
NT-4 functions specifically in synaptogenesis, NT-4 null mice
have deficits in fear conditioning and hippocampal LTP (Xie
et al., 2000), which may have implications for human anxiety and
cognitive disorders.
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Table 1 | Growth factors and their receptors in synaptogenesis and neuropsychiatric disease.

Family Factor/receptor Role in synaptogenesis

and/or brain development

Mutation/signaling

defect

Pathology/disorder

Neurotrophins BDNF Excitatory and inhibitory
synapse development, LTP

Haploinsufficiency Increased aggressiveness and hyperphagia (Lyons
et al., 1999)

V66M (heterozygous
knockin)

Increased immobility in forced swim test and
decreased sucrose intake after stress (depressive
endophenotype) (Yu et al., 2012)

V66M (homozygous
knockin)

Decreased hippocampal volume, decreased hip-
pocampal dendritic complexity, increased anxiety-
related behaviors (Chen et al., 2006b), decreased
volume and dendritic complexity in vmPFC with
impaired extinction learning (Yu et al., 2009),
decreased spine density and diameter in PFC (Liu
et al., 2012)

Val66 (most common
allele in general
population)

Bipolar disorder (Geller et al., 2004)

V66M Depression (Schumacher et al., 2005), bipolar dis-
order (Neves-Pereira et al., 2002), episodic memory
deficit in both homozygous and heterozygous peo-
ple (Egan et al., 2003), childhood onset OCD (Hall
et al., 2003), eating disorders (Ribases et al., 2003,
2004), schizophrenia (Neves-Pereira et al., 2005)

None identified Decreased serum levels in depression (Sen et al.,
2008)

Haploinsufficiency WAGRO (complex medical syndrome that includes
intellectual disability) (Han et al., 2008)

NT3 Inhibition of myelination
(Cosgaya et al., 2002); axonal
arborization in CNS sensory
neurons (Lilley et al., 2013)

Cortical
neuron-selective
knockout

Defects in thalamocortical pathways with sec-
ondary visual system impairment (Ma et al., 2002)

NT4 Knockout Loss of specific sensory neurons (Liu et al., 1995);
deficit in fear conditioning and attenuated hip-
pocampal LTP (Xie et al., 2000)

NGF, beta
subunit

Role in synaptogenesis
unknown; primarily functions
in growth and differentiation
of sympathetic and subset
of sensory neurons
(Levi-Montalcini, 1987)

Homozygous loss of
function (“functional
null”)

Hereditary sensory and autonomic neuropathy, mild
intellectual disability (Carvalho et al., 2011)

TrkA Apoptotic factor for
developing neurons
(Nikoletopoulou et al., 2010);
promotes survival of
cholinergic neurons in
forebrain nucleus basalis
(Fagan et al., 1997)

Reduction in
expression

Loss of cortical TrkA correlates with cognitive
impairment by MMSE (Counts et al., 2004)

Receptor blockade via
autoantibodies

Blockade of TrkA correlated with sensory axonal
neuropathy and axonal dysfunction (Mutoh et al.,
2005)

Multiple loss of
function mutations

Congential insensitivity to pain with anhidrosis
(Smeyne et al., 1994; Mardy et al., 1999)

Knockout Loss of forebrain cholinergic neurons around time
of synaptogenesis (Fagan et al., 1997)

(Continued)
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Table 1 | Continued

Family Factor/receptor Role in synaptogenesis

and/or brain development

Mutation/signaling

defect

Pathology/disorder

TrkB Excitatory and inhibitory
synapse development, LTP

Partial (75%) loss of
function

Hyperphagia and weight gain (Xu et al., 2003)

Chemical inhibition of
TrkB

Spontaneous seizures, anxiety-like behavior, and
loss of hippocampal neurons (Liu et al., 2013)

S478A homozygous
knock-in
(phosphorylation-
deficient
TrkB)

Impaired hippocampal LTP and impaired spatial
memory (Lai et al., 2012)

TrkC Apoptotic factor for
developing neurons
(Nikoletopoulou et al., 2010)

Mutations in 3′-UTR of
TrkC

Anxiety disorders (Muinos-Gimeno et al., 2009)

NGFR/p75
(NTR)

Apoptosis of neurons Knockout Impaired hippocampal LTD, and alterations in
expression of AMPA receptor subunits GluR2 and
GluR3 (Rosch et al., 2005)

FGF FGF1 None identified Decreased in dorsolateral prefrontal cortex in MDD
(Evans et al., 2004)

FGF2 Posteriorizing cortical pattern
(Doniach, 1995), proper
migration and differentiation
of neurons (Dono et al.,
1998; Ortega et al., 1998)

Knockout/targeted
disruption

Decreased neuronal density in multiple layers of
cortex and spinal cord, ectopic neurons in hip-
pocampal commissure (Dono et al., 1998; Ortega
et al., 1998)

None identified Decreased in anterior cingulate in MDD (Evans
et al., 2004)

FGF3 Inner ear development
(Frenz et al., 2010), works
cooperatively with FGF8 in
zebrafish retinal
development
(Martinez-Morales et al.,
2005)

Multiple mutations,
likely loss of function

Congenital deafness (Tekin et al., 2007, 2008;
Alsmadi et al., 2009; Sensi et al., 2011)

FGF7 Presynaptic organizing
molecule for inhibitory
synapses onto CA3 neurons
(Umemori et al., 2004;
Terauchi et al., 2010)

Knockout FGF7-null mice are sensitive to PTZ kindling of
seizures (Terauchi et al., 2010); enhanced mossy
fiber sprouting and increased dentate gyrus neuro-
genesis (Lee et al., 2012)

FGF10 Presynaptic organizing
molecule (Umemori et al.,
2004)

FGF22 Presynaptic organizing
molecule for excitatory
synapses onto CA3 neurons
(Umemori et al., 2004;
Terauchi et al., 2010)

Knockout FGF22-null mice are resistant to PTZ-induced kin-
dling (Terauchi et al., 2010), do not have induction
of DG neurogenesis or ectopic hilar cells with
PTZ treatment despite having seizures (Lee and
Umemori, 2013)

FGF8 Specifying anterior cortical
positional identity
(Fukuchi-Shimogori and
Grove, 2001), dorsal identity
(Gunhaga et al., 2003)

Multiple (H14N, P26L,
F40L, K100E, R127G)

Idiopathic hypogonadotropic hypogonadism with or
without anosmia; R127G mutation associated with
color blindness and bilateral hearing loss (Falardeau
et al., 2008)

(Continued)

Frontiers in Synaptic Neuroscience www.frontiersin.org March 2014 | Volume 6 | Article 4 | 5

http://www.frontiersin.org/Synaptic_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Synaptic_Neuroscience/archive


Williams and Umemori Synaptogenic signaling in neuropsychiatric disease

Table 1 | Continued

Family Factor/receptor Role in synaptogenesis

and/or brain development

Mutation/signaling

defect

Pathology/disorder

T229M Brain defects, seizures, severe neurologic impair-
ment in one family member, above-average intel-
ligence with subtle midline abnormalities in two
other family members with mutation (Arauz et al.,
2010)

Hypomorphic alleles in
compound
heterozygotes

Brain malformations including loss of midbrain and
anterior hindbrain and reduced size of telecephalic
vesicles (Meyers et al., 1998)

FGF17 Neuronal fate specification,
patterning of cortex

Knockout Reduced size of dorsal frontal cortex with ros-
tral shift of sensory cortical areas (Cholfin and
Rubenstein, 2007); impaired social behaviors
(Scearce-Levie et al., 2008)

Multiple missense
mutations, probable
loss of function

Hypogonadotropic hypogonadism with or without
anosmia (Miraoui et al., 2013)

FGF9 Mitogen for astrocytes None identified Decreased in anterior cingulate in MDD (Evans
et al., 2004)

FGF20 Highly expressed in
cerebellum (Jeffers et al.,
2001)

951C/T polymorphism
leading to increased
FGF20 expression

Parkinson disease (Wang et al., 2008; but see Wider
et al., 2009); other SNPs also implicated in PD but
not always found in replication studies (Van Der
Walt et al., 2004; Clarimon et al., 2005)

FGFR1 Multiple
loss-of-function alleles

Hypogonadotropic hypogonadism with or without
anosmia (Dode et al., 2003)

Transgenic expression
of forebrain-specific
FGFR1 antagonist

Locomotor hyperactivity, abnormal forebrain cortical
organization, reduced number of pyramidal neurons
and reduced dendritic arborization (Shin et al., 2004)

FGFR2 Multiple (S351C,
delD273, W290C)

Pfeiffer syndrome type III, includes seizures and
severe developmental delay (Tartaglia et al., 1997;
Gripp et al., 1998)

None identified Decreased expression in dorsolateral prefrontal cor-
tex and anterior cingulate in MDD (Evans et al.,
2004)

FGFR3 P250R Muenke coronal synostosis, early bone fusion syn-
drome with some patients exhibiting sensorineural
hearing loss and/or intellectual disability (Muenke
et al., 1997; Reardon et al., 1997), deafness
(Hollway et al., 1998)

Heterozygous
missense

CATSHL syndrome (includes hearing loss)
(Toydemir et al., 2006)

R248C Intellectual disability, seizures, cortical and subcorti-
cal atrophy (Garcia-Vargas et al., 2008)

K650M SADDAN dysplasia, includes seizures, neuro-
logic impairments, profound developmental delay
(Francomano et al., 1996; Tavormina et al., 1999)

None identified Decreased expression in dorsolateral prefrontal cor-
tex and anterior cingulate in MDD (Evans et al.,
2004)

Knockout Profound deafness (Colvin et al., 1996)

CNS-specific K664E
(equivalent to human
K650M)

Asymmetric changes in cortical thickness and cere-
bellar abnormalities, premature oligodendrocyte
progenitor differentiation in spinal cord (Lin et al.,
2003)

(Continued)
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Table 1 | Continued

Family Factor/receptor Role in synaptogenesis

and/or brain development

Mutation/signaling

defect

Pathology/disorder

Wnt Wnt1 S295X Osteogenesis imperfecta with learning and devel-
opmental delays (Pyott et al., 2013)

Wnt2 Nonconservative
coding sequence
variants; linkage
disequilibrium with
3′UTR SNP

Autism particularly with severe language deficits
(Wassink et al., 2001; McCoy et al., 2002)

Wnt3 Branching of motoneuron
axons (Krylova et al., 2002),
hippocampal neurogenesis
(Lie et al., 2005), axonal
guidance (Schmitt et al.,
2006)

None identified Injection of amphetamine into nucleus accumbens
causes increase in Wnt3 expression (Macleod et al.,
2012)

Wnt3a Patterning of brain,
especially rostrocaudal and
dorsoventral

Application of
anti-Wnt3a antibody

Inhibits LTP in acute hippocampal slices (Chen et al.,
2006a)

Wnt5a Axonal differentiation (Zhang
et al., 2007), promotion of
excitatory synapse formation
(Varela-Nallar et al., 2010),
reduction of excitatory
synapse formation (Davis
et al., 2008)

Knockout of Wnt5a
receptor (Ryk)

Reduction in ventral midbrain progenitor cells and
loss of dopaminergic precursor cells with decrease
in dopaminergic neurons (Blakely et al., 2013)

Wnt7a Presynaptic organizer in
cerebellum, synapse
clustering, growth cone
remodeling (Hall et al., 2000;
Ahmad-Annuar et al., 2006);
promotes excitatory synapse
formation (Davis et al., 2008)

Knockout Deficit in cerebellar synapse formation, defects
in neurotransmitter release in cerebellar synapses
(Hall et al., 2000; Ahmad-Annuar et al., 2006)

Wnt7b Dendritic branching (Rosso
et al., 2005), promotes
excitatory synapse formation
(Davis et al., 2008)

Wnt8b Posteriorizing signal in
posterior forebrain and
midbrain (Houart et al., 2002)

Linkage disequilibrium
in chromosome 10q24

Potential linkage to partial epilepsy with auditory
features (Lako et al., 1998)

IGF IGF1R Implicated in ES cell survival
and clonogenicity (Bendall
et al., 2007)

R59X (early
termination)

Microcephaly and mild intellectual disability (Raile
et al., 2006); IGFR1 mutations in general are linked
to generalized growth retardation

GH GH Enhances excitatory
glutamatergic
neurotransmission (Ramsey
et al., 2005; Molina et al.,
2013)

Point mutation in intron
3 resulting in very low
GH levels

Deficit in spatial learning and memory in rats with
GH mutation (Li et al., 2011)

Viral-mediated GH
overexpression in
amygdala

Enhanced freezing to auditory cue after fear condi-
tioning (Meyer et al., 2013)

Untreated GH
deficiency

Increased incidence of anxiety, depression, psy-
chosis, and cognitive deficits in women deficient in
GH (Bulow et al., 2002)

(Continued)
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Table 1 | Continued

Family Factor/receptor Role in synaptogenesis

and/or brain development

Mutation/signaling

defect

Pathology/disorder

EGF EGFR Hypomorphic mutation
in EGFR

Excessive daytime locomoter activity that is nonre-
sponsive to light (Kramer et al., 2001)

NRG1 maturation of dendritic
spines

CNS-specific knockout Dendritic spines form but do not grow properly,
impaired glutamatergic signaling (Barros et al.,
2009)

TGFβ TGF1 Stimulates proliferation,
differentiation and other cell
functions in many cell types,
negative autocrine growth
factor

Knockout Apoptotic neurons, loss of neocortical presynap-
tic differentiation, reduced laminin expression,
microgliosis, death at postnatal day 21 (Brionne
et al., 2003)

Astrocyte-specific
TGFβ1 overexpression

Increased Aβ deposition in aged AD mice and post-
mortem AD human brains (Wyss-Coray et al., 1997),
but expression in microglia might be protective
against amyloid plaque development (Wyss-Coray
et al., 2001)

TGFβR1 Heterozygous
mutations

Loeys-Deitz syndrome (Loeys et al., 2005; Ades
et al., 2006)

TGFβR2 Transgenic expression
of kinase-deficient
TGFβR2

Accelerates age-dependent neurodegeneration and
dendritic loss in AD mouse model (Tesseur et al.,
2006)

None identified Significantly decreased in AD brains but not other
forms of dementia (Tesseur et al., 2006)

Neural stem
cell-specific knockout

Embryonic defects similar to DiGeorge syndrome,
which in humans includes learning disabilities,
seizures, psychiatric illness (Wurdak et al., 2005)

Heterozygous
mutations

Loeys-Deitz syndrome, with widespread problems
with development including mental retardation;
Increased collagen and connective tissue growth
factor suggestive of enhanced TGFβ signaling
(Loeys et al., 2005)

GDNF GDNF Dopaminergic neuron
trophic factor

Direct infusion of GDNF
to ventral tegmental
area

Decreased drug sensitivity (cocaine and morphine)
and reversal of drug-induced plasticity (Messer
et al., 2000); prevented and reversed neuropathic
pain (Boucher et al., 2000); decreased ethanol self-
administration (Carnicella et al., 2008)

VEGF VEGF-A Angiogenic mitogen Viral transduction Enhanced hippocampal-dependent learning in rats
(Cao et al., 2004)

VEGF-D Angiogenic mitogen RNAi knockdown Reduced cortical dendrite length and complex-
ity, and memory impairments in hippocampal-
dependent memory tasks (Mauceri et al., 2011)

Growth factors proposed to be involved in brain development are listed, along with available evidence for their involvement in neuropsychiatric disease. Evidence

from animal models is listed in blue, evidence from studies in humans or tissue derived from humans is listed in orange. Abbreviations used: 3 ′-UTR, 3 ′-untranslated

region; AD, Alzheimer disease; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; BDNF, brain-derived neurotrophic factor; CA3, cornu ammonis area 3;

CATSHL, camptodactyly, tall stature, scoliosis, and hearing loss; CNS, central nervous system; DG, dentate gyrus; EGF, epidermal growth factor; ES cell, embryonic

stem cell; Fz, Frizzled receptor; GDNF, glial-derived neurotrophic factor; GH, growth hormone; GluR, AMPA glutamate receptor subunit; JNK, c-Jun N-terminal

kinase; LTP, long-term potentiation; MDD, major depressive disorder; miR, microRNA; MMSE, mini-mental status exam; NGF, nerve growth factor; NRG, neuregulin;

NT-3, neurotrophin-3; NT-4, neurotrophin-4; OCD, obsessive compulsive disorder; PD, Parkinson disease; PFC, prefrontal cortex; PTZ, pentylenetetrazol; RNAi, RNA

interference; Ryk, atypical receptor tyrosine kinase; SADDAN, severe achondroplasia with developmental delay and acanthosis nigricans; SNP, single nucleotide

polymorphism; TGF, transforming growth factor; vmPFC, ventromedial prefrontal cortex; WAGRO, wilms tumor, aniridia, genitourinary anomalies, mental retardation,

and obesity syndrome.
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FIBROBLAST GROWTH FACTORS AND THEIR RECEPTORS
The FGF family includes 22 FGF genes, which are clustered into
groups based on phylogenetic similarity and receptor specificity
(Umemori, 2009). Among them, there are 4 FGF homologous fac-
tors (originally called FGFs 11–14, now known as FHFs), which
are solely intracellular signaling molecules and do not bind to
FGF receptors (FGFRs). Other FGFs bind to FGFRs, of which
there are 4 genes that can be alternatively spliced into multiple
receptor subtypes (Umemori, 2009). FGF signaling is important
in organogenesis and growth throughout development (Beenken
and Mohammadi, 2009). In the CNS, FGFs have many functions,
including neurogenesis, fate specification, and neuronal survival
(Dono, 2003; Mason, 2007). FGFs also play roles in axon guid-
ance and target recognition. For example, FGF8 has been shown
to be an axon guidance molecule for trochlear nerve axons in
a cultured rat midbrain explant model of neuronal pathfinding
(Irving et al., 2002), and FGF2 gradients help retinal ganglion
cell axons find their targets in the optic tectum in developing
Xenopus (McFarlane et al., 1995). Although some FGFs act by an
endocrine mechanism in the periphery, (such as FGF19, FGF21,
and FGF23), FGFs that are active in the CNS are released by
postsynaptic cells to stimulate presynaptic organization (Terauchi
et al., 2010), and therefore act primarily by local mechanisms
within the CNS.

Evidence is accumulating for the importance of FGFs in synap-
togenesis. In cultured rat hippocampal neurons, addition of
FGF2 to the culture medium generates an increase in excitatory
synapses via a MAPK-dependent mechanism (Li et al., 2002). In
cultured neurons, FGF7 and FGF22 function as presynaptic orga-
nizers (Umemori et al., 2004; Terauchi et al., 2010). FGF7-null
mice have a deficit in hippocampal inhibitory synapse formation
while FGF22-null mice are deficient in hippocampal excitatory
synapses (Terauchi et al., 2010), consistent with the roles of FGF7
and FGF22 in presynaptic organization (Umemori et al., 2004).
Other FGFs, including FGFs 4, 6, and 9 also promote synaptic
vesicle clustering in cultured neurons (Umemori et al., 2004), but
their roles in synaptogenesis in vivo are unknown.

The evidence linking FGFs and behavioral abnormalities is
growing. FGF7-null are prone to develop epilepsy after kindling,
while FGF22-null are resistant to seizure induction (Terauchi
et al., 2010), providing a link between synaptogenic defects and a
neurobehavioral phenotype. Mice overexpressing FGF21 primar-
ily in the liver, which is known to function in metabolism and
insulin sensitivity, also show dysregulation in circadian rhythms,
which is a common feature of mood disorders (Bookout et al.,
2013); it is unknown whether these mice have other behav-
ioral abnormalities consistent with mood alterations. It is also
unknown whether FGF21 plays a role in synaptogenesis, although
it is known to cross the blood-brain barrier (Bookout et al.,
2013). Mice globally lacking FGF17 have impaired social inter-
actions, a key diagnostic feature of autism (Scearce-Levie et al.,
2008). Interestingly, FGF17 was found to induce neurite branch-
ing in cultured neurons (Umemori et al., 2004), suggestive
that abnormal connectivity between neurons may underlie these
behavioral changes in FGF17-null mice. Peripheral administra-
tion of FGF2 to rats with endogenously high levels of anxiety
was found to reduce anxiety-like behaviors (Perez et al., 2009),

while lentiviral shRNA-mediated knockdown of FGF2 in rat hip-
pocampus increased anxiety-like behaviors (Eren-Kocak et al.,
2011). Although no studies of FGF expression in anxiety disor-
der patients have been published, the body of literature supports
the idea that FGF2, if not other FGFs, is an important regula-
tor of many emotional states. Alterations in FGF expression in
humans have also been associated with depression (Evans et al.,
2004), substance abuse (Turner et al., 2012), and schizophrenia
(Terwisscha Van Scheltinga et al., 2010). Mutations in FGFR2
are causative for Pfeiffer Syndrome, some severe forms of which
manifest intellectual disability (Priolo et al., 2000; Shotelersuk
et al., 2002). There are multiple other examples of FGFs and
FGFRs linked to neuropsychiatric disease, which are detailed in
Table 1. Overall, the data underscore the importance of normal
FGF signaling both for normal synapse formation and normal
neuropsychiatric functioning.

Wnt SIGNALING MOLECULES AND THEIR RECEPTORS
Wnts are a family of 19 highly-conserved secreted signaling glyco-
proteins that play important roles in embryogenesis and fate spec-
ification in early development. When they bind to their receptors,
the Frizzled proteins and LRP coreceptors, they can trigger several
different types of intracellular signaling pathways. The best char-
acterized intracellular signaling pathway is the Wnt/Frizzled/β-
catenin/GSK3-β pathway, also known as the canonical pathway.
Wnts 1, 2, 3a, 7a, and 7b generally signal through the canoni-
cal pathway. There are also several non-canonical pathways that
have been identified which do not signal via β-catenin, the most
well-studied of which are the planar cell polarity (PCP) and
the Wnt/calcium pathways. Wnts 4a and 5a signal through the
PCP pathway, which is involved in neuronal migration as well as
cell polarity (Okerlund and Cheyette, 2011). The Wnt/calcium
pathway is important for control of calcium release from the
endoplasmic reticulum (ER) for calcium-dependent intracellu-
lar signals (De, 2011). There are also a number of other Wnt
signaling pathways, but these are generally less well-understood
(Niehrs, 2012). Although Frizzled and LRP are the most well-
studied receptors for Wnts, Wnts are also known to bind to many
other cell surface receptors, including Ryk, ROR2, and others
(Niehrs, 2012).

Wnt signaling pathways have many roles in CNS synaptogene-
sis, and can both increase or decrease synapse formation depend-
ing on the Wnt pathways and cell types involved. The role of Wnts
in non-mammalian and peripheral nervous system synaptogene-
sis has been reviewed extensively elsewhere (Park and Shen, 2012;
Poon et al., 2013). Wnt7a is a retrograde signal derived from cere-
bellar granule cells to presynaptic mossy fiber terminals in the
cerebellum (Hall et al., 2000). Wnt7a binds to Dvl1, a mouse
homolog of Disheveled, and induces clustering of synapsin I and
axon growth cone remodeling (Hall et al., 2000; Ahmad-Annuar
et al., 2006). In mice globally lacking either Wnt7a or Dvl1, there
are deficits in cerebellar synapse formation, while mice null for
both Wnt7a and Dvl1 have an additional defect in neurotransmit-
ter release at mossy fiber-granule cell synapses (Hall et al., 2000;
Ahmad-Annuar et al., 2006). Wnt7a also has a role in synaptic
differentiation in the hippocampus, particularly enhancing the
number and strength of excitatory synapses (Davis et al., 2008;
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Ciani et al., 2011); this is also true for Wnt7b (Davis et al., 2008).
Wnt5a has been shown to increase the formation of glutamatergic
synapses and maturation of dendritic spines in cultured neurons
via a calcium-dependent mechanism (Varela-Nallar et al., 2010).
However, in a separate study, application of Wnt5a to neuronal
cultures resulted in a decrease in glutamatergic synapses (Davis
et al., 2008), suggesting that Wnt5a effects may be dependent on
culture conditions or downstream signaling pathways (canoni-
cal vs. non-canonical). Taken together, the data demonstrate the
importance of Wnt signaling in synaptogenesis in both pre- and
postsynaptic compartments.

Although many knockout mouse models for Wnts have been
developed, most do not survive embryogenesis (Uusitalo et al.,
1999; Van Amerongen and Berns, 2006), and therefore can-
not be assessed for behavioral phenotypes. However, there are
mouse models where other mediators of Wnt signaling have
been genetically manipulated, which implicate Wnt signaling in
behavior. Mice null for Dvl1 have diminished social interactions,
a core feature of autism, as well as abnormal prepulse inhibi-
tion, which is observed in both autism and schizophrenia (Lijam
et al., 1997). These mice also have deficits in hippocampal den-
dritic branching and cerebellar synaptogenesis (Lijam et al., 1997;
Rosso et al., 2005). Forebrain-specific reduction of expression of
β-catenin, the putative downstream signaling molecule for Dvl1,
generates subtle behavioral changes in the tail suspension test,
a depression-like endophenotype (Gould et al., 2008). The lack
of similar behavioral deficits between the forebrain-specific β-
catenin knockout and Dvl1-null mice could be due to the fact that
the β-catenin knockout was limited to the forebrain, whereas the
synaptic changes noted in Dvl1-null mice are primarily noted in
hippocampus and cerebellum, or may be attributable to the mul-
tiplicity of downstream effectors of Wnt signaling. Another way
to modulate Wnt signaling is by overexpressing Axin, a scaffold-
ing protein that negatively regulates Wnt signaling. When mice
overexpressing Axin are trained in a fear-conditioning paradigm,
they exhibit an increase in freezing to contextual conditioning as
well as changes in cued fear conditioning, suggestive that alter-
ations in Wnt signaling could increase anxiety-related behaviors
(Kim et al., 2011).

Wnts have been implicated in multiple genetic studies of
human neuropsychiatric disease. Some data suggest that muta-
tions in Wnt2 are linked with forms of autism with severe lan-
guage deficits (Wassink et al., 2001), although not all studies have
confirmed this association (McCoy et al., 2002). Interestingly,
the CHD8 gene has been identified in multiple genetic stud-
ies of autism and related neurodevelopmental disorders (Neale
et al., 2012; O’Roak et al., 2012a,b; Talkowski et al., 2012). The
CHD8 protein binds β-catenin and negatively regulates Wnt/β-
catenin signaling (Nishiyama et al., 2012). Wnts also can activate
the retinoid-related orphan receptor alpha, RORA, which has
been implicated by GWAS in several neuropsychiatric diseases,
including autism (Nguyen et al., 2010; Sarachana and Hu, 2013),
bipolar disorder (Le-Niculescu et al., 2009; but see McGrath et al.,
2009), depression (Terracciano et al., 2010; Utge et al., 2010), and
PTSD (Logue et al., 2013). Additionally, both lithium and val-
proic acid, medications commonly used to treat neuropsychiatric
diseases, are known to inhibit GSK3β, a downstream effector of

the canonical Wnt signaling pathway (Lucas and Salinas, 1997;
Hall et al., 2002), and lithium treatment in mice activates Wnt
signaling in various regions of the brain including amygdala and
hippocampus (O’Brien et al., 2004).

INSULIN-LIKE GROWTH FACTORS AND THEIR RECEPTORS
IGFs are peptide growth factors identified based on their simi-
larity to the peptide hormone, insulin. The family consists of two
growth factor ligands (IGF1 and IGF2), two receptors (IGF1R and
IGF2R), and multiple IGF binding proteins (IGFBPs) and IGFBP-
related proteins (Fernandez and Torres-Aleman, 2012). IGF1 is
a neurotrophic factor that enhances the survival of neurons in
culture (Meyer-Franke et al., 1995; Arnaldez and Helman, 2012;
O’Kusky and Ye, 2012). IGF2 has also been implicated in neu-
rogenesis, synaptogenesis, myelination, and dendritic branching
(Agis-Balboa et al., 2011; Fernandez and Torres-Aleman, 2012;
Schmeisser et al., 2012). The mechanism of IGF1 action on neu-
rons may be both endocrine and autocrine, as it circulates in the
bloodstream and can cross the blood-brain barrier, in addition to
being secreted locally by neurons (Nunez et al., 2003) (Figure 2).
IGF2 may also serve a neurotrophic function, at least for young
hippocampal neurons, since increasing IGF2/IGFBP7 signaling
via a fear-conditioning paradigm in mice leads to enhanced
survival of newborn hippocampal neurons (Agis-Balboa et al.,
2011).

The primary physiologic receptor for the IGFs is IGF1R,
although IGF1 can also bind the insulin receptor. Like many
growth factor receptors, IGF1R is a receptor tyrosine kinase, and
when bound by IGF1, can activate several different intracellular
cascades (Arnaldez and Helman, 2012). IGF2R can bind IGF2,
but not IGF1. IGF2R is thought primarily to sequester IGF2 at
the cell surface, and in most cases this binding does not gen-
erate transmembrane signals. IGFBPs regulate IGF activity by
binding to IGFs and IGF1R, and this binding can inhibit or
facilitate the binding of IGFs to IGF1R, or prolong the half-life
of IGFs, depending upon the IGF/IGFBP pair and the specific
microenvironment (O’Kusky and Ye, 2012).

IGF1 is widely expressed throughout the brain throughout
development (Garcia-Segura et al., 1991), and IGF1 is upreg-
ulated in neurons during the developmental periods associ-
ated with dendritic maturation and synapse formation (Bondy,
1991). Application of IGF1 to cultured cortical neurons causes
an increase in puncta containing PSD-95 and synapsin, but
not puncta containing gephyrin, suggestive that IGF1 treat-
ment increases the number of excitatory rather than inhibitory
synapses in the cortex (Corvin et al., 2012). Interestingly, in
mice modeling a severe form of autism, Rett syndrome, treat-
ment with an active IGF1 peptide fragment partially restores
spine density, synaptic function, PSD-95 localization and levels,
and synaptic plasticity (Tropea et al., 2009). IGF2 is expressed
in neurons and may localize to synaptic sites, and appli-
cation of IGF2 to cultured hippocampal neurons causes an
increase in spine formation via an IGF2R-dependent mecha-
nism (Schmeisser et al., 2012), in contrast to previous data
suggesting that IGF2R functions only as a reservoir to bind
IGF2 at the cell surface. IGF1R is found in both pre- and
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postsynaptic areas in certain hypothalamic nuclei and the cere-
bellum (Garcia-Segura et al., 1997), suggestive that IGF signal-
ing may play roles in both pre- and postsynaptic organization.
IGF2R also localizes to postsynaptic densities (Schmeisser et al.,
2012).

Animal models have demonstrated the importance of IGFs in
normal synaptogenesis as well as neuropsychiatric disease. In rat
pups, environmental enrichment during youth is also known to
reduce anxiety-like behaviors during adulthood, but this effect of
environmental enrichment is lost when IGF1 activity is blocked
by systemic injection of blocking peptide during environmental
enrichment. Interestingly, IGF1 injection during youth mimics
the anxiolytic effects of environmental enrichment when the rats
reach adulthood (Baldini et al., 2013). Blockade of IGF1 during
youth, and the concomitant increase in anxiety-like behaviors
in adulthood, is correlated with increased hippocampal IGF1R
expression at postnatal day 12 in rats and increased glucocorti-
coid receptor expression at postnatal day 60 (Baldini et al., 2013).
Interestingly, IGF1 infusion into the CSF of adult rats improved
their performance on both cognitive and affective reactivity tasks
(Markowska et al., 1998).

There are limited data from humans on the potential role
of IGF signaling in neuropsychiatric disease, but there are some
lines of evidence that implicate IGF signaling may be important.
Lithium is one of the most effective treatments available for bipo-
lar disorder, and it is known to inhibit GSK3β (Hedgepeth et al.,
1997; Chalecka-Franaszek and Chuang, 1999). In patient-derived
lymphoblastoid cell lines, bipolar disorder patients who respond
to lithium have higher levels of IGF1 than bipolar disorder
patients who do not respond to lithium (Squassina et al., 2013).
This suggests that IGF1 may act upstream of GSK3β in modu-
lating lithium response (Cui et al., 1998; Chalecka-Franaszek and
Chuang, 1999). There is also significant evidence that insulin and
IGF signaling promote the aging process in many animals (Bartke,
2008; Kenyon, 2010), raising the intriguing possibility that age-
related cognitive decline may be mediated by the effects of insulin
and IGFs on transcription factors and synapse function.

SYNAPTOGENIC GROWTH FACTOR SIGNALING PATHWAYS
There is significant crossover in the intracellular downstream sig-
naling pathways activated by synaptogenic growth factors. These
pathways include (a) the MAPK/ERK pathway, (b) the PI3K/Akt
pathway, and (c) the PLC/IP3/CAMK pathway. Significantly,
all of these pathways have been implicated in several different
neuropsychiatric diseases. We will address the evidence linking
each individual pathway to synaptogenesis and disease, and then
present a model that may help explain how these systems are
linked in disease pathogenesis.

THE MAPK/ERK PATHWAY
The MAPK/ERK pathway is a common signal transduction path-
way for many synaptogenic growth factors, including BDNF,
FGFs, some Wnts, and IGF1 (Easton et al., 1999; Perron and
Bixby, 1999; Quevedo et al., 2000; Bikkavilli et al., 2008).
This signaling cascade begins when a synaptogenic growth fac-
tor binds its receptor, often itself a receptor tyrosine kinase
except in the case of some Wnt receptors, and activates it.

This results in binding of intracellular signaling proteins, which
ultimately activate MAPK, which activates ERK. ERK can acti-
vate multiple transcription factors, including CREB, RSK, and
myc. There are many ways in which alterations in this sig-
naling pathway can contribute to neuropsychiatric disease. A
mutation in RSK2, one of the downstream effector molecules
of this pathway, can cause Coffin-Lowry syndrome, an X-
linked form of severe intellectual disability (Morice et al., 2013).
Mutations of the RSK2 gene in humans are associated with
smaller volumes of hippocampus, cerebellum and temporal
lobe, while a mouse model of Coffin-Lowry syndrome lack-
ing Rsk2 demonstrates defects in hippocampal spine morphol-
ogy and hippocampus-dependent learning (Morice et al., 2013).
There is also evidence that environmental stressors can alter
the MAPK/ERK pathway. In rhesus monkeys who were abused
or neglected by their mothers during childhood, decreased CSF
serotonin metabolites were correlated with both activated p38
MAPK in serum monocytes as well as increased risk of anxi-
ety behaviors, delayed social development and reduced explo-
ration as adolescents (McCormack et al., 2006; Sanchez et al.,
2007).

THE PI3K/Akt PATHWAY
Another critical intracellular signaling pathway, the PI3K/Akt
pathway, is activated when synaptogenic growth factor receptors
phosphorylate PI3K. PI3K activation then leads to phosphory-
lation of Akt. Akt can translocate into the nucleus to regulate
other transcription factors, leading to changes in levels of synap-
tic proteins, and can also activate mTOR (mammalian target of
rapamycin) and thereby indirectly influence the growth and sur-
vival of cells. In neurons, the PI3K/Akt pathway is activated by
growth factors including BDNF and IGF1 (Stroppolo et al., 2001;
Bondy and Cheng, 2004; Li and Thiele, 2007). One study sug-
gests that exogenous FGF1 may activate this pathway in astrocytes
(Ito et al., 2013), although whether this is also the case for neu-
rons is unknown. There is some evidence that this pathway can be
activated by FGFR2 in oligodendrocytes independent of any FGF
ligand at all (Bryant et al., 2009). This pathway is also activated by
FGF7 in lung tissue (Ray et al., 2003), but it is not known whether
FGF7 can also activate this pathway in neurons. Environmental
enrichment, which is known to have multiple beneficial effects
on anxiety-like behaviors in rodents, upregulates the Akt pathway
and leads to downregulation of GSK3β (Hu et al., 2013). Akt itself
has been implicated as a risk factor for schizophrenia suscepti-
bility, as a specific AKT1 haplotype causes decreased Akt levels
and is associated with illness (Emamian et al., 2004). Another
Akt family member, AKT3, has been shown to be important in
some cases of brain malformation and epilepsy (Poduri et al.,
2012b), linking this pathway to multiple aspects of brain develop-
ment, including circuit formation, circuit activity, and neuronal
survival. Finally, the specific serotonin reuptake inhibitor, fluoxe-
tine, increases phosphorylation of Akt as well as ERK in rat neural
stem cells (Kitagishi et al., 2012; Huang et al., 2013). The fact that
fluoxetine and other medications in its class are useful for a wide
variety of neuropsychiatric illnesses outside of depression lends
further support to the idea that these illnesses may have common
origins.
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THE PLC/IP3/CAMK PATHWAY
A third common signal transduction pathway activated by many
synaptogenic growth factors and implicated in neuropsychiatric
disease is the PLC/IP3/CAMK pathway. It is activated by BDNF,
many FGFs, and some Wnts (Klint and Claesson-Welsh, 1999;
Reichardt, 2006). It may be induced by IGF1, although it is
unknown whether this is via direct IGFR1 activation of PLC or
if this occurs indirectly (Chattopadhyay and Carpenter, 2002). In
this pathway, activation of receptor tyrosine kinases by extracel-
lular binding of synaptogenic growth factors leads to activation
of phospholipase C (PLC, most commonly PLCγ1) and gen-
eration of the second messenger IP3. IP3 diffuses to the ER
where it binds to its receptor, IP3R. IP3R is a calcium chan-
nel that releases calcium from the ER. When released into the
cytosol, calcium can bind to a number of calcium-dependent
proteins, such as calmodulin, which activates a number of impor-
tant intracellular enzymes, including the calmodulin-dependent
kinases (CAMKs). CAMKs are important effector molecules for
a number of neuronal functions, including long-term poten-
tiation (Sanhueza et al., 2007) and calcium-response element
(CRE)-dependent transcription (Kang et al., 2001). One partic-
ular CAMK protein, Camk2B, is expressed widely in the CNS,
and levels of CAMK2B mRNA were found to be upregulated 2-
fold in the frontal cortex of post-mortem schizophrenia patient
brains compared to control brains (Novak et al., 2000). In a single
patient, a point mutation in CAMK2G (R29P) was associated with
a number of phenotypic abnormalities, including severe intellec-
tual disability (De Ligt et al., 2012). Mice lacking Camk4 have
deficits in fear learning, with corresponding reductions in phos-
phorylated CREB in brain areas associated with fear memory after
training (Wei et al., 2002). One of the upstream signaling factors
in this pathway, PLCβ1, has been implicated in severe forms of
epilepsy (Kurian et al., 2010; Poduri et al., 2012a). All of these
lines of evidence point to the importance of this pathway in nor-
mal neural development and function, and there is clear evidence
of synaptic dysfunction and behavioral phenotypes when these
pathways are altered.

CROSSTALK BETWEEN SIGNALING PATHWAYS
Most synaptogenic growth factors can activate multiple down-
stream signaling pathways depending on which receptor they
bind, and in which cell type the receptor is expressed. Due to
the fact that activated growth factor receptors can bind promiscu-
ously to various intracellular second messengers, it is unlikely that
any single growth factor signaling cascade will account for all of
the phenotypes observed in a given neuropsychiatric disease. It is
far more likely that the complex interplay of a number of signaling
pathways will generate an observable phenotype, such as autism
or depression. However, all three pathways described above
have intermediary signaling molecules (ERK, Akt, and CaMKII)
that can activate cAMP/calcium-response element binding pro-
tein (CREB) and lead to CRE-dependent transcription of genes
(Figure 3). CREB-mediated transcription is critical for expression
of a number of genes, including some synaptogenic growth fac-
tors as well as c-fos and other activity-dependent genes (Benito
and Barco, 2010). CREB may serve as a key integrator of signals
of neuronal activity, such as NMDA receptor activation-mediated

calcium influx, with synaptogenic growth factor signaling (such
as the cascades described above). Activation of CREB then leads
to transcription of activity-dependent genes that play roles in
synaptogenesis. One such activity-dependent gene is the L-type
voltage-gated calcium channel (VGCC), which has recently been
the focus of much interest as SNPs within the alpha subunit of one
L-type VGCC has been implicated as a risk factor in multiple neu-
ropsychiatric diseases (Andreassen et al., 2013; Cross-Disorder
Group of the Psychiatric Genomics et al., 2013).

Another possible cellular focus for synaptogenic growth factor
signal integration is the WAVE regulatory complex (WRC), a large
five-subunit complex that controls actin cytoskeleton dynamics
(Pollitt and Insall, 2009). Recently, two papers were published
which describe how cell surface receptors containing a WRC
interacting receptor sequence (WIRS) domain interact with the
WRC and the actin cytoskeleton to direct synapse formation
and changes in neuronal morphology including axonal branching
(Chen et al., 2014; Chia et al., 2014). Many synaptic proteins have
potential WIRS domains, including some synaptogenic growth
factor receptors (Chen et al., 2014). The WAVE complex might be
another major intergrator of synaptogenic growth factor signaling
in neurons.

Crosstalk between multiple growth factor pathways occurs as
well, further underlining how interconnected these systems are in
the brain. For example, Wnt signaling triggers transcription of
FGF4 in tooth development (Kratochwil et al., 2002), sequential
signaling by Wnt3a and FGF8 are required to induce dorsal-
ization during brain development (Gunhaga et al., 2003), and
both FGF19 and Wnt8C signaling are required for successful
inner ear development (Ladher et al., 2000). Cooperative sig-
naling of the Wnt and FGF systems is also critical in spinal
cord specification (Nordstrom et al., 2006). Recently, crosstalk
between FGF and Wnt signaling in C. elegans sensory organs
was described on a transcriptional level, where FGF activates the
MAPK/ERK pathway and regulates a downstream Wnt effector
molecule (Squarzoni et al., 2011). Therefore, it will be impor-
tant to consider that modulation of a single synaptogenic growth
factor or intracellular signaling pathway will likely affect other
systems as well.

CONCLUSIONS AND FUTURE DIRECTIONS
Growth factor signaling between pre- and postsynaptic neurons is
critical for proper connections between individual neurons, and
for the development of appropriate brain circuitry. Synaptogenic
growth factors play a key role in ensuring that synapses develop
properly and are modulated appropriately over time, so that suit-
able emotional and behavioral responses to the environment are
generated when necessary. As described, dysregulation of these
systems may lead to inappropriate emotional and behavioral
responses to either internal or external stimuli, which is associated
with functional decline. Modulation of synapses over time is also
critical for learning and memory when the environment changes,
and dysfunction in these processes likely contributes to cogni-
tive impairment. Ongoing synaptogenic dysregulation caused by
defects in growth factor signaling may cause these illnesses not to
improve (as in autism) or worsen and become increasingly dif-
ficult to treat (such as schizophrenia) over a patient’s lifetime.
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FIGURE 3 | Crosstalk between signaling pathways implicated in

pathogenesis of neuropsychiatric diseases. When synaptogenic growth
factors bind to their respective receptors, they can trigger a number of
intracellular signaling cascades. Depicted here are the PLC/IP3/CAMK
pathway, the MAPK/ERK pathway, and the PI3K/Akt pathway. Although there
are a number of downstream effectors of each pathway, they may converge
on the CREB transcription factor and gene expression, including expression
of genes that modify neuronal activity, such as BDNF and the L-type VGCC.
Although only one cell is depicted here, the model could apply to a

presynaptic or postsynaptic cell. Abbreviations used: β-cat, β-catenin; BDNF,
brain-derived neurotrophic factor; CaM, calmodulin; CaMKII,
calmodulin-dependent kinase II; CREB, calcium response element binding
protein; ER, endoplasmic reticulum; ERK, extracellular signal-regulated
kinase; FGF, fibroblast growth factor; GSK3β, glycogen synthase kinase 3β;
IGF, insulin-like growth factor; IP3, inositol 1,4,5-trisphosphate; MAPK,
mitogen-activated protein kinase; PI3K, phosphatidylinositide 3-kinase; PLC,
phospholipase C; TrkB, tyrosine receptor kinase B; VGCC, voltage-gated
calcium channel.

Complicating this picture is the possibility that the specific func-
tions of growth factors may change throughout development.
Conversely, at different times throughout the life cycle, differ-
ent growth factors may be required for similar functions. For
example, at the neuromuscular junction (NMJ), laminin-β2 is
a critical presynaptic organizer in the neonate, whereas colla-
gen IV performs this function in the adult (Nishimune et al.,
2004; Fox et al., 2007). Therefore, it is possible that the mutations
or abnormalities in growth factors may only be relevant at spe-
cific developmental times, or in different locations, for specific
neuropsychiatric diseases. Additionally, many other genetic risk
factors for neuropsychiatric diseases are associated with synapse-
specific proteins, including the synaptic scaffolding Shank pro-
teins (Guilmatre et al., 2014), the synaptic adhesion molecules
contactin/caspr and neurexin/neuroligin (Sudhof, 2008; Vernes
et al., 2008; Kenny et al., 2013; Zuko et al., 2013), and pro-
teins in the mTOR pathway, which is critical for synapse-specific
protein synthesis (Hoeffer and Klann, 2010; Russo et al., 2012;
Wong, 2013). These molecules and pathways may interact with
the growth factor pathways (Patzke and Ernsberger, 2000; Iki
et al., 2005; Hoeffer and Klann, 2010; Williams and Casanova,
2011; Russo et al., 2012; Wong, 2013; Bennett and Lagopoulos,
2014). The myriad ways in which these pathways may be linked
requires further exploration.

Nevertheless, since many receptors for synaptogenic growth
factors act through common intracellular signal transduction
pathways, it may be that modulation of one or a few of these path-
ways could lead to significant resolution of clinical symptoms.

In addition, growth factor binding proteins often act as regula-
tors of growth factor binding and localization, which have the
added benefit of functioning in the extracellular space rather than
intracellular compartments. This could significantly reduce the
difficulty of getting treatments to their target sites. Additionally,
in the case of FGFs, heparan sulfate proteoglycans (HSPGs) are
required for binding of FGFs to their receptors at high affinity
(Klint and Claesson-Welsh, 1999). Modulation of certain HSPGs
could alter FGF binding to particular FGFRs. Such an approach
may also be possible with other synaptogenic growth factors.
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