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Background: In this paper, we consider analytic methods for the integrated analysis of
genomic DNA variation and mRNA expression (also named as eQTL data), to discover
genetic networks that are associated with a complex trait of interest. Our focus is the
systematic evaluation of the trade-off between network size and network search efficiency
in the construction of these networks.

Results: We developed a modular approach to network construction, building from smaller
networks to larger ones, thereby reducing the search space while including more variables
in the analysis. The goal is achieving a lower computational cost while maintaining high
confidence in the resulting networks. As demonstrated in our simulation results, networks
built in this way have low node/edge false discovery rate (FDR) and high edge sensitivity
comparing to greedy search. We further demonstrate our method in a data set of cellular
responses to two chemotherapeutic agents: docetaxel and 5-fluorouracil (5-FU), and
identify biologically plausible networks that might describe resistances to these drugs.

Conclusion: In this study, we suggest that guided comprehensive searches for
parsimonious networks should be considered as an alternative to greedy network
searches.

Keywords: Bayesian networks, search algorithm, network variable selection, eQTL, chemotherapy resistance

1. INTRODUCTION
Beginning with work by Schadt et al. (2005), a number of recent
studies combine SNP datasets with transcriptional, metabolomic
or other data to develop network models for common diseases
that link response to treatment (Chen et al., 2008; Schadt, 2009;
Chang and McGeachie, 2011). Schadt describes the principle
behind this approach: “In the context of common human dis-
eases, the disease states can be considered emergent properties of
molecular networks, as opposed to the core biological processes
associated with a disease being driven by responses to changes in
a small number of genes” (Schadt, 2009). These methods have
proved effective in several practical settings (Pe’er et al., 2001;
Mehrabian et al., 2005; Zhu et al., 2007; Chen et al., 2008; Yang
et al., 2009) but there are open problems and overcoming the
computational difficulties associated with high dimensional data
analysis is of particular interest. Approaches commonly used to
manage the computational burden include reducing the number
of genes by pre-filtering based on gene function or the results
of univariate analysis, (Imoto et al., 2003; Li et al., 2005; Chang
and McGeachie, 2011), and improving the efficiency of the search
for solutions, for instance by using greedy algorithms (Friedman
et al., 2000; Yu et al., 2002; Teyssier, 2005).

Most recently, hybrid approaches like the H2PC algorithm
(Gasse et al., 2012) combine the greedy hill-climbing step with a
constraint-based optimization, although these have not yet been
adapted for use on a mixture of continuous and discrete variables,

limiting their applicability to networks incorporating several
types of genomic data. Others have incorporated transcription-
factor, or protein–protein binding information from biological
knowledge bases to improve gene network inference. The GRAM
algorithm (Bar-Joseph et al., 2003), as well as the approaches by
Xu et al. (2004), and Tu et al. (2006) are representative of this
strategy. Alternatively, other approaches for studying genetic net-
works consider only pairwise relationships such as correlation or
partial correlations (Zhang and Horvath, 2005; Lasserre et al.,
2013). These approaches investigate the association between pairs
of genes, and hence do not consider the directionality of an edge.

In this study, we plot a unique course suggested to us by
Schadt’s use of SNP-transcript-phenotype trios in causal analy-
sis (Schadt et al., 2005), wherein we build the causal network
up modularly from smaller, data-driven network components.
Here network is used in the sense of Bayesian networks, our
tool of choice for describing the dependence structure between
variables. At the most basic level, this can be thought of as a
strategy for selecting the most informative genomic and tran-
scriptomic sites for use in network models. Although they did
not incorporate the philosophy into variable selection, Pe’er et al.
(2001) also emphasized the value of basing network inferences
on small but high-confidence subnetworks: “We hypothesize that
if we can find a subnetwork . . . with a relatively high confi-
dence, then our estimate of edges and other features in this region
will be more reliable. While a full-scale network is currently of
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insufficient quality, statistically significant sub-networks can be
reconstructed. Indeed, such subnetworks often correspond to
biologically meaningful relations between genes” (Pe’er et al.,
2001). The goal is to strike a balance between the high compu-
tational costs of large scale network analysis, on the one hand,
and the loss of information contained in the data necessitated by
aggressive pre-filtering steps and greedy approaches to network
development on the other. We are looking for an equilibrium
point where component networks are small enough that search-
ing through them is computationally feasible but large enough to
capture important network substructures.

We propose a network-driven feature selection strategy,
whereby sets of variables are chosen on the basis of their role
in small subnetworks, and then iteratively assembled into larger
structures. To investigate the utility of this approach, referred to
as nPARS for network Partition and Reassembly Search, we eval-
uate it in an extensive set of biologically plausible simulations,
comparing it to a gold standard exhaustive search for a best fitting
network as well as the commonly-used greedy hill-climbing algo-
rithm. We also demonstrate our proposed approach in a data set
of cellular responses to two chemotherapeutic agents: docetaxel
and 5-fluorouracil (5-FU) and discuss possible extensions.

2. METHODS
2.1. BAYESIAN NETWORKS FOR GENETIC NETWORK DISCOVERY
We chose Bayesian networks to represent the widely used class
of network models that aim to capture the dependence structure
in a dataset. A particularly attractive feature of Bayesian net-
works is their ability to accommodate genomic data of various
types by using continuous or discrete nodes to represent variables
under consideration, for example: continuous nodes to represent
continuous measurements such as gene expression, and discrete
nodes to represent discrete variable such as genotype.

Given a Bayesian network structure, the approach to calculate
likelihood and network score has been well-established in the lit-
erature. The novelty of this paper is to introduce the nPARS search
algorithm, described in section 2.2, to guide the search process
and to visit parts of the network space that reflect parts of the
true underlying network structure in a given data, since the search
space is oftentimes enormous. Formally, a Bayesian network is a
graphical representation of the joint distribution of a set of vari-
ables (Pearl, 1988) consisting of two components: (1) a directed
acyclic graph in which nodes correspond to random variables,
and directed edges to dependencies between variables; for exam-
ple, L → E indicates that the status at node L is associated with the
alteration of status of node E. And (2) the joint distribution of the
random variables decomposed according to the graphical model,
under an assumption of Markov conditional independence.

Thus the dependence structure can be described as
P

(
X1, X2, ..., Xp|G

) = ∏p
i P (Xi|Pa(Xi), G), where Pa(Xi)

represents the parents of nodes Xi in graph G. The conditional
distributions in the described equation were specified according
to the types (discrete or continuous) of Xi. For discrete nodes, we
assume they follow multinomial distribution with parameter θd

and the prior distribution of θd follows Dirichlet. For continuous
nodes, we assume linear Gaussian conditional densities given
the value of its parents and apply Gaussian-inverse gamma

priors. For example, assuming a continuous node, Xi, has both
continuous parents (Pac)and discrete parents (Pad), we apply the
following distribution model:

P
(
Xi|Pac(Xi) = u, Pad(Xi) = j

) = N(mj + βj. u, σ2),

(
mj, βj|σj

) ∼ N(μj, σjτ
−1
j ),

σj ∼ I�

(
ρj

2
,
φj

2

)
.

Given a network structure, the likelihood function and network
score can be found in Bøttcher and Dethlefsen (2003, pp. 3–
6, 11–12). We follow Bøttcher and Dethlefsen’s implementation
of Bayesian networks and also refer the reader to these publi-
cations (Friedman et al., 2000; Bøttcher and Dethlefsen, 2003;
Bøttcher, 2004) for a complete discussion of Bayesian networks
and the software (Bøttcher and Dethlefsen, 2003) we used to fit
and analyze the data.

2.1.1. Ranking network structures
All else equal, the best fitting network model can be identified by
maximizing the log posterior probability of the network G given
the data d, herein called the network score and denoted

S(G) = log P(G|d) ∝ log P(d|G) + log P(G). (1)

In the simple example shown in Figure 1, nodes corresponding
to SNP markers are denoted by L, expression by E and the
disease, or phenotypic outcome by D. The SNPs, being discrete
variables, are shown with a black background in the graphical
network representation while the continuous nodes are shown
in white. Assuming that gene expression level or phenotypic
status could not change SNP genotypes, we restrict the possible
network structures so that no edges come from the expression
and phenotypic nodes to the SNP node at locus L, leaving a
total of 12 possible DAGs that can be generated from the triplet
{L, E, D}. In this example, the best fitting network structure
for the {L, E, D} triplet will turn out to be G10 with S = −5558.75.

We have made a few adaptions to the likelihood-based network
score S(G) to address certain practical concerns. When comparing
network structures with different sets of nodes, and especially dif-
ferent numbers of nodes, the network scores of Equation (1) may
be on different scales. And, all else equal, we prefer a network in
which molecular variables are strongly associated with the pheno-
type D over one with very tight molecular associations but weak
correlation with outcome. To achieve these goals, we define the
average network improvement score (ϕ):

ϕ = λ(S − S0) + (1 − λ)S

α
. (2)

where S is the network score of the structure under consid-
eration, and S0 is the network score of its corresponding null
network, obtained by removing the edge(s) to “D”. For example,
for network structure G10 in Figure 1, the null network is G2. In
addition, λ is a tuning parameter between 0 and 1, and α is the
number of nodes considered in the network.
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The quantity (S-S0) measures the improvement in the network
score resulting from adding an edge to “D”. The numerator of ϕ

is a weighted average of these two parts: the difference (S − S0)

and the network score S. In addition, the tuning parameter, λ is
used to adjust the weight of the two parts. To weight the two parts
equally, we set λ = 0.5 in the following analysis.

To adjust for the number of nodes in network scores, we divide
the numerator of ϕ by the number of nodes. This is used as a
simple approximation of the effect of the number of nodes in
the marginal likelihood. From Equation (1), when considering
networks with no edges and assuming the nodes have the same
distribution, the log marginal likelihood decreases linearly when
adding nodes in the model, providing a heuristic justification for
our specification.

The ϕ score so defined favors network structures that
have both high posterior support and strong association
with the phenotypic outcome. Using the previous example,
the network score of G10 is −5558.75, and the score of
its corresponding null graph, G2 is −5757.38. Hence, ϕ =
0.5[−5558.75−(−5757.38)]+(0.5×−5558.75)

3 = −893.35.

2.2. BUILDING NETWORKS
Our motivating hypothesis is that a network built on genomic
sites and transcripts shown to be important in smaller network
structures will be both accurate and computationally efficient.
Accordingly we took a triplet—a SNP genotype taken together
with an expression measure, and the phenotypic outcome—
to be the basic building “module” in nPARS with larger net-
works formed by merging candidate triplets. The process can
be divided into three main steps: (1) construct and score
all triplets, (2) select the most informative of the resulting

subnetworks, and (3) assemble these into larger networks. We
will describe each of these in a little more detail in the next
paragraph.

2.2.1. Constructing three-node subnetworks
To form the basic building blocks, we decompose the whole
network space into all possible (L, E, D) triplets, calculating a
network score and best fitting structure for each. For the data
set described in section 4, there are a total of 2330 × 3554 =
8, 280, 820 (L, E, D) triplets, and for each we find the network
structures with the best network scores, as described above.

2.2.2. Selection
Triplets are selected on the basis of the biological relevance of their
best fitting network structures as well as the network scores. We
exclude any (L, E, D) subnetworks containing a node of degree
zero (having no connections with other nodes), so that only ade-
quately connected networks are admitted for further analysis.
Thus we select the subnetworks with structures shown as G6,
G7, . . . , G12 in Figure 1. Next, we apply the average network
improvement score (ϕ) to select the subnetworks that have both
large support from the posterior and significant relevance to the
outcome of interest. Subnetworks are ranked according to the ϕ

scores. We then choose the top k1 subnetworks for further anal-
ysis. It is possible that after this step, there is only one (L, E, D)
left. In this case, the algorithm reports this single three-node net-
work. Our search in this step is exhaustive, which we find to be a
significant strength of our approach.

2.2.3. Reassembly
The final step is to build larger network structures from the
chosen triplets. In doing this we considered first that the larger

FIGURE 1 | All 12 possible networks for a given (L, E, D) triplet.

www.frontiersin.org February 2014 | Volume 5 | Article 40 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Ho et al. Network partition and re-assembly search algorithm

networks should contain two or more complete triplets, rather
than mix and match individual nodes from different triplets,
in order to preserve information that may be held jointly in
those variables. Secondly, it should be permissible to reconstruct
edges within triplets in addition to adding connections between
triplets. These two considerations thus defined the assembly pro-
cess, wherein a new Bayesian network is built from scratch using
the nodes from a set of triplets. In our tests we assembled every
pair of high scoring (L, E, D) triplets into four to five node net-
works, and used an exhaustive search to find the top scoring
structure for each. We then build larger networks sequentially,
adding additional triplets to the best scoring five node networks.
At some point, as the networks get larger the exhaustive search
option becomes computationally infeasible. This in fact happens
fairly early, but we anticipate that the improved variable selection
afforded by the modular approach would continue to pay divi-
dends even if a greedy algorithm were used to construct edges at
later stages in the assembly.

We summarize the three steps in the nPARS algorithm: con-
struction of subnetworks, selection, and assembly as follows:

1. Construction of subnetworks:

(a) Partition the whole network space into (L, E, D) sub-
sets and

(b) construct subnetworks.

2. Selection: Select the subnetworks with

(a) network structures that are among G6, ..., G12 in
Figure 1 and

(b) top k1 subnetworks with largest ϕ scores.

3. Reassembly:

(a) Assemble two or more subnetworks into the union of their
nodes;

(b) Re-construct the assembled networks by scoring all possible
network structures with the set of nodes.

(c) Report the top k2 networks with largest ϕ scores.

The diagram shown in Figure 2 is a simple example for the nPARS
algorithm described above. In Figure 2, eight triplet combina-
tions are generated from four SNP loci (L1, L2, L3, and L4),
and two expression measurements (E1 and E2). These three-node
subnetworks are considered the basic building blocks (mod-
ules) of the nPARS algorithm. In the second selection step,
three subnetworks are selected and a larger six-node network is
re-constructed from scratch using the nodes from the selected
subnetworks. In this example, L4 does not enter into the final
reassembly step, since in the first step, the subnetworks asso-
ciated with L4 do not connect with any expression (E) and
phenotype (D).

3. TESTING
To rigorously evaluate performance of our network partition and
assembly approach (nPARS), we simulated a set of plausible gene
networks, comparing our partition and assembly approach to an
exhaustive (Exh) search on the one hand and a greedy search with
random restarts on the other (Greedy) . These algorithms are

evaluated by comparing the reported final network structures to
the assumed true network structure, to determine how frequently
the correct nodes and edges are recovered. In these simulations we
intentionally evaluate small networks, concentrating on the four-
and five-node structures that result from joining two triplets.
There are two reasons for this: (1) The exhaustive search for a
best fitting network structure, which represents the gold standard
of performance in these simulations, quickly becomes computa-
tionally prohibitive as a network gets larger. (2) We hope to model
biologically plausible gene systems and to understand how fea-
tures of those systems affect performance, and are not confident
that human intuition is scalable in these regards.

3.1. SIMULATION SETTINGS
To examine performance, we investigate seven simulated net-
work structures, shown in Figure 3. Some of these scenarios
are observed during the experimental data analysis presented in
section 4 and others are developed from biological theory. For
example, scenarios 1 and 2 are constructed based on the funda-
mental dogma of gene expression: DNA → RNA → phenotype.
In scenario 3, 4, and 7, we add direct edges from L to D in keeping
with structures identified in the course of analyzing experimen-
tal data. In addition, in scenario 5 and 6, we examine network
structures with long connections (L → E1 → E2 → D). Scenario
7 could be considered as the worse case scenario because SNP loci
contribute directly to D without alteration gene expression levels.

When simulating data, in order to mimic real world situations,
we add unrelated SNP markers and expression measures as noise.
The simulated data sets contain five SNP markers, five expres-
sion measures, and one continuous disease outcome. We simulate
the data in the following four sample sizes: 100, 200, 500, 1000.
SNP markers are simulated to have genotypes aa, Aa, and AA,
with probability 0.25, 0.5, 0.25, respectively. Gene expression val-
ues from independent transcripts are simulated as N(10,

√
3.6).

Expression values (Ei) with edge effect β, for example from Li are
generated using the linear regression model: Ei = 8 + β · Li + εi,
εi ∼ N(0,

√
3.6). Phenotypic outcomes (D) are then generated

based on genotype, and expression values through another linear
regression model.

Specifically, we generate the simulated data using the follow-

ing models: in scenario 1 and 2, D = β
2 · E1 + β

2 · E2 + εi; in
scenario 3, D = β · I(L1 = 1) + βI(L1 = 2) + β · E1 + β · E2 +
εi; in scenario 4, D = β · I(L1 = 1) + βI(L1 = 2) + β · E1 + β ·
E2 + εi; in scenario 5, D = β

2 · E2 + εi; in scenario 6, D = 3β ·
E2 + εi, and in scenario 7, D = β · I(L1 = 1) + βI(L1 = 2) +
β · I(L2 = 1) + βI(L2 = 2) + β · E1 + β · E2 + εi, where I is the
indicator function. In the above equations, all εi are generated
from N(0,

√
3.6). We evaluate the performance of each of the

three algorithms for various β values.

3.2. COMPARISON OF NODE RECOVERY
3.2.1. Algorithms
Three algorithms are implemented in this simulation study:
nPARS, Exh, and Greedy. We apply nPARS as described previ-
ously. Specifically, in the selection step we keep all the subnet-
works with more than one edge. In the final assembly step, we
report the top 1 scoring network structure.
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FIGURE 2 | The three steps in the nPARS algorithm: (1) constructing

three-node subnetworks, (2) select subnetworks, and (3) reassemble

into larger networks.

FIGURE 3 | Graphical representation of the simulation scenarios.

For comparison, in Exh, we define the network space to be all
network structures that can be generated by all possible {L1, L2,
E1, E2, D} five-node combinations, and exhaustively score all of
them reporting the network with the largest ϕ score. In the sim-
ulation, we perform greedy search with 10 random restarts, stop-
ping when the network score converges or when the algorithm
reaches 100 iterations.

3.2.2. Evaluation
Our first aim in the simulation analysis is to investigate whether
nPARS recovers the correct nodes. For each true five-node net-
work structure, we categorize the “nodes” in the final reported
network structure as true positive (tp), false positive (fp) or

false negative (fn) and evaluate the recovery of nodes using

Sensitivity = tp
tp+fn , and FDR = fp

tp+fp .

3.2.3. Results
The comparisons of node recovery are shown in Figures 4–6.
In all simulation scenarios, nPARS (black line) exhibits slightly
lower node sensitivity than Exh (red line) when sample size is
the same. In addition, nPARS demonstrates lower node false dis-
covery rate (FDR) than Exh and Greedy (green line) in all seven
scenarios.

In addition, Greedy demonstrates highest sensitivity but also
relatively large FDR in all simulation scenarios. In all simula-
tion scenarios, Greedy reports networks with edge connections
between almost all the nodes in the data. There are 6 out of
11 (54.5%) false nodes in the simulation dataset, and the aver-
age node FDR of Greedy search is 54.4%( 0.544

0.545 ≈ 99.8%) when
sample size (n) is less than 1000. In other words, Greedy falsely
recovered 99.8% of the false nodes in the simulation dataset when
n is less than 1000. This number decreases to 51.7%( 0.517

0.545 ≈
94.9%) when n = 1000.

3.3. COMPARISON OF EDGE RECOVERY
3.3.1. Algorithms
The nPARS and Exh algorithms are implemented as described in
section 3.2. However, as our findings from node recovery indicate,
Greedy search often reports networks with too many nodes, and
thus achieves high edge sensitivity at the price of a high number
of false positive nodes. Hence, for edge the recovery comparison,
it is desirable to control the number of nodes. In this analysis,
we restrict the search space of the Greedy algorithm to network
structures with no more than five nodes by adding an additional
stopping rule requiring that when the network reaches five-nodes
it stops. We call the revised version, GreedyE. As above, we cate-
gorize edges into tp, fp, fn, and calculate edge sensitivity and edge
FDR based on the assumed true network.

3.3.2. Results
In most of the studied scenarios, nPARS has better perfor-
mance than GreedyE in terms of edge sensitivity, as shown in
Figures 7–9, given the same sample size. The exceptions occur in
a few instances in scenario 1, 3, and 7, when the edge effect β

is small. When β is increased in scenarios 3 and 7, nPARS tends
to have better edge sensitivity compared to GreedyE. In scenario
1, nPARS appears to have similar edge sensitivity compared to
GreedyE. Exh has the best edge sensitivity recovery in almost all
the scenarios.

In terms of edge FDR, GreedyE demonstrates the highest edge
FDR in all simulation scenarios. nPARS shows similar edge FDR
compare to Exh except in scenarios 1 and 2, when β is rela-
tively small. In general, when considering both edge sensitivity
and FDR, nPARS often demonstrates better edge sensitivity with
the benefit of lower edge FDR compare to GreedyE. Exh has
the best performance, however, in practice it is not feasible to
implement Exh.

Overall, in the comparison with Greedy search, nPARS
demonstrates lower FDR in both node and edge recoveries. In the
comparison with Exh, nPARS demonstrates similar FDR in both
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FIGURE 4 | The sensitivity and FDR of node comparisons in simulation scenario 1–3. nPARS shows lowest node FDR with slightly lower node sensitivity
compare to exhaustive search. Although greedy search exhibits highest node sensitivity but it reports relatively high node FDR.

Frontiers in Genetics | Bioinformatics and Computational Biology February 2014 | Volume 5 | Article 40 | 6

http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology
http://www.frontiersin.org/Bioinformatics_and_Computational_Biology/archive


Ho et al. Network partition and re-assembly search algorithm

FIGURE 5 | The sensitivity and FDR of node comparisons in simulation scenario 4–6. The same legend is used as in Figure 3. nPARS shows lowest node FDR
with slightly lower node sensitivity compare to exhaustive search. Although greedy search exhibits highest node sensitivity but it reports relatively high node FDR.
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FIGURE 6 | The sensitivity and FDR of node comparisons in simulation scenario 7. The same legend is used as in Figure 3. nPARS shows lowest node FDR
with slightly lower node sensitivity compare to exhaustive search. Although greedy search exhibits highest node sensitivity but it reports relatively high node FDR.

node and edges recoveries but lower sensitivity. It is also notable,
however, that nPARS achieved strikingly low, node FDRs in our
tests, suggesting that the stepwise approach to network develop-
ment may offer protection against over-fitting. For example, the
stage 1 of nPARS requires that each expression node demonstrate
a clear and simple link between some locus L and disease D, which
makes it difficult for false nodes to make it to a full, five-node net-
work in stage 2. In comparison, it could be relatively easy for the
exhaustive procedure to complete a strong, four-node network
with a noisy false fifth variable.

With regard to computational efficiency, under simulation sce-
nario 1 with β = 0.8, nPARS takes about 32 s to complete 1
iteration, Greedy search takes about 52 s and Exh takes 2387 s
(39 min and 47 s) with a single 2.3 GHz CPU core on a 64-bit
AMD Opteron-based server. The run times are similar in mag-
nitude under other scenarios. The time complexity of the nPARS
algorithm depends on the parameters k1 and k2. The time com-
plexity of the first step of nPARS grows linearly with increasing
number of genes. If k1 and k2 are fixed regardless of the number of
genes considered in the study, then the time complexity of nPARS
algorithm grows linearly with increasing number of genes. The
R source code and documentation of the nPARS algorithm are
available at http://www.biostat.umn.edu/~yho/research.html.

4. IMPLEMENTATION
4.1. CELLULAR RESPONSE TO ANTICANCER DRUGS DATA
In this example, we investigate differential responses to two
chemotherapeutic agents: docetaxel and 5-FU. Both are widely
used for a broad spectrum of cancers including colorectal, gas-
tric, and head and neck cancer (Herbst and Khuri, 2003; Wang
et al., 2004). Inter-individual variations in response to these
anti-neoplastic drugs are commonly observed in cancer patients.
Although several studies have shown that the resistance to doc-
etaxel and 5-FU in human cancer cell are significantly inheritable

(Watters et al., 2004), little is known about the underlying genetic
mechanisms for this resistance.

This dataset includes 140 participants from 12 three-
generation CEPH Utah families provided by the Genetic Analysis
Workshop 15 (GAW15) (Cheung et al., 2005) and PharmGKB
(Klein et al., 2001). Each family has approximately eight sibships
in the third-generation. For each individual in the study, data
from multiple sources was combined, including genotype, mRNA
abundance, and cellular cytotoxicity levels in lymphoblastoid
cells.

Genotypes of 2882 autosomal and X-linked SNPS, from across
the whole genome, were generated by the SNP Consortium
(http://snp.cshl.org/linkagemaps/) and provided through
GAW15. We remove 552 SNP markers that have a high pro-
portion of missing values (>0.3) or which are insufficiently
polymorphic (minor allele frequency <0.1). We also examine the
Mendelian consistency of the SNP genotypes and corrected them
using Pedcheck and Merlin algorithms (O’Connell and Weeks,
1998; Abecasis et al., 2002).

Lymphoblastoid cells were isolated from each patient and
8793 mRNA transcripts were measured using Affymetrix Human
Focus Arrays in previous studies (Cheung et al., 2003, 2005;
Morley et al., 2004). We obtained the Affymetrix CEL files for all
array hybridizations through GAW15. We then preprocessed the
expression measures using RMA (Irizarry et al., 2003) and used
mean expression intensities for replicates. For 3554 of the 8793
genes tested, Morley et al. (2004) found greater variation among
individuals than between replicate determinations on the same
individual. Hence, we choose these 3554 expression measures for
further analyses.

The docetaxel and 5-FU cytotoxicity measures were obtained
using lymphoblastoid cell lines derived from each participants
and are available from the PharmGKB website http://www.

pharmgkb.org/index.jsp. The percentages of LCL cell viability at
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FIGURE 7 | The sensitivity and FDR of edge comparisons in simulation scenario 1–3. nPARS has better performance than GreedyE in terms of edge sensitivity
except in scenario 1 and 3. In scenario 1, nPARS has comparable edge sensitivity compare to GreedyE. nPARS has lower edge FDR compare to GreedyE.
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FIGURE 8 | The sensitivity and FDR of edge comparisons in simulation scenario 4–6. The same legend is used as in Figure 6. nPARS has higher edge
sensitivity and lower edge FDR compare to GreedyE in scenario 4–6.
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FIGURE 9 | The sensitivity and FDR of edge comparisons in simulation scenario 7. The same legend is used as in Figure 6. nPARS has higher edge
sensitivity and lower edge FDR than GreedyE in these scenarios.

0.1, 0.5, 1, 5, 10, 50, 100 nM for docetaxel and at 0.76, 1.92,
3.84, 5.77, 7.68, 19.2, 38.4, 76.8 mM for 5-FU were measured
and recorded for each individual. More detail about the cyto-
toxicity experiment procedures can be found in Watters et al.
(2004).

4.2. FAMILIAL AGGREGATION OF RESPONSES TO
CHEMOTHERAPEUTIC AGENTS

In Figure 10, we plot the percentages of cell viability against the
loge dose of docetaxel and 5-FU for each individuals. A large
area under the log dose response curve indicates strong chemo-
resistance. In the following analysis, for each individual, we use
the area under the log-dose response curve as a summary rep-
resenting the chemo-resistance outcome. There is one missing
observation at 0.1 nM for docetaxel, there are four missing obser-
vations at 0.76 mM for 5-FU and there are no missing observation
at the end dose for either agents. Since missing the first dose
will underestimate the area under the curve, we apply linear
regression models to predict the missing cytotoxicity values from
non-missing observations at other does using data from the same
individual.

Familial aggregation of the responses to chemotherapeutic
agents can be observed. For example, individuals in the Utah
1346 pedigree (blue) show generally higher level of resistance than
individuals in Utah 1424 (orange), Utah 1416 (green), and Utah
1362 (light blue) families in both graphs.

4.3. RESULTS USING nPARS ALGORITHM
We apply the nPARS algorithm to this data, with 2330 SNP
loci (L) and 3554 gene expression measures (E). We use the
area under the log dose response curve as the phenotypic out-
come (D), and analyze docetaxel and 5-FU separately. For each
phenotypic outcome, we exhaustively score all possible 2330 ×
3554 = 8, 280, 820 triplets combinations in the partition step.

The subnetwork for each triplet is determined by the highest net-
work score. Among these triplets, there are 825,637 (≈10.0%)
triplets whose best fitted subnetworks are among G6, . . . , G12 for
docetaxel and 635,390 (≈7.7%) for 5-FU.

Among these, we select the top 100 scoring triplets for
reassembly. We list the top 10 scoring triplets in Tables 1, 2 for
docetaxel and 5-FU, respectively. Particularly, our results suggest
four important SNP markers: rs1333798, rs695937, rs2056737,
and rs1485768 because they appear many times in the top rank-
ing networks for both docetaxel and 5-FU. In the subsequent
reassembly step, we combine every two triplets into (100, 2) =
4950 sets of four or five nodes. After calculating the ϕ score for
all resulting 4950 networks, we select the top 20. We present
the five-node networks, if they have two gene expression as
intermediate variables, in Tables 3, 4, for docetaxel and 5-FU,
respectively. The corresponding network structures are plotted in
Figures 11, 12.

To estimate the variance explained by the top scoring net-
works, we perform linear regression adjusting for family. In
the regression model, we used the area under the log-dose
response curve as response variable and the nodes reported in
the final networks (shown in Tables 3, 4) as predictors, while
adjusting for family. The results are shown in the final col-
umn in Tables 3, 4 for docetaxel and 5-FU, respectively. After
adjusting for family structure, we observe that the top scoring
networks reported by nPARS explain a significant amount of
variation in drug resistance outcomes. The mean adjusted R2

are 48.63% and 33.01% for docetaxel and 5-FU, respectively.
In addition, we obtain p-values using an F test based on lin-
ear regression models. All top scoring networks show p-value
smaller than 0.00001 for docetaxel and smaller than 0.01 for 5-
FU. Even after Bonferroni correction for multiple comparisons,
all remain statistically significant except subnetwork #7 and #9
for 5-FU.
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FIGURE 10 | The cytotoxicity responses of docetaxel and 5-FU.

Table 1 | Top 10 scoring triplets for docetaxel, and associated ϕ scores.

L Location of L (Chr: Mb) E Location of E (Chr: Mb) ϕ

1 rs1333798 13:88.8 CCL20 02:228.7 −103.04

2 rs695937 03:64.2 CCL20 02:228.7 −106.51

3 rs2056737 02:156.8 CCL20 02:228.7 −110.01

4 rs1333798 13:88.8 PSTPIP2 18:43.6 −113.34

5 rs1333798 13:88.8 SPARC 05:151.1 −113.64

6 rs1333798 13:88.8 PON2 7:95.1 −114.70

7 rs1333798 13:88.8 BUD31 7:99.0 −114.71

8 rs1485768 04:177.6 EGFL6 X:13.6 −114.81

9 rs1333798 13:88.8 VCAM1 01:101.2 −114.93

10 rs1333798 13:88.8 USP39 02:85.9 −115.56

Table 2 | Top 10 scoring triplets for 5-FU, and associated ϕ scores.

L Location of L (Chr:Mb) E Location of E (Chr:Mb) ϕ

1 rs695937 03:64.2 CCL20 02:228.7 −105.80

2 rs1333798 13:88.8 CCL20 02:228.7 −106.64

3 rs2056737 02:156.8 CCL20 02:228.7 −111.19

4 rs1333798 13:88.8 PON2 7:95.1 −114.17

5 rs1333798 13:88.8 FFAR2 19:35.9 −114.56

6 rs1485768 04:177.6 EGFL6 X:13.6 −114.71

7 rs1333798 13:88.8 UPB1 22:24.9 −115.30

8 rs2056737 02:156.8 FKBP5 6:35.6 −115.94

9 rs1015453 X:14.0 C5AR1 19:47.8 −115.98

10 rs2056737 02:156.8 TPM2 9:35.7 −116.62

Through this experimental data analysis, we intend to demon-
strate the implementation of nPARS in a large-scale genomic
data set. The analysis results suggest that rs1333798, rs1485768,
rs2056737, and rs695937 and CCL20 combinations might explain

the cytotoxicity responses observed in the lymphoblastoid cell
lines for both docetaxel and 5-FU. rs1485768 is within the VEGFC
gene which is involved in multiple cancer related pathways. In
addition, rs695937 locates within the PRICKLE2 gene coding
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Table 3 | Top scoring five-node subnetworks for docetaxel*.

L1 L2 E1 E2 ϕ Adjusted R2 (%)

1 rs1333798 rs1485768 CCL20 EGFL6 −71.26 48.75

2 rs2056737 rs1333798 CCL20 ADARB1 −71.28 50.15

3 rs2056737 rs1333798 CCL20 PRKCA −71.85 49.36

4 rs2056737 rs1333798 CCL20 BUD31 −71.96 47.96

5 rs1485768 rs1333798 EGFL6 CD93 −71.97 41.47

6 rs2056737 rs1333798 CCL20 CCNA1 −72.24 47.97

7 rs2056737 rs1333798 CCL20 UPB1 −73.23 50.09

8 rs2056737 rs1333798 CCL20 RAI14 −73.33 50.18

9 rs2056737 rs1333798 CCL20 VCAM1 −73.37 48.96

10 rs2056737 rs1333798 CCL20 PSTPIP2 −73.4 51.36

All p values <0.00001.

Table 4 | Top scoring five-node subnetworks for 5-FU.

L1 L2 E1 E2 ϕ p value Adjusted R2 (%)

1 rs2056737 rs695937 CCL20 UPB1 −71.46 3.81×10−5 40.51

2 rs695937 rs2056737 CCL20 CRIP1 −74.24 1.03×10−4 37.85

3 rs2056737 rs1333798 CCL20 ADARB1 −74.62 3.38×10−3 25.72

4 rs695937 rs2056737 CCL20 IL18R1 −74.69 1.07 ×10−5 43.69

5 rs695937 rs2056737 CCL20 BLMH −75.09 3.40 ×10−5 40.81

6 rs2056737 rs1333798 CCL20 UPB1 −75.41 1.13 ×10−3 29.41

7 rs2056737 rs1333798 CCL20 PRKCA −75.46 6.80 ×10−3 23.17

8 rs695937 rs2056737 CCL20 TPM2 −75.52 3.57×10−4 34.24

9 rs1333798 rs2056737 CCL20 BUD31 −75.59 0.01 21.68

region. PRICKLE2 belongs to the Wnt signalling pathway which
regulates many downstream genes through its interaction with
the T-cell factor family of transcription factors. The wnt signal-
ing pathway also leads to remodeling of the cytoskeleton which is
the main drug action of docetaxel, though the exact connection
between these genetic variants and CCL20 expression is not yet
clear.

CCL20 is a chemokine and it provokes proliferation and adhe-
sion to collagen for several types of cancer cells (Beider et al.,
2009). It is also believed that CCL20 is relevant to chemo-
resistance for various kind of cancers (Chang et al., 2008).
For docetaxel resistance in lymphoblastoid cells, it is possi-
ble that CCL20 may influence resistance through regulation of
actin cytoskeleton via the chemokine singling pathway, since
cytoskeleton function is the main drug target of docetaxel. Genes’
expressions that are likely to co-regulate with CCL20 and con-
tribute to docetaxel resistance include EGFL6, ADARB1, PRKCA,
BUD31, CD93, CCNA1, UPB1, RAI14, VCAM1, and PSTPIP2.
Some of these genes are likely to be relevant to chemo-resistance
response through cell cycle regulation, adhesion, or carcinogen-
esis pathways, EGFL6, PRKCA, VCAM1. ADARB1 and BUD31
are involved in mRNA precursor editing and modification. CD93,
RAI14, and PSTPIP2 are part of cytoskeleton or interact with
cytoskeleton function.

In addition, as indicated in the reported top fifth scor-
ing network, the genetic variations in two SNP markers:
rs1485768 and rs1333798 might contribute to the variation

in gene expression of EGFL6, CD93. EGFL5 and CD93 play-
ing important roles in regulating cell cycle, and remodeling
cytoskeleton.

As for resistance to 5-FU, the CCL20 chemokine is also found
to be crucial. CCL20 might play an important role through
mediating DNA degradation or GPCR pathways. Other genes
that could potentially co-regulate 5-FU resistance together with
CCL20 include UPB1, CRIP1, ADARB1, IL18R1, BLMH, PRKCA,
TPM2, BUD31, ITGAM, and RAB8B. Specifically, UPB1 partici-
pates in the 5-FU drug metabolic pathway by converting fluoro-
beta-ureidopropionate to fluoro-beta-alanine (FBAL). FBAL is
the major secretable form of 5-FU found in patients’ urine sam-
ple. Although feasible biological hypotheses could be suggested
based on our analysis results, further experiments are needed
to validate the roles of these genetic factors in chemotherapy
response.

5. CONCLUSION
To meet the growing need for efficient data analysis at the level of
biological systems, we have developed and evaluated a modular
approach to the construction of genetic networks. Our goal was
to strike an appropriate balance between two potential sources
of error. There is the error introduced when a necessarily less-
than-exhaustive search through high-dimensional network space
misses important regions of that space. This risk can be reduced
by judicious variable selection to reduce the size of the search,
but “judicious” is a loaded term and ideally the variable selection
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FIGURE 11 | Top scoring five-node network structures for docetaxel reported from nPARS algorithm.

step would capture some of the information that is distributed
jointly across network components. By building a network from
small components identified in an exhaustive search we hope to
improve variable selection while controlling the computational
burden.

The main focus of the paper is to assess the advantage of
network-driven feature selection strategy. Based on our study
findings, this network construction strategy provides ways to
focus on small subnetworks that present with higher signal
and allow more reliable estimation of network structure. In a
set of extensive simulations, we compared the performance of
the modular nPARS approach to that of both the greedy and
exhaustive searches, evaluating the performance of each across
a variety of scenarios. In these analyses, nPARS outperformed
the greedy search which tended to have high FDRs for both
nodes and edges, and proved competitive with the exhaustive
search.

The fact that nPARS achieves better performance in terms of
false discovery than exhaustive search in some simulation sce-
narios is beyond our expectation, and we suggest two possible
factors: (1) Although we have attempted to represent a range of
biologically realistic networks, there may be some bias in the sys-
tem whereby the variable selection criteria implicit in nPARS is
particularly appropriate to the network structures modeled in
some of those scenarios. (2) One of the goals driving this method
was to improve the effectiveness of the search through network
space by including only those variables that made a significant
contribution to smaller network structures. By requiring clear

links between locus L, transcript E and phenotype D in the first
stage of the algorithm, we make it less likely that a noisy false
node is available for inclusion in the larger network later on.
Without such a filtering step, it is relatively easy for the exhaus-
tive procedure to complete a strong four-node network with
a noisy, false fifth node. By either cause, we would anticipate
that in larger, more complex networks, that nPARS’ advantage
over the exhaustive procedure would diminish. Unfortunately
it is not yet practical to scale the exhaustive approach to
test this.

We did not explicitly model family structure when construct-
ing the Bayesian networks on our chemo-resistance application,
assuming that any similarity of phenotypic values between rela-
tives could be fully explained by the genetic variables considered
in a network. However, since pedigree data was available for the
samples in the drug response study, we used it in evaluating
the top scoring networks we reported. Specifically, we performed
a linear regression analysis that included family structure, to
see how well the genetic variables explained drug response after
adjusting for pedigree structure. We obtained small p-values and
large adjusted R2, suggesting that the reported networks play
significant roles in drug resistance responses.

Other limitation of the proposed nPARS algorithm is that
the algorithm in its current specification focuses on identify-
ing structures related to (L ,E, D). As demonstrate by sim-
ulation scenario 7, nPARS has considerable power to detect
cases where L contribute to D directly (L → D). However,
in scenario 7, if we replace E1 and E2 by L3 and L4, then
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FIGURE 12 | Top scoring five-node network structures for 5-FU reported from nPARS algorithm.

nPARS would have a diminished power to detect such case.
The algorithm can be easily modified to consider this modified
scenario but increased amount of computational intensity will be
expected.

Furthermore, our implementation of nPARS is tailored to the
SNP—expression—phenotype setting in which it was tested, but
could be readily modified to accommodate other genetic or epi-
genetic data in place of SNPs, including copy number and DNA
methylation, though it may be necessary to modify the scoring
functions or re-weight the prior distribution on network struc-
tures to reflect the unique biological characteristics of each data
type. Potential direction for future research is to accommodate
pedigree structure into the marginal likelihood score of Bayesian
networks. But this approach would require considerable amount
of samples to have enough power for detecting effects. We antic-
ipate to have demonstrated that a practical compromise between
exhaustive and greedy searches can improve on both and that our
method can be the basis for future expansions.
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