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Abstract

Objective To examine the interactions between genetic predisposition
and consumption of fried food in relation to body mass index (BMI) and
obesity.

Design Prospective cohort study.
Setting Health professionals in the United States.

Participants 9623 women from the Nurses’ Health Study, 6379 men
from the Health Professionals Follow-up Study, and a replication cohort
of 21 421 women from the Women’s Genome Health Study.

Main outcome measure Repeated measurement of BMI over follow-up.

Results There was an interaction between fried food consumption and
a genetic risk score based on 32 BMI-associated variants on BMI in both
the Nurses’ Health Study and Health Professionals Follow-up Study
(P<0.001 for interaction). Among participants in the highest third of the
genetic risk score, the differences in BMI between individuals who
consumed fried foods four or more times a week and those who

consumed fried foods less than once a week amounted to 1.0 (SE 0.2)
in women and 0.7 (SE 0.2) in men, whereas the corresponding
differences were 0.5 (SE 0.2) and 0.4 (SE 0.2) in the lowest third of the
genetic risk score. The gene-diet interaction was replicated in the
Women’s Genome Health Study (P<0.001 for interaction). Viewed
differently, the genetic association with adiposity was strengthened with
higher consumption of fried foods. In the combined three cohorts, the
differences in BMI per 10 risk alleles were 1.1 (SE 0.2), 1.6 (SE 0.3),
and 2.2 (SE 0.6) for fried food consumption less than once, one to three
times, and four or more times a week (P<0.001 for interaction); and the
odds ratios (95% confidence intervals) for obesity per 10 risk alleles
were 1.61 (1.40 to 1.87), 2.12 (1.73 t0 2.59), and 2.72 (2.12 to 3.48)
across the three categories of consumption (P=0.002 for interaction). In
addition, the variants in or near genes highly expressed or known to act
in the central nervous system showed significant interactions with fried
food consumption, with the FTO (fat mass and obesity associated) variant
showing the strongest result (P<0.001 for interaction).

Correspondence to: L Qi, Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115
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Conclusion Our findings suggest that consumption of fried food could
interact with genetic background in relation to obesity, highlighting the
particular importance of reducing fried food consumption in individuals
genetically predisposed to obesity.

Introduction

Obesity is a complex multifaceted condition that has a genetic
basis but requires environmental influence to manifest itself."”
Over the past three decades, there has been a global increase in
the prevalence of obesity,” which many believe has been
primarily driven by changes in lifestyles. It seems, however,
that the adipogenic response to environmental exposures varies
by genetic background, supporting the possible existence of
interactions between genes and diet/lifestyle factors.” * *"

The prevalence of obesity in the United States is much higher
than in other countries, and the greater consumption of fast
foods is one of the notable differences between the US and the
rest of the world." Frying is a common and traditional cooking
procedure in Western countries, especially outside of the home.
Fried foods make up a substantial proportion of the items sold
at fast food restaurants that are patronized by about a third of
Americans every day.”" Several previous studies have reported
that fried food consumption alone or a Western-style diet pattern
heavily loaded with fried foods is positively associated with
obesity and related chronic diseases.'*” Such studies, however,
did not consider the potential modification by an individual’s
genetic make-up. It is unknown whether obesity related genetic
factors can modify the association between fried food
consumption and adiposity.

We examined the interaction between frequency of fried food
consumption (both at home and away from home) and a genetic
risk score based on 32 well established genetic variants
associated with BMI in relation to BMI and obesity in women
and men from two prospective cohorts: the Nurses’ Health Study
and Health Professionals Follow-up Study. The findings were
replicated in a large independent prospective cohort, the
Women’s Genome Health Study.

Methods

Study population

The Nurses’ Health Study is a prospective cohort study of 121
700 female registered nurses aged 30-55 at study inception in
1976.% The Health Professionals Follow-up Study is a
prospective cohort study of 51 529 US male health professionals
aged 40-75 at study inception in 1986.” In both cohorts,
information about medical history, lifestyle, and health
conditions has been collected by self administered questionnaires
every two years since inception. For this analysis, we used 1984
as baseline for the Nurses’ Health Study and 1986 as baseline
for Health Professionals Follow-Up Study, when the first data
on fried food consumption were collected. The current analysis
included 9623 initially healthy women and 6379 initially healthy
men of European ancestry with genotype data available based
on previous genome-wide association studies.”*’

The Women’s Genome Health Study is a prospective cohort of
US female healthcare professionals aged 45 and older and free
from major chronic disease, including cancer and cardiovascular
disease, at study entry (1992-94).* Information related to health
and lifestyle was collected by questionnaire at baseline and
continuing observational follow-up. A total of 21 421 women
with confirmed self reported European ancestry had genotyping
and dietary data available, were free from diabetes at baseline,
and were included in the current analysis.

Assessment of consumption of fried foods
and other dietary factors

We used similar semiquantitative food frequency questionnaires
to assess intakes of food and beverage in the Nurses’ Health
Study,” Health Professionals Follow-Up Study,” and Women’s
Genome Health Study.” In the food frequency questionnaires
participants were asked how often they consumed fried foods
at home and away from home. We did not ask about specific
frying method, but most fried foods in the US are deep fried.
Both questions had four to five response choices, ranging from
never to daily. In the current analysis, we coded three categories
of frequency of consumption consistently across questionnaires
from all cohorts (less than once a week, once to three times a
week, and four and more times a week). We analyzed
consumption of fried food at home and away from home
separately and combined to examine total consumption. Total
consumption was correlated with saturated fat intake (r=0.35
in the Nurses’ Health Study and 0.38 in the Health Professionals
Follow-up Study) and trans-fat intake (r=0.42 in the Nurses’
Health Study and 0.42 in the Health Professionals Follow-up
Study). We assessed diet quality with the alternative healthy
eating index, which comprises nine components of dietary
factors: vegetables, fruit, nuts and soy protein, ratio of white to
red meat, cereal fiber, trans-fat, ratio of polyunsaturated to
saturated fatty acids, duration of multivitamin use, and alcohol.”
A score for a Western diet pattern was also calculated based on
40 food groups by using factor analysis (principal component).™
Participants with implausible energy intakes (<800 or >4000
kcal/day in men and <500 and >3500 kcal/day in women) were
excluded from the analysis. The food frequency questionnaires
were assessed in 1984 and 1986 and every four years thereafter
in the Nurses’ Health Study; in 1986 and every four years
thereafter in the Health Professionals Follow-up Study; and
once at baseline (1992-94) in the Women’s Genome Health
Study. The reproducibility and validity of the food frequency
questionnaires have been evaluated with two repeated
questionnaires and two to four diet records over a week at a one
year interval. * %

Assessment of BMI and covariates

In the Nurses’” Health Study and Health Professionals Follow-up
Study, height and body weight were assessed by questionnaire
at baseline, and weight was requested on each follow-up
questionnaire. Self reported weights were highly correlated with
measured weight (7=0.97 in men and women) in a validation
study.* BMI was calculated as body weight (kg)/height (m)>.
Participants with a BMI >30 were defined as obese. Information
about lifestyle factors was derived from the biennial
questionnaires.” ¥ Physical activity was expressed as metabolic
equivalents per week by using the reported time spent on various
activities, weighting each activity by its intensity level. The
validity of the self reported height, weight, and physical activity
data has been described previously.***

In the Women’s Genome Health Study, weight and physical
activity were assessed by the baseline and follow-up
questionnaires. Information about other lifestyle factors was
collected from questionnaires at baseline. Details regarding the
assessment of these variables have been reported previously.” +

Genotyping and computation of genetic risk
score

We selected 32 single nucleotide polymorphisms that represent
all 32 loci associated with BMI at a genome-wide significance
level (P<5x107®) (see appendix table A).** Single nucleotide
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polymorphism genotyping and imputation have been described
in detail elsewhere." **** Most of the single nucleotide
polymorphisms were genotyped or had a high imputation quality
score (MACH r*>0.8).°

Genetic risk score was calculated on the basis of the 32 single
nucleotide polymorphisms by using a previously reported
weighted method.®” Each single nucleotide polymorphism was
recoded as 0, 1, or 2 according to the number of risk alleles
(BMI increasing alleles), and each single nucleotide
polymorphism was weighted by its relative effect size (3
coefficient) derived from the previously reported meta-analysis
data.* We created the genetic risk score using the equation:
genetic risk score = (§,xSNP, + $,xSNP, + ... + B, xSNP,) x
(n/sum of the { coefficients), where {3 is the (3 coefficient of
each individual single nucleotide polymorphism on BMI, SNP
is single nucleotide polymorphism, n is 32, and sum of the 3
coefficients is 4.39 in the current analysis. The genetic risk score
ranges from 0 to 64, and each point of the genetic risk score
corresponded to each one risk allele.

Statistical analyses

We used y” tests and general linear models to compare
proportions and means of baseline characteristics according to
the frequency of total fried food consumption. We examined
the association between consumption and BMI, according to
the thirds of genetic risk score, using generalized linear models
accounting for repeated measures within individuals. To
minimize potential influence of reverse causality, we analyzed
the data prospectively with the assessment of consumption four
years prior to the assessment of BMI, including fried food
consumption as independent variable and BMI four years later
as the dependent variable in generalized linear models. Because
of possible confounding from age related weight change in the
elderly population, we used follow-up data only up to 1998 as
the mean age of our study samples was over 65 after 1998. There
were four repeated measures during 1984-98 in the Nurses’
Health Study and three repeated measures during 1986-98 in
the Health Professionals Follow-up Study. We also estimated
the differences in BMI per increment of 10 risk alleles stratified
by three categories of fried food consumption. An interaction
between the genetic risk score and consumption on BMI was
tested by including an interaction term in the models. Potential
confounders considered in multivariable models were age
(continuous), physical activity (in fifths), television watching
(0-1, 2-5, 6-20, 21-40, >40 hours/week), smoking (never, past,
current), alcohol intake (0, 0.1-4.9, 5.0-9.9, 10-14.9, >15 g/day),
intake of sugar sweetened beverages (<1 serving/month, 1-4
servings/month, 2-6 servings/week, >1 servings/day), alternative
healthy eating index (in fifths), trans-fat intake (in fifths),
Western-diet pattern score (in fifths), and total energy intake
(in fifths). Similar analyses were repeated in the Women’s
Genome Health Study. As fried food consumption was assessed
only once at baseline in the Women’s Genome Health Study,
we used general linear models (instead of generalized linear
models with repeated measures analysis as applied in the Nurses’
Health Study and Health Professionals Follow-up Study) to
examine the interaction between the genetic risk score and fried
food consumption on BMI three years later. In secondary
analyses, we used logistic regression models to estimate odds
ratios per increment of 10 risk alleles of obesity stratified by
three categories of fried food consumption, using data on fried
food consumption assessed at baseline and obesity status
assessed four years later in the Nurses’ Health Study and Health
Professionals Follow-Up Study or three years later in the
Women’s Genome Health Study. Findings across cohorts were

pooled with inverse variance weighted meta-analyses by fixed
effects models (if P>0.05 for heterogeneity between studies) or
random effects models (if P<0.05 for heterogeneity between
studies). All reported P values are nominal and two sided.
Statistical analyses were performed in SAS 9.1 (SAS Institute,
Cary, NC, USA) or R 2.13.0 (R Foundation, Vienna, Austria).

Results
Baseline characteristics

Baseline total consumption of fried food was positively
associated with BMI at baseline in all three cohorts (all P<0.001)
(table 1]}). Compared with participants with a lower frequency
of consumption, those with a higher frequency were younger,
tended to be smokers, and spent more time watching television.
Participants who consumed more fried foods drank more sugar
sweetened beverages and had higher total energy intakes and
Western dietary pattern scores and lower levels of alcohol
consumption, physical activity, and alternative healthy eating
index. The genetic risk score ranged from 13 to 43 among our
study participants. In all three cohorts, participants with a higher
genetic risk score had a higher BMI (see appendix fig A).° The
genetic risk score was not associated with fried food intake,
total energy intake, or other lifestyle factors (see appendix table
B).

Fried food consumption and BMI according
to genetic risk score

The association between total fried food consumption and BMI
was stronger in participants with a higher genetic risk score than
in those with a lower genetic risk score in both the Nurses’
Health Study and Health Professionals Follow-up Study
(P=0.005 and 0.02, respectively, for interaction) (table 2|]).
Among participants in the highest third of the genetic risk score,
the differences in BMI between individuals who consumed fried
foods more than four times a week and those who consumed
fried foods less than once a week amounted to 1.0 (SE 0.2) in
the Nurses’ Health Study and 0.7 (SE 0.2) in the Health
Professionals Follow-Up Study, whereas the corresponding
differences were 0.5 (SE 0.2) and 0.4 (SE 0.2) in the lowest
third of the genetic risk score. We also found significant
interactions for fried food consumed at home and consumed
away from home in the Nurses’ Health Study (P=0.02 and 0.01,
respectively, for interaction), and observed a similar but
non-significant interaction pattern in the Health Professionals
Follow-up Study (P=0.07 and 0.14, respectively, for interaction).
There was no significant heterogeneity in the interaction effects
between these two cohorts (all P>0.17 for heterogeneity). In
addition, we performed a sensitivity analysis using the follow-up
data up to 2008 from the Nurses’ Health Study and Health
Professionals Follow-up Study and found a similar but weaker
interaction pattern (see appendix table C).

The significant interactions of the genetic risk score with total
fried food consumption, fried food consumed at home, and fried
food consumed away from home on BMI were replicated in the
Women’s Genome Health Study (all P<0.001 for interaction)
(table 2()). The difference in BMI between individuals who
consumed fried foods more than four times a week and those
who consumed fried foods less than once a week was more
pronounced among participants in the highest thirds (1.7, SE
0.2) than those in the lowest third of the genetic risk score (0.8,
SE 0.2). In the three cohorts combined (fig 1/}), the association
between fried food consumption and BMI strengthened across
the thirds of the genetic risk score; viewed differently, the
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association between the genetic risk score and BMI was more
pronounced in those who often ate fried foods.

Genetic association with BMI and risk of
obesity according to fried food consumption

The genetic association with BMI consistently strengthened
across the three categories of total fried food consumption in
the Nurses’ Health Study, Health Professionals Follow-up Study
and the Women’s Genome Health Study (P<0.001, 0.01, and
<0.001, respectively, for interaction) (fig 2, top panel |}). For
total fried food consumption less than once, one to three times,
and four or more times a week, respectively, the increases in
BMI per increment of 10 risk alleles were 1.3 (SE 0.1), 1.8 (SE
0.2), and 2.3 (SE 0.3) in the Nurses’ Health Study; 0.7 (0.1 SE),
0.9 (SE 0.2 SE), and 1.2 (0.2 SE) in the Health Professionals
Follow-Up Study; 1.4 (SE 0.1), 2.0 (SE 0.2), and 3.1 (SE 0.3)
in Women’s Genome Health Study, and 1.1 (SE 0.2), 1.6 (SE
0.3), and 2.2 (SE 0.6) in the pooled cohorts. The results did not
change materially after further adjustment for Western dietary
pattern score, trans-fat intake, interaction terms between the
genetic risk score and dietary and lifestyle factors (physical
activity, intake of sugar sweetened beverages, and television
watching (Nurses’ Health Study and Health Professionals
Follow-up Study only)) in the Nurses’ Health Study, Health
Professionals Follow-up Study, and Women’s Genome Health
Study (P<0.001, 0.02, and <0.001, respectively, for interaction).
We also found similar interaction patterns for fried food
consumed at home and away from home (see appendix fig B).
No significant heterogeneity in the interaction effects was
observed among the three cohorts (all P>0.15 for heterogeneity).

In addition, there was a significant interaction between the
genetic risk score and total fried food consumption on obesity
in the combined three cohorts (P=0.002 for interaction), and the
odds ratios (95% confidence intervals) for obesity per 10 risk
alleles were 1.61 (1.40 to 1.87), 2.12 (1.73 to 2.59), and 2.72
(2.12 to 3.48) for total fried food consumption of less than once,
once to three times, and four or more times a week, respectively
(table 31]). For fried food consumed at home and away from
home, we also observed significant interactions with obesity in
the combined three cohorts (P=0.003 and 0.02 respectively for
interaction). No significant heterogeneity in the interaction
effects was observed in the three cohorts (all P>0.43 for
heterogeneity).

We also examined the interactions between total fried food
consumption and 32 single nucleotide polymorphisms in relation
to BMI individually (see appendix table D). In the combined
three cohorts, four single nucleotide polymorphisms in or near
FTO, GNPDA2, NEGR1, and SEC16B loci showed nominally
significant interactions with total fried food consumption on
BMI (all P<0.05 for interaction). Among them, only the FTO
genetic variant (P<0.001 for interaction in the pooled data)
remained significant at P<0.002 (0.05/32) after correction for
multiple testing. The genetic association between the FTO
variant and BMI consistently strengthened across the three
categories of total fried food consumption in all the three cohorts
(fig 2, bottom panel).|] To further test whether the observed
interaction between total fried food and the genetic risk score
on BMl is driven by one specific genetic variant, we performed
sensitivity analyses by excluding the significant genetic variant
(FTO, GNPDA2, NEGR1, or SEC16B) each time in the
calculation of the genetic risk score; the results were similar (all
P<0.05 for interaction in all three cohorts and P<0.001 for
interaction in the pooled data).

Discussion

We found a significant interaction between fried food
consumption and genetic predisposition to adiposity in two
prospective cohorts of US women and men. The findings were
further replicated in a large independent cohort of US women.
These results for the first time suggest that individuals with a
greater genetic predisposition to adiposity might be more
susceptible to the adverse influence of overconsumption of fried
food on adiposity; and overconsumption of fried foods might
magnify genetic effects on adiposity.

Results in relation to other studies

In previous studies, high consumption of fried food has been
associated with increased adiposity and risk of obesity.” > * %
In a cross sectional study of 33 542 Spanish people, fried food
intake was positively associated with general and central
obesity.” Recently, Mozaffarian and colleagues reported that
increased fried food consumption (both at home and away from
home) was significantly associated with weight gain among 120
877 US women and men.” In addition, greater consumption of
fried food away from home was associated with a higher BMI
and weight gain in US children and adolescents."” In the present
study, we found that the magnitude of association between fried
food consumption and BMI varied among individuals with
different genetic predispositions to adiposity. This is in line
with findings from previous twin studies that genetic risk could
modulate relations between environmental factors and
adiposity.**” Consistently, we found that individuals with a
greater genetic predisposition to adiposity seemed to be more
susceptible to the obesogenic effects of sugar sweetened
beverages.’

Viewed from the other perspective, our study also suggests that
fried food consumption could modify the genetic association
with adiposity. The combined genetic effect on BMI among
individuals who consumed fried foods more than four times a
week was about twice as large as that among those who
consumed fried foods less than once a week. It is not surprising
that the observed interaction was more evident on BMI than on
risk of obesity as these genetic variants were identified through
genome-wide association studies of attained BMIL* and the
statistical power was lower for analysis on the dichotomous
outcome (obesity) than a continuous variable (BMI). Several
studies have shown that physical activity could attenuate the
effect of a single genetic variant in the FTO gene as well as the
combined genetic effect of multiple variants on BMI and obesity
risk.”” In contrast, an obesogenic diet and sedentary lifestyle
with relatively higher intake of sugar sweetened beverages and
prolonged television watching might exaggerate the genetic
influences on adiposity.®” Taken together, these data suggest
that a healthy diet and lifestyle could attenuate, at least partly,
the risk of obesity attributed to genetic susceptibility.

Consistent with our previous analyses,®’ we primarily applied
the approach using a genetic risk score based on 32 well
established BMI variants rather than a single locus to test for
interaction. As expected, because of the limited power to detect
the relatively small effects conferred by each locus, most of the
individual variants showed consistent but non-significant
interactions with fried food consumption in relation to BMI.
Among these variants, the FTO genetic variant showed the
strongest interaction with fried food consumption on BMI. This
is in line with the recent finding that FTO genetic variant was
associated with phenotypic variability of BMI, suggesting
interactions between FTO and environment in relation to BML*
Previous studies have consistently found that FTO genetic
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variants could interact with the effect of total energy intake,"
total fat intake," and saturated fat intake'? on BMI or risk of
obesity, or both. We also observed that several other loci, such
as GNPDA2, NEGR1, SEC16B, and MC4R, showed potential
interactions with fried food consumption on BMI. Interestingly,
these genes are highly expressed or known to act in the central
nervous system involved in the regulation of appetite or energy
balance.” ** Nevertheless, future studies are needed to validate
our results on individual genetic variants, which could provide
more insights into their function at a biological level.

Potential mechanisms

Several diet and lifestyle factors are correlated with fried food
consumption. In our study, individuals who consumed larger
amounts of fried food tended to have unhealthier eating habits,
higher total energy intake, lower levels of physical activity, and
higher levels of sedentary behavior. Fried food consumption
might be an indicator of an unhealthy diet and lifestyle. It is
difficult to separate out whether fried food consumption per se
or other correlated unhealthy lifestyle interacts with genetic
predisposition to adiposity. The observed interaction between
fried food consumption and the genetic risk score in relation to
BMI and obesity, however, was independent of multiple diet
and lifestyle factors. We further adjusted for the interaction
terms between the genetic risk score and the factors that
previously showed a significant interaction with genetic
predisposition to adiposity (sugar sweetened beverages, physical
activity, and television watching),®” and the results remained
unchanged.

Foods become crunchy, aromatic, palatable, and rich in fat after
frying,”' * and eating fried foods might therefore result in high
intake of foods with high fat, high energy density, and low
satiety index. In addition, fried food absorbs some degradation
products of the frying oil, such as polymers and polar
compounds, which have been reported to be associated with
some chronic diseases.” It is unclear how these factors could
account for the observed interaction. The BMI associated loci
were recently identified by genome-wide association studies,
and the biological functions of these genetic loci in relation to
adiposity are poorly understood.* It is possible that genes
involved in the regulation of appetite (such as FTO and MC4R)
could be underlying the observed interaction, but we could not
exclude the involvement of other plausible biological
hypotheses. The observed interaction on adiposity might reflect
the cumulative effects of multiple genetic variants rather than
any single variant. Determination of the precise mechanism will
require more studies, especially functional experiments.

Strengths and limitations

The strengths of our study include the use of large cohort studies
with long term follow-up, multiple measures of fried food
consumption and BMI, comprehensive measures of diet and
lifestyle factors, and the use of a genetic risk score combining
genetic information of 32 variants associated with BMI. More
importantly, the consistent findings of the gene-diet interactions
in the three cohorts indicate the robustness of our results.

There are several limitations of our study. First, a causal relation
among fried food consumption, genetic variants, and adiposity
cannot be inferred from an observational study. Confounding
by other unmeasured or unknown factors might exist, although
we have carefully adjusted for multiple diet and lifestyle factors.
Second, the information about the specific foods our participants
consumed at home or away from home, the type of oil used for
frying, the type of frying procedure performed, the time and

temperature used for frying, and the number of times the oils
had been reused was not collected in our study cohorts. This
could limit our in depth analyses on these factors for their
interactions with the genetic predisposition. Third, measurement
errors in fried food consumption and other dietary factors are
inevitable, but the food frequency questionnaires have been well
validated in our cohorts.” ** Fourth, we were unable to test sex
differences within each cohort because of the single sex study
design. Our analyses indicate, however, that there was no
significant heterogeneity in the observed interactions between
the cohorts of women (Nurses’ Health Study and Women’s
Genome Health Study) and men (Health Professionals
Follow-Up Study). In addition, the BMI associated loci
identified to date account for only a small amount of variation
(about 1.5%) in BML* and, consistently, the genetic risk score
explained 1.5-1.8% of variation in BMI in our study. Finally,
the participants included in our study were middle aged and
older adults of European ancestry recruited in the US, and it is
unknown whether our findings could be generalized to other
demographic or ethnic groups.

Conclusion

In summary, the consistent results from three cohorts indicate
that the association between fried food consumption and
adiposity might vary according to differences in genetic
predisposition; and, vice versa, the genetic influences on
adiposity might be modified by fried food consumption. Our
findings further emphasize the importance of reducing
consumption of fried food in the prevention of obesity,
particularly in individuals genetically predisposed to adiposity.

Contributors: QQ and LQ designed the study and wrote the first draft.
QQ and AYC analyzed the data. JHK, MKJ, GCC, LRP, JLW, IDV, ATC,
HKC, RMT, PMR, DJH, WCW, EBR, DIC, FBH, and LQ were involved
in data collection. JH, LMR, and LL provided statistical expertise. All
authors contributed to the interpretation of the results and critical revision
of the manuscript for important intellectual content and approved the
final version of the manuscript. QQ and LQ are guarantors.

Funding: This study was supported by grants DK091718, HL071981,
HL073168, CA87969, CA49449, CA055075, HL34594, HL088521,
U01HG004399, DK080140, P30DK46200, U01CA137088,
U54CA155626, DK58845, DK098311, U01HG004728, EY015473,
CA134958, DK70756 and DK46200 from the National Institutes of
Health, with additional support for genotyping from Merck Research
Laboratories, North Wales, PA. The Women’s Genome Health Study
is supported by HL043851, HL080467 and CA047988 from the National
Institutes of Health, with collaborative scientific support and funding for
genotyping provided by Amgen. LQ is a recipient of the American Heart
Association Scientist Development Award (0730094N). LRP is supported
by the Arthur Ashley Williams Foundation and a Harvard Ophthalmology
Scholar Award (Harvard Medical School) from the Harvard Glaucoma
Center of Excellence. ATC is a Damon Runyon Cancer Foundation
Clinical Investigator. The funding sources had no role in the design or
conduct of the study; collection, management, analysis, and
interpretation of the data; or preparation, review, or approval of the
manuscript.

Competing interests: All authors have completed the ICMJE uniform
disclosure form at www.icmje.org/coi_disclosure.pdf (available on
request from the corresponding author) and declare: no support from
any organization for the submitted work; no financial relationships with
any organizations that might have an interest in the submitted work in
the previous three years, no other relationships or activities that could
appear to have influenced the submitted work.

Ethical approval: The study protocol was approved by the institutional
review boards of the Brigham and Women’s Hospital, and the Harvard

‘ No commercial reuse: See rights and reprints http://www.bmj.com/permissions

Subscribe: http://www.bmj.com/subscribe



http://www.icmje.org/coi_disclosure.pdf
http://www.bmj.com/permissions
http://www.bmj.com/subscribe

BMJ 2014;348:91610 doi: 10.1136/bmj.g1610 (Published 19 March 2014)

Page 6 of 12

RESEARCH

What is already known on this topic
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The genetic influences on adiposity are amplified by regular consumption of fried foods
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Tables

| Baseline characteristics of participants according to frequency of total fried food consumption.* Figures are means (SD) or
percentages unless otherwise indicated.

Frequency/week

<1 1-3 >4 P value
Nurses’ Health Study (women)
No of participants 4993 (52%) 3027 (31%) 1603 (17%) —
Age (year) 52.6 (6.5) 51.6 (6.8) 50.2 (6.7) <0.001
Body mass index (kg/m?) 23.7 (4.5) 24.4 (4.9) 25.0 (5.5) <0.001
No (%) of current smokers (%) 949 (19%) 605 (20%) 356 (22%) <0.001
Physical activity (MET-h/week) 15.7 (20.7) 12.8 (15.9) 10.7 (13.5) <0.001
Television watching (h/week) 12.7 (11.6) 13.8 (11.5) 14.4 (11.9) <0.001
Total energy intake (kcal/day) 1633 (489) 1821 (509) 2018 (538) <0.001
Alcohol consumption (g/day) 7.4 (11.3) 7.1 (11.7) 6.2 (10.1) <0.001
Sugar sweetened beverage intake 0.22 (0.44) 0.34 (0.57) 0.43 (0.63) <0.001
(servings/day)
Alternative health eating index score 40.7 (10.6) 37.3(10.0) 36.0 (9.6) <0.001
Western dietary pattern score —-0.35 (0.86) 0.18 (0.92) 0.71 (1.06) <0.001
Genetic risk score 29.2 (3.8) 29.1 (3.9) 29.2 (3.9) 0.98
Health Professionals Follow-Up Study (men)
No of participants 2402 (38%) 2072 (32%) 1905 (30%) —
Age (year) 55.7 (8.6) 54.6 (8.6) 52.8 (8.6) <0.001
Body mass index (kg/m?) 25.4 (3.1) 25.8 (3.2) 26.2 (3.4) <0.001
No (%) of current smokers (%) 170 (7%) 170 (8%) 200 (10%) <0.001
Physical activity (MET-h/week) 22.6 (29.4) 19.1 (24.4) 17.6 (24.3) <0.001
Television watching (h/week) 10.9 (8.6) 11.7 (8.5) 12.2(8.7) <0.001
Total energy intake (kcal/day) 1866 (566) 2025 (592) 2224 (632) <0.001
Alcohol consumption (g/day) 11.8 (15.6) 13.0 (16.4) 12.4 (16.4) 0.17
Sugar sweetened beverage intake 0.21 (0.42) 0.31 (0.49) 0.45 (0.62) <0.001
(servings/day)
Alternative health eating index score 48.1 (11.2) 43.4 (10.3) 41.4 (9.9) <0.001
Western dietary pattern score -0.39 (0.76) 0.11 (0.82) 0.60 (0.95) <0.001
Genetic risk score 29.2 (3.8) 29.0 (3.9) 29.0 (3.8) 0.20
Women’s Genome Health Study (women)
No of participants 14 702 (69%) 4790 (22%) 1929 (9%) —
Age (year) 55.0 (7.2) 54.1 (6.8) 52.9 (6.3) <0.001
Body mass index (kg/m?) 25.3 (4.5) 26.5 (5.2) 27.5(5.7) <0.001
No (%) of current smokers (%) 1470 (10%) 504 (11%) 270 (14%) <0.001
Physical activity (MET-h/week) 16.5 (19.7) 11.7 (14.8) 9.6 (13.3) <0.001
Total energy intake (kcal/day) 1665 (500) 1842 (529) 2002 (568) <0.001
Alcohol consumption (g/day) 4.6 (8.5) 4.1 (8.7) 3.3(7.5) <0.001
Sugar sweetened beverage intake 0.20 (0.48) 0.33 (0.64) 0.47 (0.85) <0.001
(servings/day)
Alternative health eating index score 42.4 (9.6) 37.4 (9.1) 34.3 (8.6) <0.001
Western dietary pattern score -0.20 (0.72) 0.32 (0.76) 0.70 (0.82) <0.001
Genetic risk score 28.6 (3.4) 28.6 (3.4) 28.5(3.4) 0.17

*Baseline data from 9623 women in Nurses’ Health Study (1984), 6379 men in Health Professionals Follow-Up Study (1986), and 21 421 women in Women'’s
Genome Health Study (1992). Physical activity assessed in 1986 for Nurses’ Health Study. Television watching assessed in 1992 for Nurses’ Health Study and
in 1988 for Health Professionals Follow-Up Study.
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| Body mass index according to frequency of fried food consumption and third of genetic risk score*

Mean BMI by consumption/week

Genetic risk score <1 1-3 24 P for trend P for interaction

Total consumptiont

Nurses’ Health Study:

1 (<27.5) 25.6 (0.1) 25.9 (0.1) 26.1(0.2) 0.005 0.005
2(27.5-30.8) 26.1 (0.1) 26.6 (0.1) 26.9 (0.2) <0.001

3(230.9) 27.0 (0.1) 27.4 (0.1) 28.0 (0.2) <0.001
Health Professionals Follow-Up Study:

1 (<27.5) 25.7 (0.1) 25.9 (0.1) 26.1(0.1) 0.01 0.02
2 (27.5-30.8) 26.0 (0.1) 26.2 (0.2) 26.6 (0.1) <0.001

3(230.9) 26.4 (0.1) 26.7 (0.1) 27.1 (0.1) <0.001

Fried food consumed at homet

Nurses’ Health Study:

1 (<27.5) 25.7 (0.1) 25.9 (0.1) 25.2 (0.3) 0.58 0.02
2 (27.5-30.8) 26.1(0.1) 26.6 (0.1) 26.0 (0.3) 0.002
3(230.9) 27.1(0.1) 27.4 (0.1) 27.4 (0.3) 0.01

Health Professionals Follow-Up Study:
1 (<27.5) 25.8 (0.1) 25.9 (0.1) 25.8 (0.3) 0.53 0.07
2(27.5-30.8) 26.1(0.1) 26.4 (0.1) 26.3 (0.3) 0.04
3(230.9) 26.5(0.1) 27.0 (0.1) 26.6 (0.3) 0.04

Fried food consumed away from homet

Nurses’ Health Study:

1 (<27.5) 25.6 (0.1) 26.4 (0.2) 27.9(0.9) <0.001 0.01
2 (27.5-30.8) 26.1(0.1) 27.2(0.2) 27.8(0.7) <0.001

3(230.9) 26.9 (0.1) 28.4(0.2) 28.2 (1.0) <0.001
Health Professionals Follow-Up Study:

1 (<27.5) 25.7 (0.1) 26.1(0.1) 26.3 (0.3) 0.002 0.14
2 (27.5-30.8) 26.0 (0.1) 26.4 (0.1) 27.4(0.3) <0.001

3(230.9) 26.5 (0.1) 26.9 (0.1) 27.1(0.4) 0.002

Replication phase in Women’s Genome Health Study}

Total fried food consumption:

1 (<27.4) 25.6 (0.1) 25.9 (0.1) 26.3 (0.2) <0.001 <0.001
2 (27.4-30.6) 26.1(0.1) 26.9 (0.1) 27.3(0.2) <0.001
3(230.7) 26.7 (0.1) 27.5(0.1) 28.6 (0.2) <0.001

Fried food consumed at home:
1 (<27.4) 25.7 (0.1) 25.9 (0.1) 25.8 (0.5) 0.03 0.004
2 (27.4-30.6) 26.3 (0.1) 26.7 (0.1) 26.7 (0.4) 0.05
3 (230.7) 26.9 (0.1) 27.5(0.1) 28.9 (0.5) <0.001

Fried food consumed away from home:
1 (<27.4) 25.6 (0.1) 26.2 (0.1) 26.2 (0.5) <0.001 <0.001
2 (27.4-30.6) 26.1 (0.1) 27.2(0.1) 28.7 (0.6) <0.001
3(230.7) 26.8 (0.1) 28.2 (0.1) 30.0 (0.6) <0.001

*Data are least squares means (SE) of BMI (averages over follow-up) across categories of fried food consumption.

tData derived from repeated measures analysis for women in Nurses’ Health Study (four measures during 1984-98) and in Health Professionals Follow-Up Study
(three measures during 1986-98), adjusted for age, source of genotyping data, physical activity, television watching, smoking, alcohol intake, sugar sweetened
beverage intake, alternative healthy eating index, and total energy intake. Data on fried food consumption assessed four years before assessment of BMI.
tData derived from general linear regression analysis for women in Women’s Genome Health Study, adjusted for age, physical activity, smoking, alcohol intake,
sugar sweetened beverage intake, alternative healthy eating index, and total energy intake. Data on fried food consumption assessed three years before assessment
of BMI.
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| Multivariable adjusted odds ratios (95% CI) for obesity per increment of 10 risk alleles by frequency of fried food consumption*

Consumption/week

<1 1-3 > P for interaction

Total fried food consumption
Nurses’ Health Study:

No of women (obese/normal weight) 679/2888 484/1666 356/776 —

Odds ratio (95% Cl )t 1.76 (1.39 t0 2.24) 2.70 (2.00 to 3.65) 2.54 (1.75 t0 3.69) 0.02
Health Professionals Follow-up Study:

No of men (obese/normal weight) 194/1051 216/830 269/686 —

Odds ratio (95% CI)t 2.00 (1.27 t0 3.13) 2.04 (1.31 t0 3.20) 2.86 (1.88 t0 4.36) 0.16
Women’s Genome Health Study:

No of women (obese/normal weight) 743/11673 266/3423 120/1234 —

Odds ratio (95% Cl) 1.46 (1.19t0 1.78) 1.57 (1.11 t0 2.21) 2.88 (1.68 t0 4.94) 0.06
Pooled odds ratio (95% CI)§ 1.61 (1.40 to 1.87) 2.12(1.73t0 2.59) 2.72 (2120 3.48) 0.002
Fried food consumed at home
Nurses’ Health Study:

No of women (obese/normal weight) 808/3181 567/1840 138/299 —

Odds ratio (95% Cl)t 1.73 (0.92 t0 3.27) 2.46 (1.86 to 3.24) 452 (2.3310 8.77) 0.006
Health Professionals Follow-up Study:

No of men (obese/normal weight) 302/1396 303/973 71/188 —

Odds ratio (95% CI)t 2.12 (1.47 t0 3.05) 2.57 (1.77 t0 3.74) 1.96 (0.79 to 4.90) 0.69
Women’s Genome Health Study:

No of women (obese/normal weight) 939/13404 208/2778 17/211 —

Odds ratio (95% Cl)t 1.44 (1.21t0 1.73) 2.25(1.51 to 3.35) 2.83 (0.55 to 14.52) 0.06
Pooled odds ratio (95% Cl)§ 1.57 (1.34 t0 1.83) 2.43 (2.00 to 2.96) 3.33 (2.00 to 5.55) 0.003
Fried food consumed away from home
Nurses’ Health Study:

No of women (obese/normal weight) 1110/4485 375/805 33/34 —

Odds ratio (95% CI)t 2.09 (1.73t0 2.52) 2.68 (1.86 to 3.85)1 0.28
Health Professionals Follow-up Study:

No of men (obese/normal weight) 351/1647 257/810 69/104 —

Odds ratio (95% Cl)t 2.08 (1.49 t0 2.91) 2.53 (1.69 to 3.79) 4.39 (1.26 to 15.25) 0.30
Women’s Genome Health Study:

No of women (obese/normal weight) 864/13750 263/2611 11127 —

Odds ratios (95% Cl)t 1.52 (1.27 to 1.83) 1.84 (1.30 to 2.61) 5.19 (0.45 to 59.96) 0.17
Pooled odds ratio (95% CI)§ 1.81 (1.60 to 2.05) 2.29 (1.84t0 2.83) 4.53 (1.49 to0 13.79) 0.02

*Derived from logistic regression analyses, using data on fried food consumption assessed at baseline and obesity status assessed four years later in Nurses’
Health Study and Health Professionals Follow-Up Study and three years later in Women’s Genome Health Study.

tData adjusted for age, source of genotyping data, physical activity, television watching, smoking, alcohol intake, sugar sweetened beverage intake, alternative

healthy eating index, and total energy intake.

tData adjusted for age, physical activity, smoking, alcohol intake, sugar sweetened beverage intake, alternative healthy eating index, and total energy intake.
§Results for three cohorts pooled by means of fixed effects meta-analyses (if P=0.05 for heterogeneity between studies) or random effects meta-analyses (if

P<0.05 for heterogeneity between studies).

qFor fried food consumed away from home in Nurses’ Health Study, participants in categories of 1-3/week and 24/week combined because of small sample size

in category of >4/week.
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Fig 1 BMI according to frequency of fried food consumption and thirds of genetic risk score in pooled data of three cohorts.
Data adjusted for age, source of genotyping data, physical activity, television watching, smoking, alcohol intake, intake of
sugar sweetened beverages, alternative healthy eating index, and total energy intake in Nurses’ Health Study (NHS) and
Health Professionals Follow-Up Study (HPFS); and age, physical activity, smoking, alcohol intake, intake of sugar sweetened
beverages, alternative healthy eating index, and total energy intake In the Women’s Genome Health Study (WGHS). Data
from three cohorts were pooled by means of fixed effects meta-analyses (if P>0.05 for heterogeneity between studies) or
random effects meta-analyses (if P<0.05 for heterogeneity between studies)
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Fig 2 Genetic associations with BMI according to frequency of fried food consumption in three cohorts. Data are differences
(SE) in BMI per 10 risk alleles of genetic risk score and differences (SE) in BMI per risk allele (A-allele) of the FTO (fat
mass and obesity associated) variant rs1558902. In Nurses’ Health Study (NHS) and Health Professionals Follow-Up Study
(HPFS), data were adjusted for age, source of genotyping data, physical activity, television watching, smoking, alcohol
intake, intake of sugar sweetened beverages, alternative healthy eating index, and total energy intake. In Women’s Genome
Health Study (WGHS), data were adjusted for age, physical activity, smoking, alcohol intake, intake of sugar sweetened
beverages, alternative healthy eating index, and total energy intake. Data from three cohorts pooled by means of fixed
effects meta-analyses (if P>0.05 for heterogeneity between studies) or random effects meta-analyses (if P<0.05 for
heterogeneity between studies)
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