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SUMMARY
Fluorescence-activated cell sorting (FACS) strategies to purify distinct cell types from the pool of fetal humanmyofiber-associated (hMFA)

cells were developed. We demonstrate that cells expressing the satellite cell marker PAX7 are highly enriched within the subset of

CD45�CD11b�GlyA�CD31�CD34�CD56intITGA7hi hMFA cells. These CD45�CD11b�GlyA�CD31�CD34�CD56intITGA7hi cells lack

adipogenic capacity but exhibit robust, bipotent myogenic and osteogenic activity in vitro and engraft myofibers when transplanted

into mouse muscle. In contrast, CD45�CD11b�GlyA�CD31�CD34+ fetal hMFA cells represent stromal constituents of muscle that do

not express PAX7, lack myogenic function, and exhibit adipogenic and osteogenic capacity in vitro. Adult muscle likewise contains

PAX7+ CD45�CD11b�GlyA�CD31�CD34�CD56intITGA7hi hMFA cells with in vitro myogenic and osteogenic activity, although these

cells are present at lower frequency in comparison to their fetal counterparts. The ability to directly isolate functionally distinct progen-

itor cells from human muscle will enable novel insights into muscle lineage specification and homeostasis.
INTRODUCTION

In mice, combinatorial surface marker analysis has been

useful in enabling direct discrimination and prospective

isolation of phenotypically and functionally distinct cells

from skeletal muscle using fluorescence-activated cell sort-

ing (FACS) (Cerletti et al., 2008; Kuang et al., 2007; Sacco

et al., 2008; Sherwood et al., 2004; Tanaka et al., 2009).

FACS has been used to purify PAX7-expressingmouse satel-

lite cells, which exhibit self-renewal and myogenic differ-

entiation capacities consistent with muscle stem cells

(Cerletti et al., 2008; Fukada et al., 2004; Kuang et al.,

2007; Montarras et al., 2005; Sacco et al., 2008; Sherwood

et al., 2004; Tanaka et al., 2009). Prospective isolation of

adult mouse satellite cells has also enabled studies that

distinguished their myogenic differentiation potential

from adipogenic/fibrogenic activities in muscle (Joe et al.,

2010), revealed their contributions to muscle pathologies

(Cerletti et al., 2008; Chakkalakal et al., 2012; Conboy

et al., 2003; Sacco et al., 2008), and provided proof in

principle that they may be useful in cell therapy

approaches (Cerletti et al., 2008, 2012; Sacco et al., 2008).

A similar cell-sorting approach recently allowed purifica-

tion of fibroadipogenic precursors from mouse muscle
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and showed that these cells lack myogenic capacity

(Joe et al., 2010; Uezumi et al., 2010). Together with

endothelial and infiltrating immune cells, these fibroadi-

pogenic precursors constitute the muscle stroma and

play a critical role in regulating the early stages of muscle

repair after damage (Wang and Rudnicki, 2012). However,

in order to translate these findings to human muscle

and apply them for regenerative medicine, it is essential

to develop analogous strategies for prospective identifica-

tion and isolation of human myogenic and adipogenic

precursors.

Lecourt et al. previously showed by immunofluorescence

(IF) staining that cells in the satellite cell position in adult

human muscle lack CD34 (Lecourt et al., 2010). Pisani

et al. subsequently demonstrated that myogenic activity

could be enriched in human adultmuscle cells bymagnetic

depletion of CD34+ cells (Pisani et al., 2010b). However, as

described here, negative selection for CD34 achieves only

partial purification of myogenic progenitors from human

fetal muscle. To establish more specific sorting strategies

capable of purifying human PAX7-positive cells, we under-

took a systematic study of surface markers that distinguish

phenotypically and functionally distinct cells in human

fetal muscle. These efforts identified a combination of
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seven surface markers that reliably discriminate a purified

population of PAX7-expressing CD45�CD11b�GlyA�

CD31�CD34�CD56intITGA7hi humanmyofiber-associated

(hMFA) cells (hereafter referred to as CD34�CD56int

ITGA7hi cells) from infiltrating blood cells and muscle-resi-

dent adipogenic precursors, allowing direct isolation of

each of these populations by FACS. Consistent with studies

in the mouse, human PAX7-expressing CD34�CD56int

ITGA7hi cells are robustly myogenic and lack adipogenic

potential. PAX7-expressing CD34�CD56intITGA7hi cells

with myogenic activity in vitro are also present in adult

muscle, but at lower frequency than in fetal tissue. Clonal

analysis in vitro further revealed a surprising bipotency of

human fetal PAX7-expressing CD34�CD56intITGA7hi cells,

which exhibited both myogenic and osteogenic poten-

tial. In contrast, CD45�CD11b�GlyA�CD31�CD34+ fetal

hMFA cells (abbreviated CD34+ cells), which exhibited

potent adipogenic and osteogenic activity, lack PAX7

and show no myogenic potential. Taken together, these

studies report efficient methods for the direct isolation

of highly enriched human fetal bipotent myogenic/

osteogenic and adipogenic progenitors. These protocols

provide tools for uncovering the cellular mechanisms and

environmental interactions that sustain human skeletal

muscle.
RESULTS

Human Fetal Skeletal Muscle Contains Multiple,

Distinct Cell Populations

To evaluate phenotypic and functional heterogeneity

among fetal hMFA cells, we adapted previously established

protocols for mouse myofiber-associated cell isolation

(Conboy et al., 2003; Sherwood et al., 2004) to liberate

the mononuclear cell fraction from human fetal muscle

(Ehrhardt et al., 2007; Tanaka et al., 1995). Plating hMFA

cells under myogenic, adipogenic, or osteogenic con-

ditions in vitro revealed significant functional heterogene-

ity. Under myogenic conditions, hMFA cells formed

DESMIN-expressing multinucleated myotubes. Under adi-

pogenic conditions, hMFA cells differentiated into oil red

O (ORO)-positive, lipid droplet-containing adipocytes.

Under osteogenic conditions, hMFA cells produced

Alizarin-red (AR)-positive calcium deposits consistent

with osteogenic differentiation (Figure 1A).

We next evaluated phenotypic heterogeneity within the

hMFA pool using cell surface marker staining and FACS.

Existing literature was surveyed to identify candidate anti-

genic markers that might discriminate live myogenic from

nonmyogenic cells (Fukada et al., 2004; Kuang et al., 2007;

Lecourt et al., 2010; Pisani et al., 2010a, 2010b; Sacco et al.,

2008; Sherwood et al., 2004). PAX7, the canonical marker
Stem
of muscle satellite cells in mouse and human postnatal

muscle (Bosnakovski et al., 2008; Seale et al., 2000), is inap-

propriate for such an approach because as a nuclear

protein, antibody staining requires cell fixation/permeabi-

lization. Flow cytometric analysis of hMFA cells revealed

differential expression of 11 candidate cell surface markers

(CD45, CD11b, glycophorin A [GlyA], b1 integrin, CD34,

CD56, ITGA7, CD90, CD13, and CXCR4; Figure 1B and

Figure S1A available online). A total of 9.1% ± 1.7%

(mean ± SD) of fetal hMFA cells expressed hematopoietic

lineage markers (CD45, CD11b, and GlyA) and CD31, an

endothelial marker (Figure 1B) (Andukuri et al., 2013).

Expression of CD34, CD56, and ITGA7 was detected in

55% ± 10.8%, 40.5% ± 7.0%, and 55.9% ± 9.2% of cells,

respectively (mean ± SD; Figures 1B and S1A–S1C). Other

markers analyzed included CD29, CD90, CD13, and

CXCR4, which were expressed by 90.4% ± 9.4% (CD29),

63.9% ± 10.3% (CD90), 38.4% ± 3.8% (CD13), and

63.2% ± 10.3% (CXCR4) of cells, respectively (mean ±

SD; Figures 1B and S1D–S1F). These analyses confirmed

heterogeneity of cell surface marker expression by fetal

hMFA cells.We therefore sought to exploit this heterogene-

ity to fractionate fetal hMFA subsets with distinct differen-

tiation potentials.

CD45�CD11b�GlyA�CD31�CD34�CD56intITGA7hi

Fetal hMFA Cells Are Enriched for PAX7-Expressing

Cells

Satellite cells are canonically recognized by expression of

the paired box transcription factor PAX7, which controls

transcription of myogenic genes such as MyoD and Myf5

(McKinnell et al., 2008) and is present in satellite cells as

well as muscle progenitors in postnatal muscle tissue. A

total of 27.5% ± 1% (mean ± SD) of fetal hMFA cells

expressed PAX7 by IF analysis (Figures 2B and S2). To assess

PAX7 expression by IF in fetal hMFA cell subsets, cells were

isolated by FACS after combinatorial staining for differen-

tially expressed cell surface markers (Figure 1C). Exclusion

of cells expressing CD45, CD11b, GlyA, and CD31 (which

mark hematopoietic and endothelial lineage cells) and

selection of CD34�/low cells identified a population en-

riched for PAX7-expressing cells (55% ± 5% PAX7+,

mean ± SD; Figure 2B). These CD45�CD11b�GlyA�

CD31�CD34�/low cells are hereafter designated ‘‘CD34�/low

cells’’ (marked in pink in Figure 1C). None of the

CD45�CD11b�GlyA�CD3�CD34+ cells (hereafter desig-

nated ‘‘CD34+ cells’’ and marked in cyan in Figure 1C) ex-

pressed PAX7 (Figure 2). Thus, CD34�/low hMFA cells

from fetalmuscle are selectively enriched for PAX7-express-

ing cells.

To further enrich PAX7+ cells within the CD34�/low

hMFA cell subset, we evaluated expression of additional

surface markers (Figure 1B). Differential expression of
Cell Reports j Vol. 2 j 92–106 j January 14, 2014 j ª2014 The Authors 93



Figure 1. Cellular Heterogeneity in
Human Fetal Muscle
(A) hMFA cell differentiation under
myogenic, adipogenic, and osteogenic
conditions. Unfractionated hMFA cells
formed DESMIN+, multinucleated myocytes
(left panel), oil red O+ adipocytes (central
panel), and Alizarin red+ calcium deposits
(right panel) under myogenic (left), adi-
pogenic (middle), or osteogenic (right)
conditions.
(B) Surface antigen expression within live
(Pi�Ca+ or 7AAD�Ca+) hMFA cells (mean ±
SD based on 3–20 biologically distinct
samples).
(C) Discrimination of phenotypically
distinct hMFA cells. Viable hMFA cells were
7AAD� and Calcein blue+ (left). Expression
of CD34 discriminated two populations
within CD45�CD11b�GlyA�CD31� cells
(middle). Among CD34�/low cells (pink
gate), ITGA7 and CD56 identify three addi-
tional populations: CD34�CD56hiITGA7low

(blue gate), CD34�CD56intITGA7hi (red
gate), and CD34�/lowCD56-ITGA7low (green
gate) cells (right).
See also Figure S1.
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CD90, CD13, and CD29 did not discriminate candidate

populations within the CD34�/low hMFA cell pool, as

CD90 and CD13 expression was enriched in the CD34+

cell subset and CD29 was uniformly expressed by

CD34�/low cells (data not shown). In contrast, differential

expression of CD56 and ITGA7 distinguished three popula-

tions within CD34�/low fetal hMFA cells: CD34�CD56hi

ITGA7low (marked in blue in Figure 1C), CD34�CD56int

ITGA7hi (marked in red in Figure 1C), and CD34�/low

CD56�ITGA7low (marked in green in Figure 1C). In addi-

tion to differences in CD56 and ITGA7 expression, variable

low-level expression of CD34 was noted in CD34�/low

CD56�ITGA7low hMFA cells, compared to absent CD34

expression in CD34�CD56intITGA7hi and CD34�

CD56hiITGA7low cells (Figure S1H). PAX7 IF showed clear

enrichment of PAX7+ cells (78.3% ± 5%, mean ± SD) in

the CD34�CD56intITGA7hi subset (Figure 2; red gate in

Figure 1C). In contrast, we detected no PAX7 expression

in CD34�CD56hiITGA7low cells (Figures 2B and S2; blue

gate in Figure 1C) and variable PAX7 expression in
94 Stem Cell Reports j Vol. 2 j 92–106 j January 14, 2014 j ª2014 The Autho
CD34�/lowCD56� ITGA7low cells (33.0% ± 28%, mean ±

SD; Figures 2B and S2; green gate in Figure 1C).

All cell populationswere sorted twice tomaximize purity.

The purity of double-sorted CD34+, CD34�/low, CD34�

CD56hiITGA7low, and CD34�CD56intITGA7hi cells was

consistently >99%upon reanalysis (Figure S3); however, re-

analysis of sorted CD34�/lowCD56�ITGA7low cells showed

variable purities of 68.1% ± 26% (mean ± SD; Figure S3).

Variable contamination with CD34�CD56intITGA7hi cells

could explain the variable levels of PAX7 expression de-

tected in the sorted CD34�/lowCD56�ITGA7low cells. In

contrast, PAX7 enrichment in CD34�CD56intITGA7hi cells

and absent PAX7 expression in CD34�CD56hiITGA7low

was highly reproducible (n = 6 distinct donors for

CD34�CD56intITGA7hi cell analysis and n = 3 donors for

CD34�CD56hiITGA7low cell analysis; Figure 2B). Thus,

the canonical satellite cell marker PAX7 is selectively en-

riched in CD34�CD56intITGA7hi fetal hMFA cells, suggest-

ing that humanmyogenic progenitorsmay be contained in

this population.
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Figure 2. PAX7 Enrichment in CD34�

CD56intITGA7hi Fetal hMFA Cells
(A and B) PAX7 expression in fetal hMFA cell
subsets was (A) determined by IF of freshly
sorted cells and (B) quantified as the
percentage of PAX7+ cells among all DAPI+

cells (mean ± SD; two to six biological
replicates). CD34�CD56intITGA7hi cells are
highly enriched for PAX7 (mean ± SD,
78.3% ± 5%). Statistical significance was
evaluated by unpaired, two-tailed t test
(**p < 0.001; ***p < 0.0001).
See also Figure S2.
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CD34�CD56intITGA7hi Fetal hMFA Cells Exhibit

Myogenic and Osteogenic Activity In Vitro but Lack

Adipogenic Differentiation Potential

We next evaluated the lineage potential of the fetal hMFA

cell subsets identified above using in vitro differentiation

assays. Under myogenic conditions (Figure 3, left panels),

CD34�/low and CD34�CD56intITGA7hi cells exhibited effi-

cient myogenic differentiation, as evidenced by large

numbers of DESMIN+ multinucleated myotubes. In

contrast, CD34�/lowCD56�ITGA7low cells showed minimal

myogenic capacity. CD34+ and CD34�CD56hiITGA7low

cells, both of which lack PAX7 expression (Figure 2), ex-

hibited nomyogenic activity. Under adipogenic conditions

(Figure 3, central panels), both CD34+ and CD34�/low cells

formed adipocytes (containing ORO-staining lipid drop-

lets). Within the CD34�/low subset, only CD34�/low

CD56�ITGA7low cells contained adipogenic activity, while

CD34�CD56intITGA7hi and CD34�CD56hiITGA7low cells

were uniformly nonadipogenic. These data suggest that

CD34�/lowCD56�ITGA7low cells are responsible for

the adipogenic differentiation potential present among

CD34�/low fetal hMFA cells. Finally, under osteogenic con-

ditions (Figure 3, right panels), both CD34+ and CD34�/low

cells formed AR-staining calcium deposits, consistent
Stem
with osteogenic differentiation. Myogenic CD34�CD56int

ITGA7hi and CD34�/lowCD56�ITGA7low cells also ex-

hibited osteogenic activity in these in vitro assays (Fig-

ure 3B, right panels).

Differences in the myogenic and adipogenic differentia-

tion capacity of fetal CD34�CD56intITGA7hi cells and

CD34+ cells remained evident under all the culture condi-

tions used. Specifically, myogenic CD34�CD56intITGA7hi

cells still formed multinucleated myotubes under adipo-

genic (Figure S4A) and osteogenic (Figures 3B and S4B) con-

ditions and never formed adipocytes (Figures S4A and S4B).

In contrast, CD34+ cells formed adipocytes under adipo-

genic (Figures 3 and S4A) and osteogenic (Figure S4B) con-

ditions and never formed myotubes (Figures 3 and S4A).

Under myogenic conditions, CD34+ cells adopted fibro-

blastic morphology (data not shown).

In summary, these experiments reveal the following dif-

ferences in the in vitro myogenic, adipogenic, and osteo-

genic potentials of discrete, prospectively isolatable fetal

hMFA cell subsets: (1) PAX7-negative, CD34�CD56hi

ITGA7low cells lack myogenic, adipogenic, and osteogenic

activity (Figures 2 and 3B); (2) PAX7-negative, CD34+

cells contain adipogenic and osteogenic activity but

lack myogenic capacity (Figure 2 and Figure 3A); and
Cell Reports j Vol. 2 j 92–106 j January 14, 2014 j ª2014 The Authors 95



Figure 3. Differentiation of Fetal hMFA Cell Subsets under
Myogenic, Adipogenic, and Osteogenic Conditions
(A and B) hMFA cells were stained for DESMIN (red) and nuclei
marked by DAPI (blue) after myogenic culture (left panels), with oil
red O to mark lipid droplets after adipogenic culture (middle
panels), and with Alizarin red to mark calcium deposits after
osteogenic culture (right panels).
(A) CD34+ cells lack myogenic activity but are adipogenic and
osteogenic in vitro, while fetal CD34�/low cells contain myogenic,
adipogenic, and osteogenic activity in vitro.
(B) CD34�CD56hiITGA7low cells lack myogenic, adipogenic, and
osteogenic capacity in vitro. CD34�CD56intITGA7hi cells exhibit
efficient myogenic activity, lack adipogenic potential, and contain
osteogenic activity in vitro. CD34�/lowCD56�ITGA7low cells show
limited myogenic activity but are adipogenic and osteogenic
in vitro. Differentiation assays were performed in three biological
replicates for each population.
See also Figure S4.
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(3) PAX7-positive, CD34�CD56intITGA7hi cells (Figure 2)

contain myogenic and osteogenic capacity (Figure 4) but

lack adipogenic potential (Figure 3B).

Human Fetal CD34�CD56intITGA7hi Cells Exhibit

Bipotent Myogenic/Osteogenic Differentiation

Activity In Vitro

The ability of PAX7-positive, CD34�CD56intITGA7hi

human fetal cells to efficiently undergomyogenic differen-

tiation in vitro and form AR-positive calcium deposits

indicative of osteogenic differentiation is consistent with

previous reports of hMFA osteogenic differentiation

(Hashimoto et al., 2008; Lecourt et al., 2010; Oishi et al.,

2013). To determine whether this observation reflects

true bipotency, we clone-sorted CD34�CD56intITGA7hi

cells into 96-well plates (one cell per well) and expanded

them for parallel analysis of myogenic and osteogenic

activity in vitro (Figure 4A). The efficiency of CD34�

CD56intITGA7hi fetal hMFA cell clonal expansion was

variable and donor dependent, with an average seeding

efficiency of 7.1% ± 5.4% (mean ± SD; Figure 4B). We

succeeded in expanding 18 clones from four donors. After

14–22 days of expansion, these 18 clones were split and

replated undermyogenic or osteogenic differentiation con-

ditions. Under myogenic conditions, 100% (Figure 4B) of

clones differentiated into DESMIN-positive myotubes (Fig-

ure 4C; one representative clone shown). Under osteogenic

conditions, 82.5% ± 23.6% (mean ± SD; Figure 4B) of

clones formed AR-positive calcium deposits (Figure 4D;

one representative clone shown). We conclude that the

majority of fetal CD34�CD56intITGA7hi hMFA cells possess

bipotent myogenic and osteogenic differentiation poten-

tial in these in vitro assays.

To further investigate the potential of fetal CD34�

CD56intITGA7hi cells, we determined their expression of

myogenic and osteogenic lineage genes at the end of clonal

expansion and aftermyogenic or osteogenic differentiation

(Figure 4A). All (four out of four) CD34�CD56int

ITGA7hi cell-derived clones analyzed by quantitative RT-

PCR (qRT-PCR) expressed both myogenic (MYOD and

DESMIN; Figures 4E and 4F) and osteogenic (RUNX2,

OSTERIX/SP7, and OSTEOCALCIN/BGLAP; Figures 4G–4I)

genes. Osteogenic lineage gene expression at the end of

in vitro clonal expansion and after myogenic and osteo-

genic differentiation corroborated the osteogenic activity

of human fetal CD34�CD56intITGA7hi cells. Expression of

BGLAP increased significantly in cells that underwent oste-

ogenic differentiation compared to proliferating clones;

however, BGLAP did not increase in cells that underwent

myogenic differentiation (Figure 4I). Increased expression

of RUNX2 and SP7 in CD34�CD56intITGA7hi cells after

osteogenic differentiation in vitro was variable between

clones and did not reach statistical significance (Figures
rs



Figure 4. Bipotent Osteogenic/Myogenic
Activity of CD34�CD56intITGA7hi Fetal
hMFA Cells In Vitro
(A) CD34�CD56intITGA7hi hMFA cells were
sorted at 1 cell per well into 96-well plates.
The clones were expanded and replated
under myogenic or osteogenic conditions.
(B) The colony-formation, myogenic, and
osteogenic differentiation capacity of
clones was evaluated. Myogenic differenti-
ation was observed in 100% of clones and
osteogenic differentiation in 83% (mean;
range 50%–100%) of clones (isolated from
four donors each).
(C) Myogenic differentiation (diff) capacity
was evaluated by IF for DESMIN (represen-
tative image of 1 of 18 clones).
(D) Osteogenic capacity was evaluated by
Alizarin red staining (representative image
of 1 of 18 clones).
(E–I) Myogenic (MYOD and DESMIN) and
osteogenic (RUNX2, SP7, BGLAP) differen-
tiation genes were evaluated by qRT-PCR
at the end of expansion (expans.),
myogenic, and osteogenic differentiation.
Fold-change differences relative to whole
human muscle were calculated for each
gene and condition and confirm the bipo-
tency of CD34�CD56intITGA7hi hMFA cells.
This assay was replicated in four biologi-
cally independent experiments. Statistical
significance was evaluated by unpaired,
two-tailed t test (*p < 0.05; **p < 0.001;
ns, not significant). Data are mean ± SD.
See also Figure S3.
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4G and 4H). Importantly, at least some CD34�CD56int

ITGA7hi cells exposed to osteogenic differentiation condi-

tions maintained myogenic activity as evidenced by an

increase in DESMIN expression during osteogenic culture

(Figures 4F) and the presence of multinucleated myotubes

in these cultures (data not shown).

Human Fetal CD34�CD56intITGA7hi Cells Engraft

Myofibers when Transplanted into Mouse Skeletal

Muscle

To assess the contributions of FACS-isolated fetal hMFA

cells to muscle regeneration in vivo, we adapted previ-
Stem
ously published protocols to detect engraftment of unfrac-

tionated human myogenic cells in mouse muscle (Ehr-

hardt et al., 2007). Freshly isolated cells were injected

directly into the cardiotoxin preinjured tibialis anterior

muscles of immunodeficient nonobese diabetic severe

combined immunodeficiency interleukin-2g�/� mice

(NSG) mice, transplanted muscles were harvested

3–8 weeks after transplantation, and engraftment of hu-

man cells was detected by staining with antibodies against

the human membrane protein SPECTRIN (h-SPECTRIN).

H-SPECTRIN staining was strongly positive in fetal human

muscle sections (Figure 5A, left panel) and uniformly
Cell Reports j Vol. 2 j 92–106 j January 14, 2014 j ª2014 The Authors 97



Figure 5. In Vivo Engraftment of Fetal hMFA Cell Subsets in Mouse Muscle
Engrafted hMFA cells were detected in transplanted NSG mouse muscle by costaining for human species-specific h-SPECTRIN (h-SPEC, red),
muscle-specific DYSTROPHIN (DYS, green), and DAPI (blue).
(A) Species-specific staining for h-SPEC is strongly positive in human muscle (left) and absent in mouse muscle (middle). Unfractionated
hMFA cells engrafted to form h-SPEC-positive cells in four out of four transplanted mice (right).

(legend continued on next page)
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absent in mouse muscle sections (Figure 5A, middle

panel). Engraftment of unfractionated fetal hMFA cells,

as evidenced by the presence of h-SPECTRIN+ cells on se-

rial sections of transplanted muscles, was detected in four

out of four transplanted mice (injected with 900,000 cells

per mouse, isolated from two donors in two independent

experiments; Figure 5A, right panel). To assess the in vivo

myogenic activity of sorted fetal hMFA cell subsets, cells

were isolated from 11 individual donors and transplanted

into the cardiotoxin preinjured tibialis anterior muscles of

NSG recipients. Engraftment by human cells, marked by

staining with h-SPECTRIN, was detected in 6 of 28 mus-

cles transplanted with CD34�CD56intITGA7hi fetal hMFA

cells (37,000–100,000 cells injected), 8 of 25 muscles

transplanted with CD34+ fetal cells (37,000–100,000

cells injected), three of ten muscles transplanted with

CD34�/lowCD56�ITGA7low fetal cells (20,000–100,000

cells injected), and three of ten muscles transplanted

with CD34�CD56hiITGA7low fetal cells (7,000–100,000

cells injected) (Figure 5B, top panels, and Figure 5C).

Similar numbers of h-SPECTRIN-positive cells were

detected in muscles engrafted with human CD34�

CD56intITGA7hi cells (12 ± 3; mean ± SEM). CD34+ cells

(8 ± 3; mean ± SEM), CD34�/lowCD56�ITGA7low cells

(11 ± 5; mean ± SEM), or CD34�CD56hiITGA7low

cells (5 ± 2; mean ± SEM) (Figure 5D).

We next evaluated myogenic engraftment of fetal hMFA

cell subsets in transplanted mouse muscles by costaining

for h-SPECTRIN (Figure 5B, top panels) and DYSTROPHIN

(Figure 5B, middle panels), a membrane protein expressed

in both mouse and human muscle fibers. Costaining of

h-SPECTRIN and DYSTROPHIN (Figure 5B, bottom panels,

and Figure S5) in four of six muscles engrafted with fetal

human CD34�CD56intITGA7hi cells indicated that the

transplanted cells underwent myogenic differentiation

and contributed to the formation of mature fibers. A total

of 35%–100% of h-SPECTRIN+ cells in these muscles

coexpressed DYSTROPHIN. In contrast, none (0%) of the

h-SPECTRIN+ cells detected in muscles engrafted with

fetal CD34+ cells, CD34�/lowCD56�ITGA7low cells, or

CD34�CD56hiITGA7low cells were DYSTROPHIN+ (Fig-

ure 5E). Thus, only fetal CD34�CD56intITGA7hi hMFA

cells are capable of myogenic engraftment in mouse

muscle.
(B) Engrafted fetal CD34�CD56intITGA7hi hMFA cells formed myofibers
CD34�CD56hiITGA7low, and CD34�/lowCD56�ITGA7low cells formed h-S
(C) Engraftment efficiency was calculated for each subset as the num
transplanted.
(D) Engraftment was quantified as the maximum number of h-SPEC+
(E) Myogenic engraftment was quantified as the percentage of h-SPEC+
unpaired, two-tailed t test (*p < 0.05; **p < 0.001; ns, not significa
See also Figure S5.
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The Transcriptional Signatures of Fetal hMFA Cell

Subsets Are Consistent with Lineage-Specific

Differences in Their Differentiation Capacities

Togaindeeper insights into themolecularunderpinningsof

CD34�CD56intITGA7hi cells and CD34+ adipogenic precur-

sorswithin the fetal hMFA cell pool, the transcriptional pro-

file of these functionally distinct populations, as compared

to unfractionated fetal hMFA cells, was evaluated. Principal

component analysis (PCA; Figure 6A) and hierarchical

cluster analysis (Figure 6B) showed clustering of CD34�

CD56intITGA7hi cells, CD34+ cells, and hMFA cells into

three transcriptionally distinct populations. Comparison

of CD34�CD56intITGA7hi cells (12.2% ± 4.3% of live fetal

hMFA cells; Table S1) to unfractionated hMFA cells identi-

fied 5,686 differentially regulated probesets, and compari-

son of CD34+ cells (62.7% ± 7.8% of live fetal hMFA cells;

Table S1) to unfractionated hMFA cells yielded 1,029

differentially regulated probesets (>1.5-fold difference

up or down and p < 0.05). Notably, there was no over-

lap between these groups of differentially regulated

genes. Ingenuity pathway analysis revealed that within

the group of genes most highly upregulated in fetal

CD34�CD56intITGA7hi cells as compared to CD34+ cells

(>5-fold difference, p < 0.01, total 346 genes; Table S2), the

25 top-scoring functions involved muscle development,

differentiation, or function (Table S3). Interestingly, within

the group of genes most highly upregulated in CD34+ cells

versus CD34�CD56intITGA7hi cells (>5-fold difference,

p < 0.01, total 854 genes; Table S4), the seven top-scoring

functions involved solid tumor malignancy (Table S5).

We also specifically analyzed expression by freshly iso-

lated fetal CD34�CD56intITGA7hi cells and CD34+ cells of

certain myogenic lineage (PAX7, MYF5, M-CADHERIN/

CDH15, MYOD, MYOG), adipogenic lineage (PPARG,

FABP4) and osteogenic lineage (COL1A, ALPL, BGLAP,

RUNX2) genes in the microarray data set (Figure 6C).

Expression of satellite cell markers (including the HGF

receptorMET; Figure S6C) andmyogenic genes was upregu-

lated in fetal CD34�CD56intITGA7hi hMFA cells, whereas

adipogenic genes were upregulated in fetal CD34+ cells

(Figure 6C). Expression of osteolineage genes was detected

in both CD34�CD56intITGA7hi cells and CD34+ cells

(Figure 6C), consistent with the osteogenic activity of

both populations. Finally, we confirmed differential
as demonstrated by costaining for h-SPEC and DYS. Engrafted CD34+,
PEC+, DYS� cells.
ber of muscles engrafted (i.e., h-SPEC+ cells present) of all muscles

cells per engrafted muscle section. Data are mean ± SEM.
cells that were also DYS+. Statistical significance was evaluated by

nt). Data are mean ± SEM.
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Figure 6. Distinct Transcriptional Signatures of Fetal CD34�CD56intITGA7hi and CD34+ hMFA Cells
(A and B) PCA (A) and hierarchical clustering (B) demonstrate distinct gene expression signatures of CD34+ cells (blue, CD34+),
CD34�CD56intITGA7hi cells (red, CD34�CD56intITGA7hi), and unfractionated hMFA cells (green). Microarray analysis was performed using
three to four (see B) biologically independent, freshly sorted CD34�CD56intITGA7hi, CD34+, and unfractionated hMFA cell samples.
(C) Microarray analyses demonstrated increased expression of muscle-lineage genes (PAX7, MYF5, CDH15, MYOD, MYOG) in
CD34�CD56intITGA7hi cells and adipocyte-lineage genes (PPARG and FABP4) in CD34+ cells. Osteolineage genes (COL1A1, ALPL, BGLAP, and
RUNX2) were present in fetal CD34�CD56intITGA7hi cells and CD34+ cells (blue, downregulated genes; red, upregulated genes).
(D) Expression of PAX7, MYF5, PPARG, FABP4, BGLAP, and RUNX2 (relative to GAPDH) was evaluated by qRT-PCR in fetal CD34�

CD56intITGA7hi cells compared to CD34+ cells obtained from two biologically independent fetal CD34�CD56intITGA7hi and three biologically
independent CD34+ cells samples. PAX7 and MYF5 levels are 512- to 670-fold greater, and PPARG, FABP4, BGLAP, and RUNX2 levels are 8- to
60-fold lower, in CD34�CD56intITGA7hi hMFA cells as compared to CD34+ cells. Data are mean ± SD.
See also Figure S6.
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expression of adipogenic, osteogenic, and myogenic line-

age-specific genes (PPARG, FABP4, BGLAP, RUNX2, PAX7,

and MYF5) in fetal CD34�CD56intITGA7hi and CD34+

hMFA cells by qRT-PCR (Figure 6D). Levels of PPARG

(fold-change �47 ± 20), FABP4 (fold-change �10 ± 2) and

BGLAP (fold-change �4 ± 3) were reduced in

CD34�CD56intITGA7hi cells compared to CD34+ cells. In
100 Stem Cell Reports j Vol. 2 j 92–106 j January 14, 2014 j ª2014 The Auth
contrast, PAX7 (fold-change +513 ± 70) and MYF5 (fold-

change +674 ± 31) levels were increased in CD34�CD56int

ITGA7hi cells, consistent with their myogenic function.

Thus, sorted CD34�CD56intITGA7hi cells and CD34+ cells

from fetal humanmuscle possess transcriptional signatures

highly consistent with their distinct differentiation

potentials.
ors
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Finally, our microarray analyses identified a number of

additional surface markers as differentially regulated in

fetal CD34�CD56intITGA7hi and CD34+ hMFA cells,

including increased levels of MCAM (Figure S6B), CD144

(Figure S6B), and PROMININ1 (CD133; Figure S6B) and

decreased levels of PDGFRA (CD140a; previously reported

to mark adipocyte precursors; Berry and Rodeheffer,

2013; Figure S6B) in CD34�CD56intITGA7hi as compared

to CD34+ cells (Table S6).

Adult Skeletal Muscle Shows Reduced Content of

PAX7-Expressing CD34�CD56intITGA7hi hMFA Cells

with Myogenic and Osteogenic Activity

To determine whether the surface marker combination

we identified as marking PAX7-expressing osteogenic/

myogenic progenitors in human fetal muscle would simi-

larly mark progenitors in adult tissue, we evaluated differ-

ential expression of surface markers (Figure 7A), PAX7

enrichment (Figure 7B), myogenic differentiation (Fig-

ure 7C), and osteogenic differentiation (Figure S7) in

hMFA cells obtained from discarded human adult muscle.

FACS analysis indicated clear separation of CD34+ and

CD34�/low subsets within the pool of viable CD45�

CD11b�GlyA�CD31� adult hMFA cells (Figure 7A). As in

fetal muscle, all myogenic activity was contained within

the CD34�/low subset of adult hMFA cells, whereas CD34+

cells were uniformly nonmyogenic (Figure 7C). However,

within the CD34�/low adult hMFA cell pool, expression of

CD56 and ITGA7 discriminated only two cell populations:

CD34�/lowCD56�ITGA7low and CD34�CD56intITGA7hi

cells. The CD34�CD56hiITGA7low subset detected in fetal

muscle was not present in adult muscle (Figure 7A). We

confirmed selective enrichment of PAX7-expressing cells

(89% ± 7%, mean ± SD; Figure 7B) and in vitro myogenic

activity (Figure 7C, second panel from right) in adult

CD34�CD56intITGA7hi hMFA cells. Finally, analogous to

fetal cells, adult CD34�CD56intITGA7hi cells exhibited

osteogenic activity (Figure S7A) and lacked adipogenic

potential (Figure S7B) in vitro, in addition to their

myogenic function. Thus, CD34�CD56intITGA7hi hMFA

cells isolated from adult muscle, similar to cells of the

same marker phenotype obtained from fetal muscle, are

PAX7-expressing cells with osteogenic/myogenic activity.

However, total hMFA cell numbers were significantly lower

in adult muscle (mean of 0.43 106 [adult] versus 2.53 106

[fetal] hMFA cells per gram muscle; p = 0.0001; Figure 7D),

and the percentage of CD34�CD56intITGA7hi cells among

hMFA cells was also lower (mean of 12.2% ± 1.7% [fetal]

versus 1.5% ± 1.7% [adult]; p < 0.0001; Figure 7F). This

translated into an �2-log reduction in the total number

of CD34�CD56intITGA7hi hMFA cells in adult as compared

to fetal muscle (mean 3.3 3 105 [fetal] versus 3.6 3 103

[adult] cells per gram of muscle; p = 0.0002; Figure 7E).
Stem C
Decreasing muscle progenitor frequency with age in

human muscle is consistent with previously published

findings in the mouse (Conboy et al., 2003).
DISCUSSION

Recent advances enabling the prospective isolation of

mouse satellite cells have facilitated mechanistic analyses

of their myogenic function. For example, the ability to

clonally sort satellite cells with high purity made possible

the demonstration that these cells can undergo asymmetric

division (Kuang et al., 2007; Rocheteau et al., 2012) and re-

populate the satellite cell niche in vivo (Cerletti et al.,

2008). While findings in mouse models are often extrapo-

lated to human biology, whether mouse and human

myogenic cells exhibit fully equivalent properties may still

be questioned, particularly given significant phenotypic

discrepancies in several mouse models of human muscle

disease (Bulfield et al., 1984). All of these issues can be

addressed through the establishment of robust methods

for direct purification of human muscle progenitors.

Previous work by Pisani et al. demonstrated the utility of

the sialomucin CD34 to enrich for myogenic cells within

the CD34� subset of magnetically separated cells in adult

muscle (Pisani et al., 2010b), consistent with immunohis-

tochemical studies reporting the absence of CD34 in adult

human muscle cells located in the satellite cell position

(Lecourt et al., 2010). Pisani et al. also noted mixed

myogenic and adipogenic activity within CD34+ adult

muscle cells, which showed differential expression of

CD56 (Pisani et al., 2010a). Findings from our study

confirm that CD34 distinguishes myogenic and nonmyo-

genic cells within the nonhematopoietic, nonendothelial

(CD45�CD11b�GlyA�CD31�) hMFA cell pool in both

fetal and adult tissue: CD34+ cells are PAX7-negative,

adipogenic cells that do not possess any myogenic

activity, whereas within the CD45�CD11b�GlyA�CD31�

CD34�/low subset, selection of CD56intITGA7hi cells yields

a highly enriched population of PAX7-expressing, robustly

myogenic progenitors. Yet, it is important to note that

these FACS-based strategies pertain to cells isolated from

fresh muscle only. Sorted cells may undergo marked

changes in their surface marker profiles during ex vivo cul-

ture, and it is unclear if our protocols are applicable to cells

that have undergone expansion/differentiation in culture.

Fluorescence-activated cell-sorted fetal human CD34�

CD56intITGA7hi cells engraft in mouse muscle to form

new myofibers, albeit at low efficiency (Figures 5B–5F).

Low-level engraftment of human cells into mouse tissue

is not unexpected, as similar outcomes have been observed

for other human, tissue-specific stem and progenitor cells

upon transfer into immune-compromised mice (Doulatov
ell Reports j Vol. 2 j 92–106 j January 14, 2014 j ª2014 The Authors 101



Figure 7. Adult CD34�CD56intITGA7hi hMFA Cells Are PAX7-Expressing Myogenic Progenitors
(A) FACS gating strategy for isolation of CD45�CD11b�GlyA�CD31�CD34�CD56intITGA7hi cells within live (7AAD� Calcein+) hMFA cells.
(B) PAX7 expression (red) is enriched in CD34�CD56intITGA7hi hMFA cells (89% ± 7% [mean ± SD] Pax7+), as assessed by IF. Nuclei were
marked by DAPI (blue).

(legend continued on next page)
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et al., 2012; Racki et al., 2010). Unfortunately, given the

relatively sparse presence of human myofibers in this sys-

tem, we were unable to establish conditions to reliably

detect costaining for PAX7 and human species-specific

nuclear antigens on engrafted mouse muscle sections. We

therefore were unable to determine if fluorescence-acti-

vated cell sorted fetal human CD34�CD56intITGA7hi cells

can repopulate the PAX7-expressing satellite cell pool

in vivo.We also were unable to test the in vivo engraftment

potential of fluorescence-activated cell-sorted progenitors

from adult human muscle, given the low yield of cells

that could be obtained from adults (Figure 7E).

Interestingly, enrichment of PAX7 expression and

myogenic activity within the CD34� compartment in

human muscle stands in contrast to immunophenotyping

studies in mouse muscle, which localize myogenic activity

to the CD34+ subset of mouse MFA cells (Beauchamp et al.,

2000; Conboy et al., 2010; Montarras et al., 2005; Sacco

et al., 2008; Sherwood et al., 2004). Species-specific differ-

ences in CD34 expression have also been noted in other

somatic stem cell populations, including hematopoietic

stem cells (HSCs), which are CD34+ in adult human bone

marrow and CD34� in adult mouse bone marrow (Okuno

et al., 2002; Osawa et al., 1996). Such differences appear to

arise from the presence of species-specific upstream regula-

tory elements,whichdifferentially regulateCD34gene tran-

scription in mouse and human cells (Okuno et al., 2002).

Cell surfacemarkers that have proved useful for the isola-

tion of mouse PAX7+ satellite cells include ITGA7 (Pasut

et al., 2012; Sacco et al., 2008), CXCR4 and b1 INTEGRIN

(Sherwood et al., 2004), and VCAM1 (Chakkalakal et al.,

2012). Our studies indicate that PAX7-expressing cells in

fetal and adult human muscle coexpress ITGA7 and

CD56, although neither of these markers alone is sufficient

to distinguish these cells. This is consistent with ITGA7 and

CD56 expression by human myogenic progenitors derived

from PAX7-expressing induced pluripotent stem cells (Dar-

abi et al., 2012). Clear expression of CXCR4 was observed

in adult and fetal PAX7-expressing cells (Figure S6A), and

b1-INTEGRIN was detected on 90% of hMFA cells (Fig-

ure 1B). Additional surface marker analyses, focusing

particularly on those previously linked to mouse and/or

human myogenic precursors (Cerletti et al., 2012; Darabi

et al., 2012; Lecourt et al., 2010; Zheng et al., 2007), re-

vealed increased expression of MCAM (CD146) and CD44

in human fetal CD34�CD56intITGA7hi cells as compared
(C) Myogenic differentiation assays showed that in vitro myogenic
absent from CD34+ and CD34�/lowCD56�ITGA7low cells.
(D–F) Numbers of hMFA cells (D) or CD34�CD56intITGA7hi cells (E) per g
compared for adult and fetal muscle. Statistical significance was eva
Data are mean ± SD.
See also Figure S7.

Stem C
to CD34+ cells (Figure S6B). Finally, ourmicroarray analyses

suggest that PROMININ1 (CD133) and PDGFRA (CD140a;

previously reported to mark adipocyte precursors; Berry

and Rodeheffer, 2013) could also be useful in distinguish-

ing humanmyogenic progenitors, as they are differentially

expressed in fetal CD34�CD56intITGA7hi cells and CD34+

cells (Figure S6C; Table S6).

MFA cells obtained frommouse and humanmuscle were

previously shown to exhibit osteogenic activity (Glass

et al., 2011; Hashimoto et al., 2008; Lecourt et al., 2010;

Oishi et al., 2013). In our studies, both fetal and adult

PAX7-expressing CD34�CD56intITGA7hi cells formed AR-

positive calcium deposits and expressed osteogenic lineage

genes under osteogenic conditions, consistent with prior

reports of osteogenic differentiation potential within the

pool of muscle cells containing PAX7+ progenitors (Hashi-

moto et al., 2008; Ozeki et al., 2006). Clonal assays revealed

that the osteogenic activity of human fetal CD34�

CD56intITGA7hi hMFA cells is unlikely to be attributable

to contamination by other cells, as the majority of clone-

sorted cells exhibited bipotent myogenic and osteogenic

activity. Future studies are needed to investigate adult

muscle progenitor bipotency and delineate the events

that trigger possible osteogenic differentiation of human

CD34�CD56intITGA7hi cells, their possible contributions

to normal bone regeneration, and their relationship to

other mesenchymal precursor cells.

In contrast to fetal CD34�CD56intITGA7hi cells, which

exhibit robust myogenic activity and lack adipogenic

potential, human fetal CD34+ cells are adipogenic and

lack myogenic capacity. While our studies evaluated the

ability of these cells to form white adipocytes, a previous

report indicates that CD34+ cells in fetal and adult human

muscle contain brown adipogenic activity as well (Crisan

et al., 2008). Gene expression profiling confirms profound

differences in the transcriptional signatures of fetal human

CD34�CD56intITGA7hi and CD34+ hMFA cells, with in-

creased expression of muscle lineage genes in CD34�

CD56intITGA7hi cells and increased expression of adipo-

genic genes in CD34+ cells. Given their differentiation

profile, we speculate that CD34+ hMFA cells may represent

the human counterparts of the fibroadipogenic precursor

(FAP) population inmousemuscle (Joe et al., 2010; Uezumi

et al., 2010), an important subset of nonmyogenic cells

that appears to enhance muscle regenerative capacity (Joe

et al., 2010).
activity is highly enriched in adult CD34�CD56intITGA7hi cells and

ram of tissue, and frequency of CD34�CD56intITGA7hi cells (F), were
luated by unpaired, two-tailed t test.
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In summary, we report functionally distinct cell popula-

tions within the hMFA cell pool in fetal and adult muscle

and provide a specific method for the prospective isolation

of purified PAX7+ cells from human muscle. We anticipate

that this technology will facilitate novel insights into hu-

man muscle homeostasis, aging, and disease. Phenotypi-

cally distinct cells with myogenic progenitor function also

represent promising targets for muscle regenerative cell

therapy and could conceivably be used to treat a variety of

diseases, includingmuscular dystrophyandmuscle injuries.
EXPERIMENTAL PROCEDURES

Human Skeletal Muscle Specimens
Human fetal muscle was obtained from 20- to 23-week-gestation

fetuses and adult muscle from deceased volunteers or discarded

during surgery (Table S1). Use of human tissues was approved by

relevant institutional review boards.
Isolation of hMFA Cells
hMFA cells were isolated by two-step enzymatic digestion and

mechanical dissociation as per previously published protocols

(Sherwood et al., 2004).
Antibody Staining and FACS
Primary and secondary antibodies used for FACS are listed in Table

S7. All cell populations were sorted twice to maximize purity.
PAX7 IF and Quantification
hMFA cell subsetswere sorted directly into 40 ml of PBS spotted on a

glass slide (5 3 103 cells per slide) according to protocols adapted

from (Ema et al., 2006). Sorted cells were stained with PAX7

(DSHB, 10 mg/ml).
Myogenic Differentiation Assay
hMFA cell subsets were sorted in 96-well plates, expanded in

myogenic growth medium for 7 days, transitioned into differenti-

ation medium for 4–5 days, and fixed and stained with DESMIN

antibody (clone D33, M0760, titer 1:50; Dako).
Adipogenic Differentiation Assay
hMFA cell subsetswere sorted in 96-well plates, expanded in adipo-

genic growth medium until confluent (13–14 days), transitioned

into adipogenic inductionmedium for 3 days, placed in differenti-

ationmedium for 4 days, and fixed and stained with ORO (Sigma).
Osteogenic Differentiation Assay
hMFA cell subsets were sorted in 96-well plates, expanded in prea-

dipocyte medium (PM-1, ZenBio) + 25 ng/ml basic fibroblast

growth factor (Sigma) until confluent (13–14 days), transitioned

into osteoblast differentiation medium (OB-1, ZenBio) for

14 days, and fixed and stained with 2% AR (Sigma).
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Clonal Cell Culture
Fetal hMFA cell subpopulations were sorted at 1 cell per well in

96-well plates in myogenic growth medium. After 9–10 days, the

number of wells with visible cell growth was determined. Cells

were kept in myogenic growth conditions until confluent and

passaged into myogenic or osteogenic differentiation assays.
Transplantation Studies
NSGmice (Jackson Laboratory) were bred andmaintained at Joslin

DiabetesCenter under Institutional AnimalCare andUseCommit-

tee-approved protocols. The tibialis anterior (TA) muscle of 6- to

8-week-old NSG mice was conditioned 24 hr prior to transplanta-

tion by injection of 25 ml (0.03 mg/ml) of Naja mossambica

mossambica cardiotoxin (CTX, Sigma). Recipient muscles were

harvested 3–8 weeks after transplantation. Engraftment was evalu-

ated by IF staining of 7 mm sections for h-SPECTRIN (human

species-specific) and DYSTROPHIN. Tissue was blocked using

Papain-digested RAM antibodies supplemented with goat Fc anti-

bodies at 5 mg/ml and 5% fetal bovine serum according to previ-

ously published protocols (Ehrhardt et al., 2007).
Microarray Analysis
Total RNA was extracted using TRIzol labeled and hybridized to

Affymetrix microarrays (Human Genome U133 Plus 2.0). Raw

data were normalized and differentially regulated probesets were

identified using GenePattern. Hierarchical clustering was per-

formed in GenePattern (Broad Institute), PCA using 3D-PCA, and

pathway analysis using Ingenuity.
PCR
Total RNA was extracted using TRIzol, reverse transcribed using

Superscript III First-Strand Synthesis System (Invitrogen). qRT-

PCR was performed using an AV7900 PCR system (Applied Bio-

systems) and TaqMan Gene Expression Assays (Invitrogen).
Statistics
Statistical analysis was performed using two-tailed Student’s t test

for unpaired data when appropriate. p values are indicated with

asterisks (*p < 0.05, **p < 0.001, and ***p < 0.0001) and NS (not

significant).

For additional details regarding experimental procedures, please

see the Supplemental Experimental Procedures.
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The microarray data reported in this paper were deposited in

the NCBI Gene Expression Omnibus under accession number
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SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, seven figures, and seven tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2013.12.006.
ors

http://dx.doi.org/10.1016/j.stemcr.2013.12.006
http://dx.doi.org/10.1016/j.stemcr.2013.12.006


Stem Cell Reports
FACS Isolation of Progenitors from Human Muscle
ACKNOWLEDGMENTS

We thank Perrin Larton and her staff at Advanced Bioscience

Resources (ABR, Alameda, CA) as well as the staff at the National

Development and Research Institutes (NDRI, Philadelphia, PA).

We thank A.Wakabayashi, G. Buruzula, and J. LaVecchio at Joslin’s

HSCI/DRC Flow Cytometry Core (NIH P30DK036836), Katelyn

Hughes at Joslin’s DRC Genomics Core (NIH P30DK036836), the

Biopolymers Facility Service at Harvard Medical School for

BioAnalyzer evaluation of RNA, and C. Vernochet for assistance

with adipogenic and osteogenic differentiation assays. This work

was funded in part by a pilot grant from the Boston Claude

D. Pepper Center (NIH 5P30AG031679 to S.H.) and grants from

P.A.L.S. Bermuda/St. Baldrick’s (to S.H.); by grants from the Bur-

roughs-Welcome Fund, Harvard Stem Cell Institute, and Beckman

Foundation; and by a Stand Up To Cancer-American Association

for Cancer Research Innovative Research Grant (SU2C-AACR-

IRG1111) (to A.J.W.). A.C. conducted this study as partial fulfill-

ment of her PhD in Molecular Medicine, Program in Preventive

and Predictive Medicine, San Raffaele University, Milan, Italy.

A.J.W. is an Early Career Scientist of the Howard Hughes Medical

Institute. Content is solely the responsibility of the authors and

does not necessarily represent the official views of the NIH or other

funding agencies.

Received: May 5, 2013

Revised: December 4, 2013

Accepted: December 5, 2013

Published: January 9, 2014
REFERENCES

Andukuri, A., Sohn, Y.D., Anakwenze, C.P., Lim, D.J., Brott, B.C.,

Yoon, Y.S., and Jun, H.W. (2013). Enhanced human endothelial

progenitor cell adhesion and differentiation by a bioinspired

multifunctional nanomatrix. Tissue Eng. Part C Methods 19,

375–385.

Beauchamp, J.R., Heslop, L., Yu, D.S., Tajbakhsh, S., Kelly, R.G.,

Wernig, A., Buckingham, M.E., Partridge, T.A., and Zammit, P.S.

(2000). Expression of CD34 and Myf5 defines the majority of

quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151,

1221–1234.

Berry, R., and Rodeheffer, M.S. (2013). Characterization of the

adipocyte cellular lineage in vivo. Nat. Cell Biol. 15, 302–308.

Bosnakovski, D., Xu, Z., Li, W., Thet, S., Cleaver, O., Perlingeiro,

R.C., and Kyba, M. (2008). Prospective isolation of skeletal muscle

stem cells with a Pax7 reporter. Stem Cells 26, 3194–3204.

Bulfield, G., Siller, W.G., Wight, P.A., and Moore, K.J. (1984).

X chromosome-linked muscular dystrophy (mdx) in the mouse.

Proc. Natl. Acad. Sci. USA 81, 1189–1192.

Cerletti, M., Jurga, S., Witczak, C.A., Hirshman, M.F., Shadrach,

J.L., Goodyear, L.J., andWagers, A.J. (2008). Highly efficient, func-

tional engraftment of skeletal muscle stem cells in dystrophic

muscles. Cell 134, 37–47.

Cerletti, M., Jang, Y.C., Finley, L.W., Haigis, M.C., andWagers, A.J.

(2012). Short-term calorie restriction enhances skeletal muscle

stem cell function. Cell Stem Cell 10, 515–519.
Stem C
Chakkalakal, J.V., Jones, K.M., Basson,M.A., and Brack, A.S. (2012).

The aged niche disrupts muscle stem cell quiescence. Nature 490,

355–360.

Conboy, I.M., Conboy, M.J., Smythe, G.M., and Rando, T.A.

(2003). Notch-mediated restoration of regenerative potential to

aged muscle. Science 302, 1575–1577.

Conboy, M.J., Cerletti, M., Wagers, A.J., and Conboy, I.M. (2010).

Immuno-analysis and FACS sorting of adult muscle fiber-associ-

ated stem/precursor cells. Methods Mol. Biol. 621, 165–173.

Crisan,M., Casteilla, L., Lehr, L., Carmona,M., Paoloni-Giacobino,
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