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Observation of non-Abelian statistics for the e/4 quasiparticles in the ν = 5
2

fractional quantum Hall state
remains an outstanding experimental problem. The non-Abelian statistics are linked to the presence of additional
low energy states in a system with localised quasiparticles, and hence an additional low-temperature entropy.
Recent experiments, which detect changes in the number of quasiparticles trapped in a local potential well as
a function of an applied gate voltage, VG, provide a possibility for measuring this entropy, if carried out over
a suitable range of temperatures, T . We present a microscopic model for quasiparticles in a potential well
and study the effects of non-Abelian statistics on the charge stability diagram in the VG − T plane, including
broadening at finite temperature. We predict a measurable slope for the first quasiparticle charging line, and an
even-odd effect in the diagram, which is a signature of non-Abelian statistics.

PACS numbers: 73.43.Cd, 05.30.Pr, 71.10.Pm

The unambiguous observation of particles obeying non-
Abelian statistics remains an outstanding experimental chal-
lenge in condensed matter physics. The Moore-Read frac-
tional quantum Hall state (FQH) [1], believed to be realized
at filling fraction ν = 5/2, is one of the most promising can-
didate phases to exhibit such quasiparticles (QPs) [2]. The
Moore-Read state is predicted to support QPs of charge±e/4;
forN such QPs, localized and well separated from each other,
there should be a nearly degenerate set of ground states, with
multiplicity 2N/2−1. For temperature T larger than the split-
ting of these ground states, but smaller than the gap to higher
excited states, this degeneracy contributes an effective entropy
to the system, the non-Abelian entropy.

Non-Abelian statistics predicts that pairs of QPs can inter-
act to form two distinct states, or fusion channels, f , com-
monly denoted as f = 1, ψ. In a finite system, the two states
have different energies, and the ground state is unique; for T
below the splitting between the two, the non-Abelian entropy
is lost.
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FIG. 1. Cartoon charge stability diagram, showing only peak centres
(no broadening). Vertical axis is temperature T ; horizontal axis µ is
the chemical potential for charged QPs, controlled in experiment by a
gate potential. Red dashed lines are for Abelian particles. Blue solid
lines correspond to non-Abelian QPs in a tightly confining well. ∆N

is the gap to excited states for N particles, and sets scale for other
entropic effects. Notice even-odd effect for non-Abelian anyons.

There are several recent theoretical proposals for tech-

niques to observe this entropy through bulk measurement
of thermodynamic and transport properties [3–6]. Recent
measurements in this direction of thermoelectric response at
ν = 5/2 are encouraging [7]. These theoretical proposals
assume that all QPs are well separated, such that degeneracy-
lifting interactions are weak or non-existent. However, recent
local electronic charge-sensing measurements, using a single-
electron transistor (SET) [8], suggest that QPs tend to trap in
local potential wells due to electrostatic disorder, which may
be tightly confining and contain more than one QP. Confined
QPs split their degeneracy through two means: Majorana ex-
change [9, 10], present even for stationary QPs, and as we
show here, an orbital splitting from interchange of the charged
QPs, which can dominate in special cases.

In this letter, we study the charging spectra of local quasi-
particle traps. Such traps may be induced by disorder or de-
fined by gates. Their spectra reflect the QP statistics, just as
electronic dot spectra reflect the spin and fermionic statistics
of electrons. We show that low-frequency SET charge-sensing
measurements, which provide only thermally-averaged infor-
mation regarding the dot spectra, are sufficient for extracting
non-Abelian signatures. At low but experimentally accessible
T , we predict a robust temperature evolution of theN = 0−1
transition, and an even-odd effect in the evolution of the charg-
ing spectrum for several non-Abelian anyons. This effect
should be visible for T below the relevant gaps to excited
states for N particles, which we calculate for N = 1, 2.

The experiments of [8] measure the change in potential at
the SET induced by a change δVG in the potential applied to
a backgate on the sample. If there is a single disorder-induced
well close to the SET, the measured signal is inversely propor-
tional to the compressibility of the well, κ = ∂〈N〉

∂µ , where µ
is the QP chemical potential in the vicinity of the well. For
an isolated well, the relation between δVG and the change
in µ should be linear, but the constant of proportionality is
geometry-dependent, as screening depends on the local en-
vironment as well as the distance to the gate [11]. If there
are several wells nearby, their signals are weighted accord-
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ing to the strength of their coupling to the SET; in this case,
Coulomb interactions between wells need also be taken into
account.

At T = 0, the compressibility has a δ-function peak at a
crossing of energy levels betweenN andN+1 QPs in a well.
At finite T , the peak broadens and may shift as a function of µ
due to entropy effects. The simplest case to consider is an iso-
lated well at the transition from N = 0 to N = 1, or slightly
more involved, from one to two. At higher occupation num-
bers, we give qualitative arguments for the stability diagram.
We examine both circular and elliptical traps, and account for
temperature effects including broadening and excited states.
In our model, e/4 QPs are represented as interacting charged
particles in a magnetic field, confined to the lowest Landau
level (LLL), with non-Abelian statistics. The interaction is
Coulomb, supplemented by an interaction VX(r) due to the
exchange of Majorana fermions.

Qualitative Picture We begin with the charging diagram
for Abelian particles in a well, to contrast it with the non-
Abelian case. For simplicity of presentation, we consider
varying only the QP chemical potential, although as discussed
below, local gating will be required to access the full charg-
ing spectrum. The well sits in a larger quantum Hall state
containing other distant wells, which provide a reservoir for
QPs. At T = 0, as a function of chemical potential, a series
of peaks in the compressibility appear, corresponding to indi-
vidual charging events in the well. The spacing of these peaks
defines the charging energy, U(N). As T increases, the peak
centres evolve vertically in the charging diagram (red dashed
lines in Fig 1), until T reaches the minimum excitation en-
ergy, ∆N , set by the excited states within the well. Above this
energy, the curve deviates from a straight line due to entropic
effects. The peaks broaden linearly with T for both Abelian
and non-Abelian QPs.

When several non-Abelian QPs occupy a tightly confining
well, they uniquely fuse at low energies. This produces a dis-
tinct experimental signature - the even-odd effect. As high-
lighted in [4], the density dependence of the zero-temperature
entropy produces a distinct signature in the inverse compress-
ibility of bulk samples at low T . In local traps with dis-
crete QP number, the difference in zero-temperature entropy
∆S between adjacent number states produces a related low-
T signature in the charge stability diagram: the slope of the
charge transition line in the µ − T plane is −1/∆S. The
first QP placed in the well contributes SNA = ln 2/2 to the
non-Abelian entropy (kB = 1), or equivalently adds a

√
2

degeneracy; thus, the N = 0 − 1 transition line has slope
−2/ ln 2 in the µ − T plane as T → 0. A second QP fuses
uniquely with the first QP into the 1 or ψ channel and the
non-Abelian entropy is extinguished, ∆S = − ln 2/2. Thus,
as T increases from zero, the N = 1 state becomes entropi-
cally more favourable than the N = 2 state, and the transition
line has slope +2/ ln 2 (blue solid lines in Fig 1). This even-
odd effect persists as the well charges: odd numbers of parti-
cles fuse into the non-Abelian σ-channel, while even numbers
uniquely fuse into either the Abelian 1 or ψ channels, as long

as T remains below the splitting between these two channels.
If the splitting between channels is smaller than ∆N , there
exists an intermediate regime, in which the degeneracy is pre-
served and the non-Abelian entropy increases by ln 2/2 with
every additional particle, and all lines have parallel negative
slopes. A similar effect for electrons due to spin degeneracy
was predicted and seen in quantum dots at B = 0 [12, 13].

For wells far apart compared to the magnetic length, the
rate, δwell/~ of Majorana exchange between them falls off ex-
ponentially in their separation. We therefore consider charg-
ing lines for temperatures T � δwell, assumed zero for an
isolated well. In this limit there is no fusion-channel splitting
between wells, and each independently exhibits the even-odd
effect. However, the charging spectra are not completely in-
dependent due to capacitive coupling. In an experiment sen-
sitive to multiple disorder-induced wells, the charging spectra
of the wells appear overlaid with unknown offsets making the
even-odd effect more difficult to observe, without first asso-
ciating the various peaks to their respective wells. Experi-
ments [8, 14, 15] suggest that determining such associations
is possible.

Equilibration Although QPs are locally trapped, the equi-
librium model we present requires that the system explores
the degenerate ground state manifold faster than the measure-
ment time texp of the charge-sensing experiments. This time
is determined by the rate of change of the gate voltage, typ-
ically texp ∼ 0.1s. We estimate the equilibration time due
to thermal excitations as tT ∼ 10−4s � texp, meeting the re-
quirement [11]. Moreover, the observed changes in the charge
state of the studied well during experiments [8] imply that QPs
hop freely between wells on the time scale texp. Assuming the
hopping processes have a stochastic component, they will nat-
urally lead to braiding of QPs from different wells.

Quantitative Picture Returning to a single well in a large
bath, we present a model for calculating the charging diagram.
The partition function is

Z =
∑
N

g(N)e−β(F (N,T )−µN), (1)

where β = 1/T , the internal free energy of N -particle states
in the well is F (N,T ), and

g(N) =

{ √
2 N odd

1 N even
(2)

captures the non-Abelian degeneracy associated with net fu-
sion within the well. In a well where QPs are close, such
that all other fusion-degeneracies are split by energies larger
than T , we take F (N,T ) ≈ F (N, 0) for T � ∆N , the
gap to excitations. In principle, however, for a wide well
where electron-electron interactions localise the QPs further
apart, an intermediate regime can exist in which the topolog-
ical degeneracies are not significantly split and F (N,T ) ≈
F (N, 0) − T bN2 c ln 2, where b·c denotes the integer part, for
temperatures up to the gap ∆N .

The compressibility follows from the partition function. To
leading order near the N − 1 to N charge transition at the
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critical chemical potential, µN0 ≡ F (N, 0)− F (N − 1, 0),

κ = β

g(N)
g(N−1)e

β(δµ−∆F )(
1 + g(N)

g(N−1)e
β(δµ−∆F )

)2 , (3)

where δµ = µ−µN0 and ∆F = F (N,T )−F (N−1, T )−µN0 .
We differentiate with respect to δµ to find the centre of the
peak: δµmax = T ln (g(N − 1)/g(N)) + ∆F . For a tightly
confining circular well at low T , for which ∆F = 0, this
gives δµmax = ±(T/2) ln 2, which confirms that the charg-
ing line slopes alternate sign as a function of the parity of N .
In the intermediate regime, the slope is negative for all N .
The peak height decreases with T as κmax ∼ 1/4T , while the
full-width-half-max (FWHM) increases with T due to num-
ber fluctuations as FWHM ∼ 2T ln(3 + 2

√
2), roughly ten

times as fast as the shift in position. Nevertheless, tracing
the peak should be possible if measurements are sufficiently
accurate. In the experimental regime of interest, the charg-
ing energy U(N) = µN0 − µN−1

0 � T , so the peaks remain
distinguishable. The key input to the above statistical model
is the microcanonical low-energy spectra of fixed numbers of
QPs in a well, which we now calculate.

One Particle For a particle in an elliptical harmonic well,

Vtrap =
1

2
k
(
x2 + αy2

)
, (4)

where k is the spring constant, and α controls the eccen-
tricity (α = 1 defines a circular trap), the level-spacing is
∆1 = k

√
αl∗B

2, where l∗B =
√
~/e∗B is the effective mag-

netic length for QPs in a magnetic field B. At finite T , this
produces an internal free energy,

F (1, T ) = T ln(1− e−∆1/T ). (5)

This free energy decreases weakly with T for T < ∆1, only
significantly correcting the linear charging curve for T � ∆1,
as shown in figure 1.

Two Particles As the fusion channel, f , of two orbiting
non-Abelian anyons is conserved, the orbital dynamics may
be treated separately in each f -sector. This reduces to the
dynamics of Abelian anyons whose statistical angle θ de-
pends on the fusion sector. For Ising anyons, θ1 = 0 and
θψ = π/2 [16]. To model two such anyons in a well, each
with charge e∗ = e/4, we write the Hamiltonian for a pair of
bosons with a statistical gauge field:

H =
1

2m

2∑
i=1

(
~pi − ~~afi − e

∗ ~Ai
)2

+ Vtrap(~ri)+ (6)

+ VI(~r1 − ~r2) + V fX(~r1 − ~r2).

The first term contains the electromagnetic vector potential
~Ai, corresponding to a uniform external B-field, as well as a
statistical gauge field

(
afx, a

f
y

)
=

θf
πr2 (y,−x), which binds a

flux tube of strength θf to each quasiparticle, and m is the ef-
fective QP mass. We project into the LLL, takingm→ 0. The

coordinates in ~ai are relative to the other particle. We assume
that the QPs interact via a Coulomb interaction, VI = e∗2

4πεr ,
where ε ≡ εrε0 is the electric permittivity of the material. This
approximation is valid assuming that QPs do not come within
l∗B of each other. VX is the direct energy splitting of the fusion
channels due to virtual exchange of Majorana fermions. It is
related to the fusion channel splitting discussed in [9, 10], and
should consist of an exponential decay and oscillations, each
on the order of several l∗B . For circular wells, the behaviour
of Abelian anyons has been treated previously [17–20]. We
summarise key results, and include corrections due to eccen-
tricity.

In the symmetric gauge for harmonic traps, the centre-of-
mass (CM) and relative (REL) coordinates decouple. In the
CM coordinate, the statistical gauge field ~af falls out, leaving
a single particle projected into the LLL in a harmonic well.
For the REL coordinate, the particle is confined to a half-plane
with the origin removed, and ~af remains [18]. We change the
gauge, so that ~af = 0, giving a twisted boundary condition,
ψREL(r, π) = eiθfψREL(r, 0). The potential landscape in
the half-plane is defined by strong Coulomb repulsion near the
origin together with the harmonic trap, Vtrap +VI , for VX = 0.
The twisted periodic boundary conditions allow only angular
momenta ` = 2n + θ/π, for n integer. The REL-coordinate
wave-functions in the LLL have a basis given by |`〉,

〈z|`〉 = N
− 1

2

` z`e−|z|
2/4(2l∗B

2), (7)

where z = x + iy and N` is a normalisation constant on the
half-plane. In this basis, we can diagonalise to find the two-
particle spectrum. The potential has diagonal terms, as well
as an off-diagonal term only when circular symmetry is bro-
ken [11].

Circular Well We assume VX = 0 initially, and note that
the CM coordinate behaves just like the single particle case
with ∆CM = ∆1. The lowest energy gap ∆f

R in the relative
coordinate within a fusion channel f can be found by tak-
ing differences between adjacent `-states near the minimum,
obtained by diagonalising the Hamiltonian. We define the pa-
rameter r0 = (e∗2/2πεk)1/3, the radial position of the min-
imum of the potential. This splitting ∆f

R oscillates with r0

at fixed magnetic field with an amplitude that decays in the
large-well limit, r0 � l∗B , as

∆f
R . 12∆1

r2
0

l∗B
2 = 24

e∗2

4πε

l∗B
4

r5
0

, (8)

The other relevant gap for the relative coordinate is the energy
difference E1ψ = |E1

0 −E
ψ
0 | between lowest energy states in

the 1 and ψ channels. With VX = 0, the splitting between fu-
sion channels is an interchange effect, which follows from the
allowed angular momenta in each channel; in particular, E1ψ

behaves similarly to ∆f
R with a maximum oscillation bounded

by the power law 9
2
e∗2

4πε
l∗B

4

r50
, which is approximately 20% of

the amplitude of ∆f
R. For T < E1ψ and ∆f

R, the slope of
the 1-2 transition in the µ−T plane is positive, exhibiting the
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even-odd effect. Clearly, intra-channel entropy washes out the
effect for T > ∆f

R. As r0 varies, E1ψ will oscillate in sign,
and can be arbitrarily small if r0 is close to a zero-crossing. If
E1ψ < T < ∆f

R, the 0-1 and 1-2 charging lines are parallel
with negative slope −2/ ln 2 [11].

Non-Abelian QPs at finite separation can exchange Majo-
rana fermions, leading to an additional fusion channel split-
ting. Unlike the orbital contribution, this splitting occurs even
when QPs are localised. Using a variational method to cal-
culate this energy splitting for particles on a sphere, it was
found to decay exponentially on the order of several magnetic
lengths, up to a numerical pre-factor of O(1) [10]. VX in
the Hamiltonian accounts for a splitting of this form. We do
not calculate VX explicitly, but note that while it dominates
the shift between fusion channel spectra in tightly confining
wells, it oscillates and decays exponentially as the well widens
and particle separation increases. In general, VX increases
E1ψ , promoting the even-odd effect over a larger T -range, and
making a regime of parallel charging lines less likely.

Anisotropic Well For anisotropic wells, again taking
VX = 0 initially, consider the relative coordinate for two
QPs. Starting from the circular well where QP orbits en-
circle the origin in the half-plane, as the eccentricity α in-
creases, the effective potential acquires a minimum on the
x-axis, at x = r0, and a saddle point on the y axis at
y = r0/α

1/3. For any given α > 1, the wavefunction be-
comes effectively localised near the potential minimum for
(r0/l

∗
B)2 > 2√

3

√
α−1

(α1/3−1)
≡ λ(α). This is when the lowest-

energy state near the minimum has energy lower than the sad-
dle point potential. As α→ 1, λ(α) diverges as (α− 1)−1/2,
confirming that for a circular well, QPs are not localised. Ec-
centricity breaks any accidental degeneracies which arise in
the circular potential near r0, and modifies the spectrum of
the well. For low eccentricities, the degeneracy breaking can
increase or decrease the orbital splitting. For large enough
α, the QPs are trapped at opposite ends of the well, and no
longer orbit each other, except for quantum tunneling across
the saddle point. In a saddle point tunneling model, the or-
bital exchange rate, R, in the large well limit is Gaussian in
the well-size, R ≈ kl∗B

2 exp[−α−1/2λ(α)−1c(α) (r0/l
∗
B)

2
],

where c(α) depends weakly on α and goes to a constant of or-
der unity as α→ 1 [11]. This expression may be obtained by
estimating the potential as Harmonic near the minimum, and
using a WKB type calculation of the tunneling of a particle
near a quadratic saddle point in the LLL, as in [21]. Increas-
ing α also has the effect of raising the energy of the ground
state, by increasing the harmonic frequency of the trap.

For anisotropic wells with VX 6= 0, the exchange effect nat-
urally dominates the splitting at large r0, since the exchange
of neutral Majorana fermions decays exponentially while the
interchange of localised charged particles in a magnetic field
decays as a Gaussian. We recover the even-odd effect for T
below this splitting, regardless of QP localisation.

Energy Estimates A simple model producing a charge
trap is provided by considering a point-like gate, a distance

d above the 2DEG. A charge +|e| on this gate produces an
effective circular harmonic trap in the plane with spring con-
stant k = |ee∗|

4πεd3 . Using εr = 13 for GaAs/AlGaAs quan-
tum wells, B = 3.5T and d = 100nm, we find r0 = 63nm.
The charging energy is 1.6K, and the gap to single parti-
cle excited states in the well is ∆1 ≈ 0.24K, preserving
the slope of −2/ ln 2 throughout the accessible experimental
range 20mK . T . 80mK. The 1-channel ground state has
lower energy than the ψ-channel by E1ψ ≈ 29mK in the ab-
sence of VX , and the intrachannel gap ∆1

R ≈ 220mK, above
the accessible range. As r0/l

∗
B ≈ 2.3, we expect the contri-

bution of VX to enhance the even-odd effect. Since the cal-
culated charging energy is larger than the energy gap for the
ν = 5/2 plateau, it is probably impossible to observe multiple
transitions in a single well simply by changing the voltage on
a back gate. However, applying a voltage to a point-like gate
on top of the sample can change the depth of a well by a large
amount without inducing QPs in the surrounding 5/2 state.

To further enhance the even-odd effect, all energy gaps need
to be increased. Increasing the charge on a point-gate or re-
ducing the setback distance dmakes the confining trap tighter.
Increasing the magnetic length – by lowering B while main-
taining the filling fraction – increases all of the relevant split-
tings in a fixed trap geometry.

Conclusion The detection of non-Abelian QPs through
local charge-sensing measurements falls within realistic ex-
perimental parameters. A sensitive compressibility measure-
ment could extract slopes reflecting the degeneracies of the
ground state. Additional control over confinement potentials
will allow for even more conclusive experiments.
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Appendix

Equilibration

In the text, we estimate the equilibration time due to thermal
excitation to be tT ∼ 10−4s � texp. To obtain this estimate,
we take tT = ~/ET, where ET ∼ ∆5/2 exp

(
−∆5/2/kBT

)
is an Arrhenius estimate of thermally-induced inter-well hop-
ping. Taking an activation gap of ≈ 0.25K and a tempera-
ture of 20mK, we obtain tT ∼ 10−4s. texp is an experimen-
tal parameter, typically of order 10 Hz in existing measure-
ments [8].

Matrix Elements

The normalisation constant is:

〈`|`〉 =
1

N`

∫ ∞
0

rdr

∫ π

0

dφ

(
r

lB

)2l

e−r
2/4l2B

!
= 1

⇒ N` = π2`l2B`!

The basis states are proportional to e−r
2/8l2B as opposed to

the usual e−r
2/4l2B because r is the relative coordinate. The

potential has diagonal terms, as well as an off-diagonal term
only when circular symmetry is broken:

〈`|V RELtrap |`〉 =
(1 + α)

2
kl∗B

2(`+ 1)

〈`|V RELtrap |`+ 2〉 =
(1− α)

4
l∗B

2k
√

(`+ 2)(`+ 1)

〈`|VI |`〉 =
e∗2

4πεl∗B2

Γ[`+ 1/2]

Γ[`+ 1]
. (9)

Saddle Point

We demonstrate how to obtain the tunneling rate through a
saddle point stated in the paper. In the REL coordinate for two
particles, the potential is:

V (r) =
ζ

r
+

1

2

(
k

2

)(
x2 + αy2

)
, (10)

with ζ = e∗2/4πε and effective magnetic length
√

2l∗B . In the
circular case, α = 1, the minimum is circularly symmetric at
r0 = (2ζ/k)1/3. For α 6= 1, in the x-y plane, (r0, 0) is still a
minimum, and (0, rs) is a saddle point, with rs = r0/(α

1/3).
Expanding to quadratic order near the minimum and the sad-
dle point gives:

V (x− r0, y) = V (r0) +
1

2

3k

2

[
δx2 +

(
α

3
− 1

3

)
δy2

]
,

V (0, y − rs) = V (rs) +
1

2

3kα

2

[(
1

3α
− 1

3

)
δx2 + δy2

]
,

(11)
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where as expected the transverse components vanish in the
circular case, and the energy levels near r0 are En = V (r0) +
3kl∗B

2
√

(α− 1)/3(n + 1/2). We compare the ground state
near r0 to the height of the saddle point, V (rs), namely:

δE = V (rs)− E0 =
3k

2

[
1

2
r2
0(α1/3 − 1)− l∗B

2

√
α− 1

3

]
.

(12)
Solving for δE > 0 gives the condition (r0/l

∗
B)2 > λ(α) de-

scribed in the text. To find the tunneling rate through the sad-
dle point, we use the expression for the transmission through
a saddle point potential VSP (x, y) = −Uxx2 + Uyy

2 given
in [21], T = (1 + exp(−πE))−1, where E = −δE/ε1,
ε1 =

√
UxUy/mωc in the large B-limit, and ωc is the cy-

clotron frequency. For the saddle point under consideration,
mωc = 1/2l∗B

2, and ε1 = k
2

√
3α(α− 1)l∗B

2, giving:

E =
−3
[

1
2r

2
0(α1/3 − 1)− l∗B

2
√

α−1
3

]
√

3α(α− 1)l∗B
2

, (13)

which reduces to E ∼ −1
2
√

3α

(
r0
l∗B

)2
α1/3−1√
α−1

for large r0/l
∗
B ,

and in this limit, T ∼ exp(πE). To convert from transmission
probability to a transmission rate, we take the velocity of a
QP about its orbit as the ratio of the gradient of the potential
to the magnetic field, and dividing by the circumference of an
orbit near the minimum, we find the frequency of the orbit is
∼ kl∗B

2, which, multiplied by T , gives the rate R reported in
the main text.

2-particle Splittings

Maximum Values

The maximum values for the gaps ∆f and E1ψ in the two-
particle REL spectrum are given in the text. The pre-factors
are found by expanding the potential near the minimum at r0,
finding the lowest-energy and first excited states in terms of
allowed angular momenta, and expanding terms as a function
of l∗B/r0 � 1. To find the angular momentum correspond-
ing to the lowest energy state, we use the relation r =

√
2`l∗B

to find `0, the (possibly not allowed) angular momentum cor-
responding to r0, we first find the allowed angular momenta
right above and below:

`− = 2b(`− θf/π)/2c+ θf/π (14)
`+ = 2(b(`− θf/π)/2c+ 1) + θf/π, (15)

where b·c is the integer floor function. Next, convert back to
positions corresponding to these momenta, and plug back into
the potential to check which state has lower energy. If `g is
the angular momentum of the ground state, then the angular
momentum of the first excited state is `1 = `g ± 2. This argu-
ment is sufficient for crudely extracting the large r0 behaviour
of the intra-channel gap ∆f . A similar calculation produces

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

ln(r0/`
∗
B)

−14

−13

−12

−11

−10

−9

−8

−7

−6

−5

ln
(E

1
ψ
/E

0
)

α = 1.

FIG. 2. log(E1ψ/E0) calculated numerically by exact diagonalisa-
tion, vs. log(r0/l

∗
B) for a circular well. A power law r−5

0 is also
plotted as a guide to the eye. E0 = 9

2
e∗2

4πε
1
l∗
B

, as described in the
paper below equation 8, with the r0/l∗B dependence factored out.

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

r0/`
∗
B

−16

−14

−12

−10

−8

−6

−4

−2

ln
(E

1
ψ
/E

c
)

α = 1.3

FIG. 3. log(E1ψ/Ec) calculated numerically by exact diagonalisa-
tion, vs. r0/l∗B for an elliptical well, with α = 1.3. A Gaussian
decay exp

(
−cr20

)
is also plotted as a guide to the eye. Ec = e∗2

4πε
1
l∗
B

is the Coulomb energy scale.

E1ψ . The decay of E1ψ is plotted in figure 2 for a circu-
lar well; the log-log plot demonstrates a power law decay as
r−5
0 . Figure 3 shows the decay of E1ψ for an elliptical well

with α = 1.3; the quadratic decay in a log plot confirms a
Gaussian form as expected from the saddle-point calculation.

Relations between κ , the local incompressibility, and the SET
signal.

Chemical Potential v. Backgate

In this letter, we calculate κ, the change in local average
number of QPs as a function of the local chemical potential of
the QPs. Charge stability diagrams are then drawn as a func-
tion of the QP chemical potential. The proposed SET mea-
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surements reveal the inverse compressibility by measuring the
change of the local electrostatic potential in the 2DEG as a
function of a global backgate voltage. The electrostatic poten-
tial is then converted to chemical potential of electrons, under
the assumption that electrochemical potential is held constant.
A capacitance model is used to convert backgate voltage to av-
erage electron density. The qualitative even-odd effect is in-
dependent of definitions, but the quantitative slope predicted
needs to be scaled to match experimental parameters.

Relation of the SET signal to the local incompressibility

We elaborate here on the relation between the local quasi-
particle compressibility, discussed in this paper, and the sig-
nal measured in an SET experiment, which is commonly de-
scribed as measuring the local electronic incompressibility.
Throughout the remainder of the appendix, we consider a
sample with its top surface at z = 0. A 2DEG is found a
distance d below the surface, and a backgate is placed a dis-
tance D below the 2DEG, at z = −(d+D). The SET will be
placed just above the sample surface, z = 0+.

A more precise description of the SET signal is that it mea-
sures ∂ΦSET/∂VG, where ΦSET is the electrostatic potential
at the SET, and VG is the back-gate voltage. In this measure-
ment, the electrochemical potential of the 2DEG is held fixed
at a voltage V , by connecting it to a metallic lead. (In ref [8],
the lead is grounded; i.e., the 2DEG is in equilibrium with a
ground surface at infinity, and we may take V = 0.) Further-
more,

δΦSET =

∫
d2~rK(~r − ~r0) δΦ(~r),

where Φ(~r) is the electrostatic potential at a point ~r just above
the plane of the 2DEG, inside the GaAs, ~r0 denotes the hori-
zontal location of the SET probe, and the precise form of the
kernel K depends on the height of the SET probe above the
semiconductor surface, the depth of the 2DEG, and dielectric
constant ε of the material. In general, the fluctuation in ΦSET

may be interpreted as a weighted spatial average of Φ within
a distance of the order of the SET-2DEG separation, d.

It is customary to define a local chemical potential for elec-
trons in the 2DEG, by

µe(~r) ≡ e[V − Φ(~r)],

where e < 0 is the electron charge. The change in the average
density of electrons in the 2DEG produced by a change in the
back-gate voltage is

δn̄ = −CδVG/e,

where C is an effective capacitance per unit area. Then, if
we define the local electronic incompressibility by γ(~r) ≡
∂µe(~r)/∂n̄, we see that

∂ΦSET

∂VG
=
C

e2

∫
d2~rK(~r − ~r0) γ(~r),

Moreover, if we define γ̄ as the spatial average of the local
incompressibility γ(~r), one finds

C−1 =
D

ε
+
γ̄

e2
,

where D is the distance to the back gate. We note that γ̄ will
be finite, even when the bulk of the system sits in the quantum
Hall plateau, due to the effects of changing quasiparticle pop-
ulations in wells whose depths are close to a critical value. In
practice, in the experimental geometry where D is the order
of a micrometer, the first term will be large compared to the
second, and C will be determined primarily by the geometric
capacitance.

Relation between the SET signal and the local quasiparticle
compressibility

As a consequence of Poisson’s equation, the value of Φ(~r)
will be directly affected by changes in the local electron den-
sity n(~r) . In the simplest case, we consider a situation where
there is a single chargeable potential well, surrounded by a
region of incompressible 5/2 state, in the area sensed by the
SET. Then changes in the local electron density result primar-
ily from changes in N , the quasiparticle occupation number
of the well. To a good approximation,

∂ΦSET

∂VG
≈ η(d)

δN

δVG
+ c1,

where η is the model-dependent potential at the SET from a
single QP, and c1 is a slowly varying number accounting for
the change in density in the rest of the sample beyond the well.

The quasiparticle chemical potential µ employed in our pa-
per is related in a complicated way to the local electron chem-
ical potential µe. Roughly,

δµ = −e∗δΦ̃

where Φ̃ is the electrostatic potential at the position of the
well, excluding any potential due to the presence of one or
more quasiparticles in the well. When the expectation value of
N is a rapidly varying quantity, there will be a very large dif-
ference between the variation in Φ̃ and the variation in Φ(~r).

In general, we expect that Φ̃ should depend smoothly on
the back-gate voltage VG. We may estimate this dependence
by assuming that the potential well is surrounded by an in-
compressible region of radius R, and that outside this region
we have a continuous medium characterized by a finite in-
compressibility γ̄, which we identify with the spatial average
of γ(~r) defined above. We shall assume that D is very large
compared to R and to the “screening length” ls ≡ γ̄ε/e2, but
we should still consider different values of the ratio R/ls. In
the case R > ls, analysis of the resulting electrostatics prob-
lem leads to a result

δΦ̃ ∼ c2δVGR/D
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where c2 is a constant of order unity. In the opposite limit,
ls > R, we find

δΦ̃ ∼ δVgls/D = δVGγ̄/Ce
2.

When the system is in the middle of a quantum Hall plateau,
we expect that γ̄ will be large, and we might expect to be in
the regime ls > R.

Finally we may put these results together to find the relation
between the SET signal and the quasiparticle compressibility
defined in the text. In the limit where ls > R, we have, ignor-
ing a smooth background contribution,

∂ΦSET

∂VG
≈ −

(
e∗

e

)2
ε γ̄ κ

D

η(d)

e∗
.

The above model can be generalized to a situation where
there are several wells beneath the SET tip, by choosing a
larger radius R within which there is no continuum back-
ground compressibility, and including explicitly the Coulomb
interactions between quasiparticles in different wells in this
region. In the simpler model we have replaced all wells by a
continuum, except for the one under consideration.

Calculation of η(d)

We calculate η(d) for a point-like SET, located an infinites-
imal distance above the sample surface, which is a distance d
from the 2DEG. The distance to the backgate,D is taken to be
much larger than d. We consider a QP of charge e∗ added to
the 2DEG in a bulk sample with permittivity ε, and we want to
know the potential at the SET, when the sample sits in vacuum

- i.e outside, permittivity is ε0. We have to solve the following
equations for an electric field ~E:

ε~∇ · ~E = ρ, z < 0

ε0~∇ · ~E = 0, z > 0

~∇× ~E = 0, everywhere,

with boundary conditions at the sample boundary (i.e. z =
0) of continuous ~E-fields in the x and y directions, and
lim
z→0+

ε0Ez = lim
z→0−

εEz . Place an image charge q′ at z =

d above the surface, and then using cylindrical coordinates
(r, φ, z), the potential at any point inside the sample is:

φ =
1

πε

(
e∗

R1
+

q′

R2

)
, z < 0, (16)

where R1 =
√
r2 + (d+ z)2, R2 =

√
r2 + (d− z)2. For

the region z > 0, which is where the SET is, there are no
charges, and the potential must therefore be a solution to
Laplace’s equation without singularities. The simplest solu-
tion is the potential from an effective charge q located at the
site of the QP e∗, giving a potential:

φ =
1

4πε0

q

R1
, z > 0. (17)

The solutions 16 and 17 can be matched at z = 0 and must
satisfy the boundary conditions, giving e∗− q′ = q and (e∗+
q′)/ε = q/ε0. This implies q = (2ε0/ε+ ε0) e∗. We thus find
the potential at the SET due to the QP to be:

η(d) =
1

4π

2

ε+ ε0

e∗

d
.

A very similar calculation can be found in section 4.4 in [22].
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