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Abstract

Topological insulators are a newly discovered phase of matter characterized by a gapped bulk

surrounded by novel conducting boundary states [1, 2, 3]. Since their theoretical discovery, these

materials have encouraged intense efforts to study their properties and capabilities. Among the

most striking results of this activity are proposals to engineer a new variety of superconductor at

the surfaces of topological insulators [4, 5]. These topological superconductors would be capable

of supporting localized Majorana fermions, particles whose braiding properties have been proposed

as the basis of a fault-tolerant quantum computer [6]. Despite the clear theoretical motivation, a

conclusive realization of topological superconductivity remains an outstanding experimental goal.

Here we present measurements of superconductivity induced in two-dimensional HgTe/HgCdTe

quantum wells, a material which becomes a quantum spin Hall insulator when the well width

exceeds dC = 6.3 nm [7]. In wells that are 7.5 nm wide, we find that supercurrents are confined to

the one-dimensional sample edges as the bulk density is depleted. However, when the well width is

decreased to 4.5 nm the edge supercurrents cannot be distinguished from those in the bulk. These

results provide evidence for superconductivity induced in the helical edges of the quantum spin Hall

effect, a promising step toward the demonstration of one-dimensional topological superconductivity.

Our results also provide a direct measurement of the widths of these edge channels, which range

from 180 nm to 408 nm.

Topological superconductors, like topological insulators, possess a bulk energy gap and gapless surface

states. In a topological superconductor, the surface states are predicted to manifest as zero-energy Majo-

rana fermions, fractionalized modes which pair to form conventional fermions. Due to their non-Abelian

braiding statistics, achieving control of these Majorana modes is desirable both fundamentally and for

1

ar
X

iv
:1

31
2.

25
59

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  9

 D
ec

 2
01

3



applications to quantum information processing. Proposals toward realizing Majorana fermions have

focused on their emergence within fractional quantum Hall states [8] and spinless p+ ip superconductors

[9], and on their direct engineering using s-wave superconductors combined with topological insulators

or semiconductors [10, 11]. Particularly appealing are implementations in one-dimensional (1D) sys-

tems, where Majorana modes would be localized to the ends of a wire. In such a 1D system, restriction

to a single spin degree of freedom combined with proximity to an s-wave superconductor would provide

the basis for topological superconductivity [12]. Effort in this direction has been advanced by studies

of nanowire systems [13, 14, 15, 16, 17, 18] and by excess current measurements on InAs/GaSb devices

[19]. Given the wide interest in Majorana fermions in one dimension, it is essential to expand the search

to other systems whose properties are suited toward their control.

An attractive route toward a 1D topological superconductor uses as its starting point the two-

dimensional (2D) quantum spin Hall (QSH) insulator. This topological phase of matter was recently

predicted [20, 21] and observed [22, 23] in HgTe/HgCdTe quantum wells thicker than a critical thickness

dC = 6.3 nm. Due to strong spin-orbit coupling the bulk bands of the system invert, crossing only at

the edges of the system to form 1D counterpropagating helical modes. Time-reversal symmetry ensures

protection of these modes against elastic backscattering over distances shorter than the coherence length

[24]. The helical nature of the edge modes makes them a particularly appealing path toward the real-

ization of a topological superconductor, due to the intrinsic elimination of their spin degree of freedom.

Here we report measurements of supercurrents confined to edge states in HgTe/HgCdTe quantum well

heterostructures, a critical step toward the demonstration of 1D topological superconductivity.

Our approach consists of a two-terminal Josephson junction, with a rectangular section of quantum

well located between two superconducting leads (Figure 1). At a given bulk carrier density, the presence

or absence of helical edge channels influences the supercurrent density profile across the width of the

junction. In the simplest case the supercurrent density is uniform throughout the device, and edge

channels are indistinguishable from bulk channels (Figure 1a). This behavior would be expected for a

non-topological junction (quantum well width smaller than dC), or in a topological junction (quantum

well width larger than dC) far from the bulk insulating regime.

In a topological junction, decreasing the bulk carrier density brings the device closer to the QSH

insulator regime (Figure 1b). Scanning SQUID measurements suggest that over a range of bulk densities

the QSH edge channels coexist with bulk states, and can carry considerably more edge current than

would be expected for a non-topological conductor [25]. In the two-terminal configuration, this helical

edge contribution appears as peaks in the supercurrent density at each edge. When the bulk density

becomes sufficiently low, these edge peaks are the only features in the supercurrent density (Figure 1c).
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Then the supercurrent is carried solely along the helical edges, and the system is in the regime of the

quantum spin Hall superconductor.

Placing such a Josephson junction in a perpendicular magnetic field B provides a way to measure

the supercurrent density in the quantum well. In general, the maximum supercurrent that can flow

through a Josephson junction is periodically modulated by a magnetic field. Typically, the period

of the modulation corresponds to the magnetic flux quantum Φ0 = h/2e. In our junctions this period

matches the area of the HgTe region plus half the area occupied by each contact, a result of the Meissner

effect. The particular shape of the critical current interference pattern depends on the phase-sensitive

summation of the supercurrents traversing the junction [26]. In the case of a symmetric supercurrent

distribution, this integral takes the simple form:

ImaxC (B) =
∣∣∣´∞−∞ dxJS(x) cos(2πLJBx/Φ0)

∣∣∣ .
Here LJ is the length of the junction along the direction of current, accounting for the magnetic flux

focusing from the contacts.

It is evident that different supercurrent densities JS(x) in the junction can give rise to different

interference patterns ImaxC (B). The flat supercurrent density of a trivial conductor corresponds to a

single-slit Fraunhofer pattern |(sin(πLJBW/Φ0))/(πLJBW/Φ0)|, characterized by a central lobe width

of 2Φ0 and side lobes decaying with 1/B dependence (Figure 1a). As helical edges emerge, this single-

slit interference evolves toward the more sinusoidal oscillation characteristic of a SQUID (Figure 1b).

The central lobe width shrinks to Φ0 when only edge supercurrents remain, with the side lobe decay

determined by the widths of the edge channels (Figure 1c). Measuring the dependence of ImaxC on

B therefore provides a convenient way to measure the distribution of supercurrent in a junction. To

quantitatively extract JS(x) from the measured quantity ImaxC (B) we follow an approach developed

by Dynes and Fulton, where nonzero ImaxC (B) minima are ascribed to an asymmetric supercurrent

distribution [27]. Although other effects may lead to nonzero minima in ImaxC (B), we consider here only

the possibility of an odd component in JS(x). Full details of the extraction procedure can be found in

the Supplementary Information.

To study how supercurrents flow in the QSH regime, we measure a Josephson junction consisting

of a 7.5 nm-wide quantum well contacted by titanium/aluminum leads. Our contact lengths are each

1 µm, and the contact separation is 800 nm. The junction width of 4 µm is defined by etched mesa

edges. A voltage VG applied to a global topgate allows us to tune the carrier density in the junction.

At each value of VG and B, the critical current ImaxC is determined by increasing the current through

the junction while monitoring the voltage across the leads. The behavior observed in this device is
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reproducable in several other similar junctions, as reported in the Supplementary Information.

As a function of the topgate voltage, the overall behavior of the junction evolves between two ex-

tremes. At more positive gate voltage and higher bulk density, the critical current envelope strongly

resembles a single-slit pattern (Figure 2a). This type of interference suggests a nearly uniform super-

current density throughout the sample, confirmed by transformation to the JS(x) picture (Figure 2b).

This nearly flat distribution indicates that the quantum well is in the high carrier density regime of an

essentially trivial conductor.

At more negative gate voltage and lower bulk density, the critical current envelope becomes close to

a sinusoidal oscillation (Figure 2c). The shift toward a SQUID-like interference pattern corresponds to

the development of sharp peaks in supercurrent density at the mesa edges (Figure 2d).

We can track this evolution in a single device by measuring the critical current envelope at a series

of gate voltages. As the topgate is varied from VG = 1.05 V to VG = −0.45 V, the maximum critical

current decreases from 505 nA to 5.7 nA. At the same time, the overall critical current behavior shows

a narrowing of the central interference lobe, from 2Φ0 at positive gate voltages to Φ0 at negative gate

voltages (Figure 3a,b). The side lobes additionally become continuously more pronounced, indicating

the confinement of supercurrent to channels at the edges of the junction (Figure 3c,d). The normal

resistance, measured at large bias to overcome superconductivity, increases from 160 Ω to ∼ 3, 000

Ω over the range of this transition. While it is possible to gate further toward depletion, the critical

currents become too small to reliably measure and no meaningful supercurrent density can be extracted.

At the most negative gate voltage, VG = −0.45 V, we can estimate the widths of the supercurrent-

carrying edge channels using a Gaussian lineshape (Figure 3f). Using this method, we find widths of

408 nm and 319 nm for the two edges. Our measurements of edge widths in another device with similar

dimensions, as well as one with a 2 µm mesa width, show edges as narrow as 180 nm (see Supplementary

Information). These width variations, as well as the normal state resistance that is low compared to

the resistance h/2e2 for two ballistic 1D channels, suggest the presence of additional edge modes or of

bulk modes coupled too weakly across the junction to carry supercurrent.

To provide further evidence that the observed edge supercurrents are topological in nature, we next

turn to a heterostructure with a quantum well width of 4.5 nm. In this device, the well width is smaller

than the critical width dC , so that the sample is not expected to enter the QSH regime. Near zero topgate

voltage and a normal resistance of 270 Ω, the critical current interference pattern has a maximum of

243 nA and resembles a single-slit envelope (4a,b). Upon energizing the topgate and decreasing the bulk

density, the single-slit pattern persists. In contrast to the wide well sample, this behavior corresponds to

a supercurrent density that remains distributed throughout the junction even as the normal resistance
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rises to several kΩ (Figure 4c-f). Because the edge supercurrents are present only when the well width

is larger than dC , we conclude that our observations provide evidence for induced superconductivity in

the helical QSH edge states.

The ability to induce supercurrents through the helical edges of a two-dimensional topological in-

sulator represents a significant step toward the realization of topological superconductivity. A one-

dimensional system with superconducting pairing and only one spin degree of freedom should be capable

of entering a topological phase, allowing Majorana zero-modes at its ends. The HgTe/HgCdTe system

represents a natural host for these effects, since its edge modes occur in the same manner as the paired

electrons of an s-wave superconductor. Our observation of supercurrents confined to the edges of topo-

logically nontrivial HgTe quantum wells distinguishes this system as an especially promising platform

in which to study the physics emerging from interactions among electrons in reduced dimensions.
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Figure 1: Expected two-terminal behavior in different regimes of a topological quantum well. a, When
the bulk of a sample is filled with charge carriers, supercurrent can flow uniformly across the junction,
corresponding to a flat supercurrent density JS(x). A perpendicular magnetic field B modulates the
maximum critical current ImaxC , resulting in a single-slit Fraunhofer interference pattern. b, As the bulk
carriers are depleted, the supercurrent density develops peaks due to the presence of the helical edges.
This evolution toward edge-dominated transport appears in the interference pattern as a narrowing
central lobe width and more pronounced side lobe amplitudes. c, When no bulk carriers remain, the
supercurrent is carried only along the helical edges. In this regime the interference results in a sinusoidal
double-slit pattern, with an overall decay in B that is determined by the width of the edge channels.
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Figure 2: General behavior observed in the topological Josephson junction. a, A map of the differ-
ential resistance across the junction, measured with the topgate at VG = 1.05 V, shows the single-slit
interference characteristic of a uniform supercurrent density. b, The supercurrent density, extracted for
VG = 1.05 V, is consistent with trivial charge transport throughout the bulk of the junction. c, When
the topgate voltage is lowered to VG = −0.425 V, the differential resistance shows a more sinusoidal
interference pattern. d, Using the inteference envelope measured at VG = −0.425 V, the supercurrent
density is clearly dominated by the contribution from the edges. In this regime almost no supercurrent
passes through the bulk.
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Figure 3: Continuous evolution with gating in the topological Josephson junction. a, As the topgate
is varied from VG = 1.05 V to VG = −0.45 V, the maximum critical current decreases from 505 nA
to 5.7 nA. b, Normalizing the interference patterns to their peak values reveals the evolution toward
sinusoidal interference. c, Using the envelope at each gate voltage, the evolution of the supercurrent
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transition from trivial to edge-dominated supercurrent transport can be clearly seen. e, This transition
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Figure 4: Continuous evolution with gating in the non-topological Josephson junction. a, As the topgate
is varied from VG = 0 V to VG = −1.5 V, the maximum critical current decreases from 243 nA to 4.4
nA. b, Normalizing the interference patterns to their peak values shows the stability of the single-
slit pattern over a wide range of gating. c, Using the envelope at each gate voltage, the evolution of
the supercurrent density can be visualized. d, Normalizing each supercurrent density to its maximum
value shows that the supercurrent remains distributed throughout the device. e, This roughly uniform
supercurrent distribution remains even as the device resistance increases from 215 Ω to almost 2,500 Ω.
f, A linetrace of the supercurrent density close to depletion further demonstrates that the supercurrent
flows throughout the device.
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Device characteristics

Devices were fabricated on two different HgTe/HgCdTe heterostructures, with layer structures shown

in Supplementary Figure 1. Wafer I contained a 7.5 nm quantum well with an electron density of

3.6× 1011/cm2 and a mobility of 300, 000 cm2/Vs. Wafer II contained a 4.5 nm quantum well with an

electron density of 3.5× 1011/cm2 and a mobility of 100, 000 cm2/Vs.

Device processing consisted of the following steps. Mesas were defined by etching with an Ar ion

source, and were 100 nm in height. Contacts consisted of 10 nm of titanium under 180 nm of aluminum,

deposited by thermal evaporation after in situ cleaning with an Ar ion source. A 50 nm layer of

aluminum oxide deposited by atomic layer deposition isolated the mesa and contacts from the topgate,

which consisted of 10 nm of titanium under 250 nm of gold. An SEM image of a junction is depicted in

Supplementary Figure 2.

Critical current measurement

Measurements were performed in a dilution refrigerator with a base temperature of 10 mK, and an

electron temperature of 20 mK measured using standard Coulomb blockade techniques. At each voltage

VG on the topgate, the magnetic field was stepped through B = 0 mT over a range of 8 mT. At each

value of magnetic field, the DC current IDC through a junction was then increased while monitoring

the DC voltage drop VDC across the junction. A voltage threshold was used to determine the critical

current; the point beyond which VDC was increasing and above the threshold voltage was recorded as

the critical current ImaxC (B, VG). Our threshold was set at 1 µV, several standard deviations above

the noise level. There is an artificial offset introduced by this method when the critical current falls to
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zero. In our analysis these artificial offset currents are reported as zero instead of the value given by the

threshold method.

Analysis of current density profile

In a Josephson junction immersed in a perpendicular magnetic field B, the magnitude of the maximum

critical current ImaxC (B) depends strongly on the supercurrent density between the leads. For example, a

uniform supercurrent density generates single-slit Fraunhofer interference, while a sinusoidal double-slit

interference pattern arises from two supercurrent channels enclosing the junction area. In the following

discussion we elaborate on this correspondence, outlining the quantitative way in which we convert our

measured interference patterns to their originating supercurrent density profiles. We assume throughout

that the current density varies only along the x direction, and that the supercurrent is directed along

the orthogonal y direction. The junction then has a length L in the y direction, and the leads each have

a length LAl. Our method follows the approach developed by Dynes and Fulton [27].

At a fixed magnetic field, the total critical current through the Josephson junction is a phase-

sensitive summation of supercurrent over the width of the junction. Suppose we have a supercurrent

density profile JS(x). Then its complex Fourier transform yields a complex critical current function

IC(β),

IC(β) =

ˆ ∞
−∞

dxJS(x)eiβx, (1)

where the normalized magnetic field unit β = 2π(L + LAl)B/Φ0, and the magnetic flux quantum

Φ0 = h/2e.

The experimentally observed ImaxC (β) is the magnitude of this summation: ImaxC (β)= |I C(β)|.

Therefore to extract the supercurrent density from ImaxC (β) it is necessary to first recover the complex

critical current IC(β).

This reduces to a particularly simple problem in the case of an even current density, JE(x), repre-

senting a symmetric distribution. The odd part of eiβx vanishes from the integral, and equation (1)

becomes IC(β) = IE =
´∞
−∞ dxJE(x) cosβx. Since JE(x) is real and positive, we see that IC(β) is

also real, and it typically alternates between positive and negative values at each zero-crossing. Because

ImaxC (β) = |IC(β)|, we can therefore recover the exact IC(β) by flipping the sign of every other lobe

of the observed ImaxC (β).

Now suppose that on top of this even function, the current distribution has a small but non-vanishing
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odd component, JO(x), with its Fourier transform IO(β) =
´∞
−∞ dxJO(x) sinβx. Then (1) gives

IC(β) = IE(β) + iIO(β). (2)

The observed critical current ImaxC (β) =
√
I2E(β) + I2O(β) is therefore dominated by IE(β) except at

its minima points. Approximately, IE(β) is obtained by multiplying ImaxC (β) with a flipping function

that switches sign between adjacent lobes of the envelope function (Supplementary Figures 3,4a). When

IE(β) is minimal, the odd part IO(β) dominates the critical current. IO(β) can then be approximated

by interpolating between the minima of ImaxC (β), and flipping sign between lobes (Supplementary Figure

4b). A Fourier transform of the resulting complex IC(β), over the sampling range b of β, yields the

current density profile (Supplementary Figure 5):

JS(x) =

∣∣∣∣∣ 1

2π

ˆ b/2

−b/2
dβIC(β)e−iβx

∣∣∣∣∣ . (3)

Gating of resistance and supercurrent

To study the variation of the normal resistance as a function of the bulk carrier density, we swept the

topgate voltage in the topological junction (main text) from VG = 1.05 V to VG = −3 V. Over this

gate range, the differential resistance was measured using an AC excitation of 5 nA. We additionally

maintained a constant DC voltage bias of 750 µV across the junction to avoid features related to

superconductivity. The resulting normal resistance measurement displays two relatively conductive

regimes separated by a resistance plateau peaking near 6-8 kΩ (Supplementary Figure 6a). This behavior

is consistent with previous transport measurements of the QSH effect, where the QSH insulator state

appears as a resistance peak when samples are gated from n-type to p-type regimes [22]. The value of the

resistance plateau is lower than the expected resistance h/2e2 for two ballistic 1D channels, suggesting

that additional bulk modes are present. Near VG = −3 V, our junction resistance saturates at 3 kΩ and

we observe no superconductivity. This behavior can be explained by the formation of an n-p-n junction,

where barriers between regions of different carrier type can block the transmission of supercurrent.

As we tune the topgate to more negative voltages, the maximum critical current of our junction

decreases (Figure 3a). The electron temperature T = 20 mK provides an estimate 2ekBT/~ ≈1 nA for

the smallest critical currents that can still be reliably measured. For the topological junction shown in

the main text (Figures 2, 3), this limit is reached above a topgate voltage of VG = −0.45 V. However,

even beyond this point clear magnetoresistance oscillations are still apparent. In Supplementary Figure
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6b these oscillations are plotted for VG = −0.7 V. The magnetic field period corresponds to the magnetic

flux quantum Φ0 = h/2e observed throughout the gating of the device, suggesting that supercurrent

transport persists well into the QSH regime.

Additional devices

In addition to the two devices presented in the main text, we also measured several different junction

geometries fabricated using the 7.5 nm quantum well heterostructure. One of these junctions had a

width of 2 microns, but was otherwise identical to the topological device presented in the main text.

This device also showed a transition from uniform bulk supercurrent to edge-dominated supercurrent,

concurrently with the normal resistance rising from 300 ohms to 4,000 ohms (Supplementary Figure 7).

The size of the magnetic field period in this device is 0.68 mT, consistent with the overall device area of

2 microns × (800 nm + 1 micron). From the supercurrent density profile in the QSH regime, we extract

edge widths of 180 nm and 197 nm.

The other device, a 4 micron wide junction, was also identical to the topological junction from

the main text except that the topgate was only 200 nm long and was threaded between the contacts.

Although this topgate did not fully cover the junction, the behavior observed in this device was still

consistent with the other topological devices (Supplementary Figure 8). This suggests that the gate

effect was approximately uniform across the area between the contacts. When the normal resistance

of the device was 4,000 ohms, supercurrent transport was observed in this device through edges with

widths of 208 nm and 214 nm. Even after supercurrents became too small to measure, the normal

resistance of this device approached the expected value of h/2e2 for transport through two ballistic

one-dimensional edge modes.
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Wafer I Wafer II

CdTe substrate

100 nm Hg0.3Cd0.7Te

70 nm Hg0.3Cd0.7Te

CdTe substrate

50 nm Hg0.3Cd0.7Te

50 nm Hg0.3Cd0.7Te7.5 nm HgTe
4.5 nm HgTe

Doping (Iodine)

25 nm Hg0.3Cd0.7Te

Supplementary Figure 1: Schematics of the heterostructures used in the experiment. The quantum well
thicknesses were 7.5 nm for Wafer I and 4.5 nm for Wafer II.

IDC 

VDC 

VG

1 μm

Supplementary Figure 2: A scanning electron micrograph showing the layout of the junctions. A mesa 4
microns in width was contacted by Ti/Al leads. The voltage drop VDC across these leads was monitored
as a function of the DC current IDC flowing between them. A voltage VG applied to a topgate was used
to tune the electron density in the device.
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Supplementary Figure 3: Recovering the critical current phase. When the current distribution is mostly
symmetric, the experimentally observed critical current envelope (blue line) approaches zero between
peaks. In such cases a flipping function (red dashed line) that changes sign at each node of the envelope
enables the recovery of IC(B) from ImaxC (B).

17



−30 −20 −10 0 10 20 30
−200

−100

0

100

200

300

400

500

Normalized magnetic field unit (1/µm)

E
v
e
n
 p

a
rt

 o
f 
c
ri
ti
c
a
l 
c
u
rr

e
n
t 
(n

A
)

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

40

Normalized magnetic field unit (1/µm)

O
d
d
 p

a
rt

 o
f 
c
ri
ti
c
a
l 
c
u
rr

e
n
t(

n
A

)

Supplementary Figure 4: Recovered complex critical current. a, The recovered critical current IE(β)
that corresponds to the even part of the current density profile JE(x). b, The recovered critical current
IO(β) that corresponds to the odd part of the current density profile JO(x).

−8 −6 −4 −2 0 2 4 6 8
0

20

40

60

80

100

120

140

160

Position along x (µm)

C
ri
ti
c
a
l 
c
u
rr

e
n
t 
d
e
n
s
it
y
 (

n
A

/ 
µ

m
)

Supplementary Figure 5: The current density profile JS(x) that corresponds to the envelope in Supple-
mentary Figure 3.

−4 −3 −2 −1 0 1 2 3 4
4

6

8

10

12

14

16

18

20

22

Magnetic field (mT)

A
C

 r
e
s
is

ta
n
c
e
 (

kΩ
)

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1
0

1000

2000

3000

4000

5000

6000

7000

8000

Topgate voltage (V)

N
o
rm

a
l 
re

s
is

ta
n
c
e
 (

Ω
)

a b

Supplementary Figure 6: Additional data for the topological junction discussed in the main text, as
the carrier density in the HgTe is depleted even further. a) As a function of the topgate voltage the
normal AC resistance peaks near 6-8 kΩ, consistent with the QSH effect in the presence of several
additional bulk modes. b) The junction’s AC resistance as a function of magnetic field, measured with
the topgate voltage at VG = −0.7 V and with no DC current bias. Even though the resistance minima
are far from 0 Ω, the resistance oscillates with a period corresponding to Φ0 = h/2e. This periodic
behavior is consistent with the superconducting interference observed at higher densities, and suggests
that supercurrent transport persists well into the QSH regime.

18



Topgate Voltage (V)

P
o
s
it
io

n
 (

µ
m

)

Supercurrent Density (nA/µm)

 

 

−1 −0.8 −0.6 −0.4 −0.2 0

−6

−4

−2

0

2

4

6

0

10

20

30

40

50

60

70

80

90

100

Topgate Voltage (V)

M
a
g
n
e
ti
c
 F

ie
ld

 (
m

T
)

Critical Current (nA)

 

 

−1 −0.8 −0.6 −0.4 −0.2 0

−3

−2

−1

0

1

2

3 20

40

60

80

100

120

140

160

c

e
Topgate Voltage (V)

P
o
s
it
io

n
 (

µ
m

)

Supercurrent Density (Normalized)

 

 

−1 −0.8 −0.6 −0.4 −0.2 0

−6

−4

−2

0

2

4

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topgate Voltage (V)

M
a
g
n
e
ti
c
 F

ie
ld

 (
m

T
)

Critical Current (Normalized)

 

 

−1 −0.8 −0.6 −0.4 −0.2 0

−3

−2

−1

0

1

2

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1b

d

a

−1 −0.8 −0.6 −0.4 −0.2 0
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Gate voltage (V)

N
o
rm

a
l 
re

s
is

ta
n
c
e
 (

Ω
)

f

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Position (µm)

S
u
p
e
rc

u
rr

e
n
t 
D

e
n
s
it
y
 (

n
A

/µ
m

)

 

 

Data

Gaussian Fit

180 nm  
    197 nm

Supplementary Figure 7: Data from a Josephson junction fabricated using Wafer I, the 7.5 nm quantum
well. This junction was identical to the one presented in the main text, except that the width of the
mesa is 2 microns. a) A map of the critical current envelope as a function of topgate voltage shows
that this device has a magnetic field period of 0.68 mT, consistent with the overall area of the device.
b) After normalization the interference patterns show the evolution of this device into the QSH regime.
The decay of the interference envelope over roughly 4 mT in the QSH regime is determined by the
widths of the edge channels. c, d) The supercurrent density shows the confinement of supercurrent to
edge modes as the bulk density is depleted. e) The normal resistance of the junction as a function of
the topgate voltage. f) Edge widths extracted from the supercurrent density at the farthest negative
gate voltage (-1.1 V).
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Supplementary Figure 8: Data from a Josephson junction fabricated using Wafer I, the 7.5 nm quantum
well. This junction was identical to the one presented in the main text, except that the topgate was 200
nm and centered between the contacts. a,b) Consistent with other topological devices, the critical current
envelope tranforms from a single-slit to a sinusoidal pattern as the density is decreased. The decay of
the interference lobes is over roughly 4 mT at the most negative gate voltage. c, d) The supercurrent
density shows the confinement of supercurrent to edge modes as the bulk density is depleted. e) The
normal resistance of the device, extending beyond the 4, 000 ohms where the smallest supercurrents
were observed. The resistance approaches the expected value for transport through two ballistic QSH
edges. f) Edge widths extracted from the supercurrent density at the farthest negative gate voltage.
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