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Abstract. We use a 3-D global chemical transport model
(GEOS-Chem) to interpret aircraft observations of nitrate
and sulfate partitioning in transpacific dust plumes during
the INTEX-B campaign of April–May 2006. The model in-
cludes explicit transport of size-resolved mineral dust and
its alkalinity, nitrate, and sulfate content. The observations
show that particulate nitrate is primarily associated with dust,
sulfate is primarily associated with ammonium, and Asian
dust remains alkaline across the Pacific. This can be repro-
duced in the model by using a reactive uptake coefficient for
HNO3 on dust (γ (HNO3) ∼10−3) much lower than com-
monly assumed in models and possibly reflecting limitation
of uptake by dust dissolution. The model overestimates gas-
phase HNO3 by a factor of 2–3, typical of previous model
studies; we show that this cannot be corrected by uptake on
dust. We find that the fraction of aerosol nitrate on dust
in the model increases from∼30% in fresh Asian outflow
to 80–90% over the Northeast Pacific, reflecting in part the
volatilization of ammonium nitrate and the resulting transfer
of nitrate to the dust. Consumption of dust alkalinity by up-
take of acid gases in the model is slow relative to the lifetime
of dust against deposition, so that dust does not acidify (at
least not in the bulk). This limits the potential for dust iron
released by acidification to become bio-available upon dust
deposition. Observations in INTEX-B show no detectable
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ozone depletion in Asian dust plumes, consistent with the
model. Uptake of HNO3 by dust, suppressing its recycling to
NOx, reduces Asian pollution influence on US surface ozone
in the model by 10–15% or up to 1 ppb.

1 Introduction

Mineral dust is the largest single contributor to particulate
matter in the atmosphere (Forster et al., 2008; Rind et al.,
2009). Dust is mobilized to the atmosphere by strong sur-
face winds over arid terrain (Ginoux et al., 2001; Prospero
et al., 2002). Principal source regions in East Asia include
the Gobi desert of Northern China and Mongolia, and the
Taklimakan desert of western China (Prospero et al., 2002).
Dust is an important air quality problem in the large popula-
tion centers of Eastern China, Korea, and Japan, particularly
in spring when dust storms are most active. Lofting to the
free troposphere can result in long-range transport of Asian
dust across the Pacific, impacting surface aerosol concentra-
tions in North America (Jaffe et al., 1999; Husar et al., 2001;
Szykman et al., 2003; Fairlie et al., 2007).

Dust particles can become coated with sulfate, nitrate,
organic, and black carbon as they age in the atmosphere
(Tabazadeh et al., 1998; Clarke et al., 2004; Jordan et al.,
2003; Dibb et al., 2003; Kim et al., 2004; Ooki and Uematsu,
2005; Sullivan et al., 2007). Nitrate and sulfate form on dust
through the uptake of acidic gases HNO3, SO2, and H2SO4
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(Usher et al., 2003). Global and regional-scale modeling
studies have shown significant consequences for sulfate and
nitrate partitioning, tropospheric oxidants, and aerosol size
distributions (Dentener et al., 1996; Song and Carmichael,
2001a, b; Liao et al., 2003; Bauer et al., 2004; Bauer and
Koch, 2005; Hodzic et al., 2006; Shindell et al., 2007).
Tabazadeh et al. (1998) suggested that uptake on dust could
explain why many models overestimate HNO3(g) in the re-
mote free troposphere (Chatfield et al., 1994; Thakur et al.,
1999; Lawrence et al., 1999). Acidification of dust by uptake
of sulfate could provide bio-available iron to the ocean sur-
face (Meskhidze et al., 2005, and references therein). A shift
of nitrate or sulfate towards larger particle sizes can change
their direct radiative forcing characteristics (Liao and Sein-
feld, 2005; Kim et al., 2004). In addition, coating of dust
with soluble nitrate or sulfate can enhance its cloud conden-
sation nuclei potential (Kelly et al., 2007), while reducing
its ice nuclei efficiency (Koehler et al., 2007), with conse-
quences for cloud properties and precipitation (Rosenfeld et
al., 2001; Fan et al., 2004).

In this paper, we use a 3-D global chemical transport
model (GEOS-Chem CTM) to investigate the effect of min-
eral dust on the chemical partitioning of total inorganic ni-
trate and sulfate over the Northeast Pacific during the spring
2006 INTEX-B airborne campaign (Singh et al., 2009). This
campaign focused on intercontinental transport of pollution
from Asia to North America. Dust outflow from East Asia
was a pervasive feature. We consider flights of the NASA
DC8 out of Honolulu, Hawaii, and Anchorage, Alaska (Re-
gions 3 and 4 in Fig. 2a of Singh et al., 2009). We focus
particularly on explaining observed particulate nitrate levels,
ramifications for the lifetime of HNO3(g) with respect to up-
take on dust, and whether dust can account for the high bias
of HNO3(g) in models. Further, we use the model to describe
the chemical ageing of mineral dust during transpacific trans-
port from the Asian continent in terms of accumulation of
nitrate and sulfate, titration of dust alkalinity, and impact on
NOx and O3.

2 GEOS-Chem model

2.1 General description

The GEOS-Chem CTM was originally described by Bey et
al. (2001). We use here version v8.01.01 (http://acmg.seas.
havard.edu/geos/index.html). The model is driven by assim-
ilated meteorological analyses from the Goddard Earth Ob-
serving System (GEOS-4) including 6-h average winds, tem-
peratures, convective mass fluxes, and clouds, and 3-h aver-
age mixing depths and surface variables. These are available
at 1◦

×1.25◦ horizontal resolution, and 48 vertical sigma-
pressure hybrid levels extending from the surface to 0.01 hPa.
The horizontal resolution is degraded here to 2◦

×2.5◦ for in-
put to GEOS-Chem.

The aerosol simulation in GEOS-Chem represents the
sulfate-nitrate-ammonium system (Park et al., 2004), organic
and black carbon (Park et al., 2003; Liao et al., 2007), sea
salt (Alexander et al., 2005), and mineral dust (Fairlie et
al., 2007), as an external mixture. The aerosol and gas
phases are coupled through (1) aqueous-phase sulfur oxi-
dation; (2) heterogeneous uptake of NO3, NO2, N2O5, and
HO2 (Jacob, 2000; Evans and Jacob, 2005); (3) aerosol ef-
fects on photolysis frequencies (Martin et al., 2003); and (4)
gas-aerosol partitioning of total ammonia and inorganic ni-
trate, computed with the MARS-A thermodynamic model
for the sulfate-ammonium-nitrate-water system (Binkowski
and Roselle, 2003). MARS-A does not include mineral ion
components; we treat the uptake of acidic gases by dust sepa-
rately, and maintain fine dust-nitrate and dust-sulfate compo-
nents distinct from the fine-mode sulfate-nitrate-ammonium
system, as described below. Some thermodynamic models,
e.g. ISORROPIA II (Fountoukis and Nenes, 2007) do in-
clude metal and chloride ions, but our results indicate that
rapid equilibrium of HNO3, SO2, and bulk minerals is not
appropriate, at least for coarse-mode dust.

Wet deposition is represented using the scheme of Liu et
al. (2001), which accounts for scavenging by convective up-
drafts as well as rainout and washout. Dry deposition of
gases and fine aerosol uses the resistance-in-series model of
Wesely et al. (1989) as described by Wang et al. (1998). Dry
deposition of dust and sea salt aerosols uses size-resolved
calculations (Zhang et al., 2001), and accounts for gravita-
tional settling (Seinfeld and Pandis, 1998).

GEOS-Chem has been used previously to show that Asian
emissions can lead to enhanced concentrations of CO, ozone,
sulfate, and dust aerosols in North America (Heald et al.,
2003; Jaegle et al., 2003; Hudman et al., 2004; Park et al.,
2004; Heald et al., 2006; Park et al., 2006; Fairlie et al., 2007;
Nam et al., 2009). The model has been applied previously
to simulation of the INTEX-B data by Zhang et al. (2008),
focusing on ozone, and by van Donkelaar et al. (2008), fo-
cusing on sulfate and organic aerosol. Here, we focus on the
impact of dust on nitrate and sulfate partitioning in transpa-
cific transport.

We use the same suite of emission inventories as Zhang
et al. (2008) with the following exceptions. Global anthro-
pogenic emissions of NOx, SOx and CO are taken from the
EDGAR 3.2FT2000 emission inventory based on the year
2000 (Olivier et al., 2001), instead of the Global Emission
Inventory Activity (GEIA). We supplant the global inventory
over Asia with an inventory for 2006 compiled by Zhang et
al. (2009), which shows 65% higher emissions for NOx, and
60% higher emissions for SO2 compared with the year 2000.

2.2 Mineral dust module

Dust in GEOS-Chem is distributed in 4 size bins (radii 0.1–
1.0, 1.0–1.8, 1.8–3.0, and 3.0–6.0 µm), following Ginoux et
al. (2004). The smallest size bin is further divided into 4 sub-
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bins (radii 0.1–0.18, 0.18–0.3, 0.3–0.6, 0.6–1.0 µm) for opti-
cal properties and heterogeneous chemistry. We use the dust
entrainment and deposition (DEAD) mobilization scheme of
Zender et al. (2003), combined with the source function used
in GOCART (Ginoux et al., 2001; Chin et al., 2004), as de-
scribed by Fairlie et al. (2007), who used the model to study
the impact of transpacific transport of dust on aerosol con-
centrations in the United States in 2001. Fairlie et al. (2007)
found that the dust simulation captured the magnitude and
seasonal cycle of dust over the Northeast Pacific, the timing
and vertical structure of dust outflow in the free troposphere
from Asia during the spring 2001 TRACE-P and ACE-Asia
aircraft missions, and the timing and distribution of Asian
dust outbreaks in the United States.

The dust simulations described by Fairlie et al. (2007)
were driven by GEOS-3 meteorological analyses. Com-
parison of simulated dust emissions for spring 2001 using
GEOS-3 and GEOS-4 fields indicates a doubling of dust
emissions, both globally and from Asia, due to stronger sur-
face winds in GEOS-4. Accordingly, we apply a factor of 2
reduction to the dust emissions computed from the GEOS-4
fields. Generoso et al. (2008) previously applied a factor of
3 reduction to the GEOS-Chem dust source computed from
GEOS-4 winds in their study of Saharan dust outflow in 2006
and 2007. Our simulated global and Asian emissions for
April–May 2006 are 287 and 25 Tg respectively, compared
to 321 and 33 Tg for April–May 2001.

2.3 Acid gas uptake on dust

For this study we include in the model the reactive uptake
of HNO3 and SO2 on dust, limited by dust alkalinity, and
the uptake of gas-phase H2SO4 limited by competition with
other aerosol surfaces. We exclude direct uptake of ozone on
dust, because the DC8 data show no significant negative cor-
relation of ozone and dust (see discussion below). Labora-
tory studies indicate that uptake of ozone on dust is slow and
subject to surface passivation (Hanisch and Crowley, 2003;
Mogili et al., 2006). We also neglect particle coagulation
since most studies of Asian outflow indicate that urban and
dust aerosols are largely externally mixed (Mori et al., 2003;
Maxwell-Meier et al., 2004; Tang et al., 2004; Song et al.,
2005).

Laboratory studies have shown that dust alkalinity, com-
prising carbonates and mineral oxides, enables reactive up-
take of acidic gases HNO3 and SO2 (Usher et al., 2003, and
references therein). Uptake of HNO3 takes place by acid-
base titration on surface sites for dry dust, or in solution with
adsorbed water (Goodman et al., 2000). Uptake of SO2 is
thought to take place by aqueous-phase oxidation of SO2−

3
by O3 (Ullerstam et al., 2002). We use a standard first-order
reactive uptake parameterization with rate constantki to de-
scribe the loss of speciesi from the gas phase, for dust radius
size bin [r1, r2]:

ki =

∫ r2

r1

4πr2N(r)

(
r

Dg

+
4

νγ

)−1

dr (1)

HereN(r) is the number density of dust particles of radius
[r, r + dr ], Dg is the molecular diffusion coefficient (taken
as 0.2 cm2 s−1), ν is the mean molecular speed (taken as
3.0×104 cm s−1), andγ is the reactive uptake coefficient.

Previous model studies tend to lump dust into one or
two size bins for gas-particle interactions (e.g., Song and
Carmichael, 2001b; Liao et al., 2003; Solmon et al., 2009).
Here, we compute the acid uptake separately for each dust
size bin (plus the 4 sub-bins within the smallest size bin),
and maintain dust nitrate, dust sulfate, and dust alkalinity
as separate size-segregated constituents in the model. These
constituents are subject to the same transport and deposition
processes as the corresponding dust components.

Dust alkalinity is introduced in the model at the point of
dust emission and is represented as the sum of calcium and
magnesium carbonates, assuming that the Ca2+ and Mg2+

cation equivalents constitute 3.0 and 0.6% of the dust by
mass, respectively. A 3% estimate for soluble calcium lies
in the range of estimates from observations near East Asian
source regions (Claquin et al., 1999; Shi et al., 2005; Jeong,
2008) and is consistent with the estimate by McNaughton
et al. (2008) for Asian dust sampled in INTEX-B. The
Ca2+/Mg2+ ratio is obtained from the INTEX-B data. Dust
alkalinity is consumed by the uptake of HNO3, SO2, and
H2SO4; once the alkalinity is titrated the uptake of HNO3
and SO2 ceases.

Laboratory studies report a wide range of estimates for
the reactive uptake coefficientsγ of acidic gases on calcite,
mineral oxides, and real dust samples. Estimates for uptake
on dry calcite range from 10−4 to 0.1 forγ (HNO3) (Good-
man et al., 2000; Hanisch and Crowley, 2001), and 10−4

to 4×10−2 for γ (SO2) (Usher et al., 2002; Ullerstam et al.,
2003; Adams et al., 2005). Studies also show a marked in-
crease in uptake rate with relative humidity for calcite, as up-
take of water leads to enhanced ion mobility at the dust sur-
face (Al-Hosney and Grassian, 2005; Vlasenko et al., 2006;
Baltrusaitis et al., 2007a; Preszler-Prince et al., 2007; Liu et
al., 2008). Uptake of HNO3 and SO2 on non-basic minerals
is generally subject to surface saturation (Baltrusaitis et al.,
2007b; Vlasenko et al., 2009).

Modeling studies have commonly used a constant value of
0.1 forγ (HNO3) and a step function of relative humidity for
γ (SO2) (0.05–0.1 for RH>50%, 10−4–10−2 for RH<50%)
(Dentener et al., 1996; Song and Carmichael, 2001a; Liao
et al., 2003; Hodzik et al., 2006). We find here that such
a high value ofγ (HNO3) greatly overestimates particulate
nitrate formation in transpacific transport during INTEX-B,
as described below. A Lagrangian model study of dust ag-
ing in Asian outflow by Song et al. (2007) similarly deter-
mined much smaller uptake coefficientsγ (HNO3)=5.×10−3

andγ (SO2)=1.×10−4. A possible explanation is that only a
fraction of the dust alkalinity is available for reaction at any
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time, and after initial saturation of reaction sites on the dust
surface continued availability of alkalinity is limited by par-
ticle dissolution and diffusion. Fast initial uptake of HNO3
may thus not be sustainable for multi-day atmospheric trans-
port.

Here, we use RH-dependent functions forγ (HNO3) and
γ (SO2), as shown in Fig. 1. Peak values are of similar mag-
nitude as those determined by Song et al. (2007). The RH-
dependences are based on recent laboratory results for uptake
on calcite particles (Liu et al., 2008, for HNO3; Preszler-
Prince et al., 2007, for SO2), and show the impact of the
much lower deliquesce RH for reaction products Ca(NO3)2
(13–18%), than for CaSO3 (∼90%) (Preszler-Prince et al.,
2007). We represent uptake of H2SO4(g) on dust in compe-
tition with uptake by other aerosol components in the model,
using a weighting proportional to surface area and mass
transfer limitation (Eq. 1).

We conducted fully coupled GEOS-Chem simulations
of oxidant and aerosol chemistry for the April–May 2006
INTEX-B period. Each simulation was initialized on 1
March 2006 using constituent fields from the previous
INTEX-B model study by Zhang et al. (2008). Initial dust
components were set to zero. Separate simulations were con-
ducted with and without acid uptake by dust.

2.4 Bulk aerosol and gas data

Bulk aerosol, HNO3, and fine sulfate data shown here were
obtained from the University of New Hampshire (UNH)
Soluble Acidic Gases and Aerosol (SAGA) instruments on
board the NASA DC8. Paired filter samples of bulk aerosol
were collected with the UNH dual aerosol sampling probe,
and analyzed for soluble ions including NO−

3 , SO=

4 , NH+

4 ,
Mg2+, Cl−, Na+, K+, and Ca2+(Dibb et al., 2003). Mean
exposure times for the filters were∼5–6 min for altitudes be-
low ∼6 km and 10–14 min at higher altitudes. HNO3 and
fine sulfate were measured in a mist chamber (Scheuer et al.,
2003), with an aerosol size cut diameter of∼1 µm; collection
intervals were typically 2 min or less. Some contamination of
the HNO3 measurement has been found in high NH4(NO3)

conditions, but no such artifact has been determined in high
dust conditions. Ozone data shown here were obtained from
the FASTOZ instrument at 1 Hz frequency.

3 Transpacific transport of dust during INTEX-B

Figure 2 shows model distributions of dust emission, 550 nm
dust aerosol optical depth (AOD), and total AOD for the pe-
riod 21 April–11 May 2006, spanning the bulk of INTEX-B
flights over the Northeast Pacific. Also shown are satellite
observations (MODIS) of 550 nm AOD for the same period.
Model AOD at 550 nm is calculated as the sum of contri-
butions from individual aerosol components with prescribed
optical properties as a function of relative humidity (Martin

Fig. 1. Reactive uptake coefficients for HNO3(g) and SO2(g) on
mineral dust used in this study as a function of relative humidity
(RH).

et al., 2003) The Gobi and Taklimakan deserts of southern
Mongolia and Western China were active dust sources during
INTEX-B. The maps of simulated AOD illustrate the mean
transpacific transport of dust and aerosol pollutants (princi-
pally sulfate; van Donkelaar et al., 2008) during INTEX-B.
Flight tracks show that the DC-8 aircraft was well positioned
to observe this transport. Van Donkelaar et al. (2008) show
that GEOS-Chem captures many features of the day-to-day
evolution in MODIS AOD associated with transpacific trans-
port from Asia. We find that the model AOD is lower than
MODIS, but this could reflect a MODIS high bias previously
documented by comparison with island-based AOD observa-
tions from the AERONET network (Chin et al., 2004; Heald
et al., 2006) and possibly reflecting the non-sphericity of dust
(Chu et al., 2005). Van Donkelaar et al. (2008) show no such
bias in their GEOS-Chem simulation compared to MODIS,
but their dust emissions are not scaled for GEOS-4 winds and
are thus twice ours (see Sect. 2.2).

Figure 3 shows the altitude distributions of observed
vs. simulated Ca2+ concentrations for the INTEX-B flight
tracks. Here and elsewhere we exclude observations made
below 1 km (where sea salt complicates interpretation) or
characteristic of the stratosphere (O3 > 100 ppb). We see
from Fig. 3 that high dust concentrations extend through
the 1–7 km column, with high variability, and drop rapidly
above. Median model concentrations are about 50% higher
than observed.

Atmos. Chem. Phys., 10, 3999–4012, 2010 www.atmos-chem-phys.net/10/3999/2010/
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Fig. 2. Model distributions of dust emission (units: g m−2), 550 nm dust aerosol optical depth (AOD), and total 550 nm AOD for the INTEX-
B period of 21 April–11 May 2006. The lower left panel shows the observed MODIS 550 nm AOD (Collection 5, Terra and Aqua satellites)
for the same period. INTEX-B flight tracks are shown in black, with individual symbols denoting the aerosol samples used in this work.

4 Partitioning of nitrate and sulfate

Figure 4 shows various paired relationships of observed
bulk NO−

3 , SO2−

4 , NH+

4 , Ca2+ aerosol concentrations, and
HNO3(g) concentrations, for the ensemble of INTEX-B data
in Fig. 2. Model results without (Fig. 4a) and with (Fig. 4b)
acid uptake by dust are also shown. The observations show a
strong positive association of NO−3 and a weak negative as-
sociation of HNO3(g) with mineral dust. The mean observed
ratio of aerosol nitrate to total nitrate (NO−

3 +HNO3(g)) in-
creases from 0.4 for low dust to 0.7 for high dust conditions.
Sulfate shows a weak positive association with dust, but a
strong association with ammonium following the 1:2 ammo-
nium sulfate relationship. The ratio of fine sulfate (from the
SAGA mist chamber) to bulk sulfate mass (∼0.7–0.9) indi-
cates that the fine mode is dominant. The association of sul-
fate with Ca2+ may be explained by mixing of polluted and
dust air streams in the Asian outflow (Clarke et al., 2001; Jor-
dan et al., 2003; Heald et al., 2006). Panel (e) shows NO−

3 vs.
NH+

4 after accounting for ammonium sulfate; little evidence
is found for ammonium nitrate in the observations. This in-
dicates that the aerosol nitrate is present in the dust particles,
rather than merely coincident with them. Data points to the
right of the 1-1 line in panel (e) show ammonium in excess
of ammonium sulfate and ammonium nitrate combined. The
physical explanation is not clear. No such data are found in
the TRACE-P dataset, for example. Concentrations of Cl−

are too small for significant formation of NH4Cl. There may
be some positive bias in the NH+

4 observations.

Fig. 3. Altitude distribution of observed (black) and simulated
(red) Ca2+ concentrations during INTEX-B. The data are binned
in 1 km vertical intervals. Profiles show median values in each bin.
Whiskers span 50% of the data in each bin.

www.atmos-chem-phys.net/10/3999/2010/ Atmos. Chem. Phys., 10, 3999–4012, 2010
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Fig. 4a. Relationships between bulk aerosol components and HNO3(g) concentrations along the INTEX-B flight tracks, excluding data
below 1 km or in the stratosphere. Observations are shown in black, with each data point corresponding to an aerosol sample along the tracks
shown in Fig. 2. Model values not including acid uptake by dust are shown in color, separately for dusty ([Ca2+]>2[NO−

3 ]; yellow) and

non-dusty ([Ca2+]<2[NO−

3 ]; red conditions. The bottom right panel shows the equivalent balance between the sum of measured cations

(Ca2+, Mg2+, K+, Na+, NH+

4 ) and the sum of measured anions (SO2−

4 , NO−

3 , Cl−). The black line in panel(a) shows the linear best fit to
the observations; blue lines in panels(d), (e), and(f), show the 1:2, 1:1, and 1:1 relationships, respectively.

Panel (f) of Fig. 4a shows measured negative vs. positive
equivalent charges in the bulk aerosol observations. The data
show an anion deficit, which is positively correlated with
Ca2+ (not shown), implying the presence of residual dust
alkalinity at least in the bulk. In addition, the observations
indicate that∼100 ppt HNO3(g) coexists with the dust alka-
linity (panel b). The dust plumes intercepted by the INTEX-
B aircraft were 3–7 days downstream of Asian source re-
gions (H. Fuelberg, personal communication, 2008). The
coexistence of significant HNO3 and dust alkalinity implies
that the time scale for HNO3 uptake on dust must be on
the order of days, consistent with the lowγ (HNO3) val-
ues used in this work, rather than hours as would result
from γ (HNO3) ∼ 0.1. The observed HNO3 values cannot
be sustained by replenishment from NOx because observed
NOx concentrations (∼10–40 ppt) are too small. We note
that the CIMS instrument on board the NSF C130 aircraft
(Crounse et al., 2006) measures lower, yet significant, values
of HNO3(g) (20–80 ppt) for dustiest conditions in the eastern
Pacific during INTEX-B (J. Crounse, personal communica-
tion, 2010)

The model results without acid uptake by dust (Fig. 4a)
show a striking difference with observations in the NO−

3 vs.
Ca2+ relationship. Simulated NO−3 vs. Ca2+ shows 2 distinct

populations: one characterized by low NO−

3 (<∼ 100 ppt)
(yellow points), the other characterized by low Ca2+ (<∼

200 ppt) (red points). We refer to the former as the “dusty air
stream,” and the latter as the “low-dust air stream”. In con-
trast with the observations, the model dusty air shows no cor-
relation of dust with nitrate (panel a) and shows much higher
HNO3 increasing with Ca2+ (panel b). It shows a weak posi-
tive relationship of SO2−

4 with Ca2+, similar to observations,
further evidence that sulfate and dust are largely externally
mixed. The charge balance plot (panel f) shows an anion
deficit (residual alkalinity) in the model dusty air, compa-
rable with observations. The low-dust population is much
closer to charge balance (panel f).

Figure 4b shows the model results with acid uptake by
dust, usingγ (HNO3) andγ (SO2) from Fig. 1. The dusty
air stream in the model (yellow) shows an average six-fold
increase of nitrate, bringing the model results closer to ob-
servations (panels a and e). The slope of the NO−

3 vs. Ca2+

regression line for the dusty air stream (0.35) is compara-
ble to the observations (0.31). Dust nitrate now accounts for
80–90% of aerosol nitrate in the dusty air, and HNO3(g) is
reduced by 20–30%. There is negligible change in total sul-
fate but the partitioning has changed; for the dusty air we
now find 8–12% of the sulfate on dust. The sulfate fraction

Atmos. Chem. Phys., 10, 3999–4012, 2010 www.atmos-chem-phys.net/10/3999/2010/



T. D. Fairlie et al.: Impact of mineral dust on nitrate, sulfate, and ozone 4005

Fig. 4b. Same as Fig. 4a, but for the simulation including acid uptake on dust. The same colors mark the same points in both simulations.
Black line in panel(a) is linear best fit to the model (yellow) results.

on dust is still small, comparable to observations. Uptake of
H2SO4 accounts for 70–80% of the dust sulfate in the model,
the rest is due to direct uptake of SO2. Acid uptake reduces
model dust alkalinity by 20–25% (panel f) but does not titrate
it, again consistent with observations.

The uptake of HNO3(g) on dust in the model still leaves
HNO3(g) about 2–3 times too high, and the aerosol to to-
tal nitrate ratio (∼0.5) is too low. We show in Fig. 5 that
HNO3(g) in dusty air can be reduced to observed levels by
increasingγ (HNO3) by a factor of 10, but this causes ex-
cessive aerosol nitrate. HNO3(g) can also be reduced by in-
creasing dust surface area by scaling emissions (Sect. 2.2),
but this causes excess nitrate and calcium. (Particulate nitrate
and sulfate, and dust alkalinity consumption, respond quasi-
linearly to scaling of dust emissions because uptake rates de-
pend linearly on dust surface area, Eq. 1). Furthermore, we
find that the model high bias of HNO3(g) is present in both
dusty and non-dusty conditions, and represents a general
overestimate of total inorganic nitrate. Such an overestimate
is a well-known problem of global tropospheric chemistry
models (Chatfield et al., 1994; Thakur et al.,1999; Lawrence
et al., 1999; Bey et al., 2001) and we see that it cannot be
resolved by uptake of HNO3(g) on dust.

5 Transpacific dust effects on nitrate, sulfate, and ozone

Figure 6 shows maps of simulated dust and non-dust (am-
monium) nitrate columns over the northern Pacific for the
INTEX-B period. Dust nitrate accounts for∼30% of aerosol
nitrate over East Asia but 80–90% over the Northeast Pa-
cific. Dispersion and scavenging during Asian outflow and
transpacific transport affect both dust and non-dust nitrate in
a similar way, but ammonium nitrate drops far more sharply
downwind of Asia due to volatilization as NH3 partial pres-
sures fall. By contrast, production of dust nitrate is sustained
across the Pacific from HNO3(g) produced both from oxida-
tion of NOx and from ammonium nitrate volatilization. Pre-
vious model studies for Asian outflow usingγ (HNO3) = 0.1
report a larger fractionation of nitrate as dust (Dentener et
al., 1996; Song and Carmichael, 2001b; Liao et al., 2003),
but this appears inconsistent with the INTEX-B data as dis-
cussed above.

Figure 7 shows corresponding maps of dust and non-dust
sulfate. In contrast to nitrate, the ratio of dust sulfate to total
sulfate is small (8–10%) over East Asia, falling to 5–8% over
the Northeast Pacific. Unlike ammonium nitrate, ammonium
sulfate does not volatilize, and SO2(g) declines much more
steeply than HNO3(g) off the coast, precluding significant
sulfate production in transpacific transport. The decline in
the dust to total sulfate ratio downstream can be explained
by enhanced settling of the super-micron dust compared with
fine sulfate. Previous model studies using a higher value for

www.atmos-chem-phys.net/10/3999/2010/ Atmos. Chem. Phys., 10, 3999–4012, 2010



4006 T. D. Fairlie et al.: Impact of mineral dust on nitrate, sulfate, and ozone

Fig. 5. Altitude profiles of observed (black) and simulated aerosol
nitrate, HNO3(g), and dust alkalinity for the INTEX-B flights. Val-
ues are medians in 1-km vertical bins. Profiles are shown for the
standard simulation with no acid uptake (green), the standard sim-
ulation with acid uptake (red), and a simulation withγ (HNO3) in-
creased by a factor of 10 from the values in Fig. 1 (yellow). Ob-
served alkalinity is inferred from the anion deficit shown in Fig. 4.

γ (SO2) show a much larger fractionation of sulfate as dust
in Asian outflow and globally (Dentener et al., 1996; Song
and Carmichael, 2001a; Liao et al., 2003), but this seems
inconsistent with the low fraction of sulfate on dust apparent
the INTEX-B data.

Dust alkalinity is regulated by the balance in supply be-
tween acids and bases, and by the time scales for alka-
linity consumption vs. dust deposition. Simulated emis-
sions of acid precursors from East Asia for April–May 2006
amount to 258 G eq. (83 G moles SO2 plus 92 G moles NOx),
more than the combined alkaline emissions of 192 G eq.
(142 G moles NH3 plus 25 G moles dust alkalinity). Yet,
model results show only 20–25% consumption of dust al-
kalinity across the Pacific. Only dust in the smallest size bin
(radius<1.0 µm) comes close to complete alkalinity titration
(up to ∼90% locally, accounting for 60–70% of alkalinity
consumption over the Pacific) due to its greater surface to
volume ratio. The time scale for consumption of bulk dust al-
kalinity in transpacific transport in the model is 15–20 days,
twice that for dust deposition. Thus the titration of dust is ki-
netically limited. Some studies indicate that the calcite con-
tent of the clay fraction of Asian dust is much smaller than
for the bulk (Claquin et al., 1999; Shi et al., 2005). If we
eliminate dust alkalinity from the smallest size bin, remov-
ing it as a sink for HNO3, we match the bulk consumption
rate by increasingγ (HNO3) by a factor of 2–3.

Meskhidze et al. (2005) indicated that dust alkalinity must
be titrated for the iron content to be soluble and bio-available
upon deposition. They showed that calcite strongly buffers
dust acidification in Asian outflow, limiting significant iron
mobilization to dust plumes with high initial acid-to-dust ra-
tios. Solmon et al. (2009) implemented the dust iron dissolu-
tion scheme of Meskhidze et al. (2005) in GEOS-Chem and
predicted deposition of significant soluble iron during Asian

Fig. 6. Mean simulated column concentrations of dust nitrate
and ammonium nitrate for the INTEX-B period (21 April–11 May
2006). Results are from the simulation including acid uptake. Black
symbols show the aircraft flight tracks.

outflow in Spring 2001. They used a different scheme for
acid uptake on dust than is used here. Notably, their assumed
uptake rate for SO2 was 1–2 orders of magnitude larger than
is obtained withγ (SO2) in Eq. 1, leading to titration of dust
alkalinity, which seems inconsistent with the INTEX-B ob-
servations. Our results indicate that iron mobilization may
be limited to the smallest dust particles (radius<1 µm) and to
those with much lower initial alkalinity.

Figure 8 shows the observed and simulated relationship of
ozone vs. Ca2+ at 4–6 km altitude. The observations show
no apparent depletion of ozone in dust layers. In contrast,
ozone reductions of up to 40% have been observed in Saha-
ran dust outflow (DeReus et al., 2000; Umann et al., 2003;
Bonasoni et al., 2004). DeReus et al. (2000) argued that di-
rect uptake of ozone can explain about half of the depletion,
while Umann et al. (2003) argued that it is due primarily
to HNO3 uptake suppressing its recycling to NOx. In our
model, dust chemistry affects ozone only indirectly, via up-
take of HNO3, as well as of NO3, NO2, N2O5, and HO2. The
effect is too small to cause any significant ozone depletion
in dust plumes, and the simulated ozone vs. Ca2+ relation-
ship in Fig. 8 is consistent with observations. It has, how-
ever, a non-negligible impact for Asian pollution influence
on ozone air quality in North America, as ozone production
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Fig. 7. As for Fig. 6, but for simulated dust and non-dust sulfate.

over the eastern Pacific from chemically recycled NOx is
an important driver for this influence (Kotchenruther et al.,
2001; Heald et al., 2003; Hudman et al., 2004; Zhang et al.,
2008). Figure 9 shows the mean simulated changes in the
northern Pacific tropospheric ozone column and the surface
ozone concentrations over North America for the INTEX-B
period due to HNO3 uptake by dust. Column ozone is re-
duced by up to 1 DU (∼2%) over the Northeast Pacific, and
surface ozone over North America shows mean reductions
of up to 1 ppb. Zhang et al. (2008) previously found that
Asian anthropogenic sources increased surface ozone over
the western United States by 5–7 ppb during the INTEX-B
period. We find here that HNO3 uptake by dust decreases
this Asian influence by 10–15%.

Use of a higher uptake coefficient forγ (HNO3) increases
the impact on ozone in the model. We find∼5% reductions
in column ozone over the Northern Pacific and up to 4 ppb
reductions in surface ozone over North America when we
multiply γ (HNO3) by a factor of 10. However, this results in
a low bias compared with the ozone observations shown in
Fig. 8 and nitrate levels inconsistent with the INTEX-B data
(Fig. 5). Models that use higher uptake rates for HNO3 on
dust may overestimate the impact of dust on ozone.

Fig. 8. Relationship between observed ozone and Ca2+ concen-
trations at 4–6 km altitude for the INTEX-B flights (filled circles).
Observations on days with a large range of Ca2+ are colored. Cor-
responding model results are also shown (red crosses); low Ca2+

(<50 ppt) points are excluded for clarity.

Fig. 9. Effect of HNO3 uptake by dust on(a) tropospheric ozone
columns over the Pacific, and(b) surface ozone over North Amer-
ica. Values are mean differences for the INTEX-B period (21 April–
11 May 2006) between simulations conducted with vs. without up-
take of acids on dust.
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6 Conclusions

We have used a 3-D global chemical transport model (GEOS-
Chem) to interpret aircraft aerosol observations over the
Northeast Pacific (INTEX-B campaign) in terms of nitrate
and sulfate uptake on dust during transpacific transport, and
implications for ozone. The model includes explicit trans-
port of dust alkalinity as a limiting factor for HNO3 and SO2
uptake, and dust uptake of H2SO4 in competition with other
aerosol surfaces.

Active dust sources in the Gobi and Taklimakan regions of
China and Mongolia were a major source of transpacific dust
during INTEX-B. The aircraft observations and the model
show a strong positive association of particulate nitrate with
dust, a weaker positive association of sulfate, and a weak
negative association of HNO3(g). We show that nitrate is
mainly present in the dust while sulfate is principally present
as ammonium sulfate, its association with dust mostly re-
flecting common transport. The observations also indicate
that dust remains alkaline over the Northeast Pacific, at least
in the bulk, even after 3–7 days of transpacific transport.

We show that uptake of HNO3 on dust in the model can re-
produce the observed relationship between particulate nitrate
and calcium as well as the observed residual alkalinity. How-
ever, this requires that the rate of uptake of HNO3 by dust be
relatively slow, represented in the model by a reactive uptake
coefficientγ (HNO3) ∼1×10−3. Previous models have gen-
erally assumedγ (HNO3) ∼0.1, but we find that this results
in excess nitrate on dust and insufficient dust alkalinity rela-
tive to the INTEX-B observations. A much lower value for
γ (HNO3) is needed to explain the coexistence of significant
HNO3 (∼100 ppt) with dust alkalinity in the aircraft observa-
tions, which may reflect limitation of HNO3 uptake by dust
dissolution.

Simulated HNO3(g) concentrations are 2–3 times higher
than observed. Such an overestimate of HNO3 in the remote
atmosphere has been a long-standing problem for global
models. Uptake by dust has previously been proposed as a
solution but we do not find this solution satisfactory. The
model overestimate is similar for dusty and non-dusty condi-
tions, and increased uptake of HNO3 by the dust results in a
large overestimate of observed dust nitrate.

We find that the fraction of nitrate on dust in the model
increases from 25–30% in fresh Asian outflow to 80–90%
across the Pacific, partly reflecting the transfer from ammo-
nium nitrate to dust nitrate through the volatilization of am-
monia. By contrast, the fraction of sulfate on dust (mostly
from uptake of H2SO4, with a small contribution from direct
uptake of SO2) decreases from 8–12% in fresh Asian outflow
to 5–8% across the Pacific. This reflects the lack of sustained
sulfate production over the Pacific.

The model shows 20–25% consumption of bulk dust al-
kalinity due to acid uptake by the time that Asian dust has
reached the Northeast Pacific, consistent with the INTEX-
B observations. Dust alkalinity is in general never titrated

in the model. This reflects a longer atmospheric time scale
for dust alkalinity consumption (15–20 days) than for dust
deposition (7–9 days), and argues against the possibility of
bulk dust acidification releasing bio-available iron upon de-
position to the oceans. Individual dust particles could still be
titrated, either because of small size or low initial alkalinity.

Observations in INTEX-B show no detectable depletion of
ozone in dust plumes, arguing against direct uptake of ozone
by dust. We find in the model that uptake of HNO3, sup-
pressing gas-phase recycling to NOx, is too slow to deplete
ozone significantly in dust plumes, consistent with observa-
tions. However, it still decreases the impact of Asian pollu-
tion on surface ozone in the United States by 10–15%, or up
to 1 ppb in the West.
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