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Abstract 

 This paper describes a paper-based microfluidic device that measures two 

enzymatic markers of liver function (alkaline phosphatase ALP, and aspartate 

aminotransferase AST) and total serum protein. A device consists of four components: i) 

a top plastic sheet, ii) a filter membrane, iii) a patterned paper chip containing the 

reagents necessary for analysis, and iv) a bottom plastic sheet. The device performs both 

the sample preparation (separating blood plasma from erythrocytes) and the assays; it 

also enables both qualitative and quantitative analysis of data. The data obtained from the 

paper-microfluidic devices show standard deviations in calibration runs and “spiked” 

standards that are acceptable for routine clinical use. This device illustrates a type of test 

useable for a range of assays in resource-poor settings.  

Introduction 

 Typical tests conducted to diagnose disease and monitor health in patients in 

industrialized nations are expensive. In resource-poor settings the requirements of 

equipped clinical facilities, trained clinicians, and local laboratory staff often preclude the 

testing and monitoring of patients, and leaves only symptoms as the basis for diagnosis.1 

Symptoms, however, may appear only after irreparable damage has occurred. There is, 

thus, a widely acknowledged need to develop low-cost, simple-to-use, point-of-care 

(POC) diagnostic methods for diagnosis, and monitoring the treatment of patients 

suffering from disease (especially infectious disease) in resource-poor settings. In 2004, 

the World Health Organization (WHO) established guidelines for developing POC 

diagnostic tests with characteristics required for resource-poor settings. The guidelines 

were summarized by the acronym ASSURED: Affordable, Sensitive, Specific, User-
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friendly, Rapid and robust, Equipment-free, and Delivered.2,3 Identifying patients using 

suitable diagnostic devices is important to ensure not only that sick patients are treated 

for the appropriate disease, but also to avoid treating individuals who are not infected and 

to prevent over-medicating, which could lead to drug-resistant organisms.4 The 

availability of medications in developing countries has increased due to the reduction in 

prices of medication and the launch of the Global Fund to Fight AIDS, Tuberculosis, and 

Malaria.5 Increasing use of medication has led to an increased incidence of medication-

induced toxicity (especially problematic in drugs used against TB and AIDS). The lack of 

suitable means for monitoring medication-induced liver toxicity has led to a marked 

increase in deaths due to drug toxicity.6-8 The results of one study in the United States of 

patients taking anti-retroviral medicines for AIDS indicated that the risk of death due to 

drug toxicity was similar to that from AIDS itself.8 Risk factors in developing countries 

are generally much higher than those in developed countries.9 Monitoring patients for 

drug toxicity using diagnostic tests that follow the ASSURED guidelines will decrease 

morbidity and mortality from the treatment of disease.3,6  

 Many research groups are developing POC diagnostic tools and devices for the 

developing world. In the Whitesides lab, we have developed low-cost, POC diagnostic 

device platforms based on paper,10 thread,11 and magnetic levitation,12 which were 

configured for detecting simple analytes, such as protein,13 and glucose.14 Many groups 

are now working to develop paper-based POC diagnostics.15-18 Recently, two different 

groups reported low-cost devices for enzyme-linked immunosorbent assays (ELISA). The 

paper-based ELISA used a colorimetric output to detect and quantify antibodies to HIV.19 

The microfluidic ELISA used silver reduction on gold nanoparticles as an amplified 
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output to detect antibodies against HIV and Treponema pallidum (the causative agent of 

syphilis) in whole bood.20 Researchers from the Program for Appropriate Technology in 

Health (PATH) recently described a simple and inexpensive device that uses exothermic 

chemical reactions and phase change materials as a heater to achieve nucleic acid 

amplification (NAA).21 Although great strides have been made to develop simple, 

inexpensive diagnostic tools and devices, there is still much work that needs to be done.  

 This article describes an inexpensive and portable system for measuring the levels 

of multiple analytes in a drop of blood obtained from a fingerstick (Figure 1). The system 

comprises a paper chip patterned into hydrophobic and hydrophilic regions, a filter, and 

self-adhesive laminating sheets; it serves four primary functions: it i) removes red blood 

cells from plasma; ii) distributes the resulting plasma into three regions within the paper; 

iii) runs three simultaneous colorimetric assays; and iv) displays the results of the 

colorimetric assays for quantitative analysis. Results digitized using, for example, a 

cellular phone, can be sent to an off-site technician (using established communications 

infrastructure) who can quantify the assays, provide a diagnosis, and recommend a 

treatment. Alternatively, on-chip color charts can give the results of the assays on-site. 

The diagnostic chip can be burned at the conclusion of the assay to dispose of 

biohazardous waste. We consider this system a prototype of a general platform for 

performing multiple bioassays using a single drop of blood. This paper demonstrates the 

construction and use of the device by quantitatively measuring markers of liver disease 

(aspartate aminotransferase (AST)22, alkaline phosphatase (ALP)23-25, and total serum 

protein26). Many other analytes (for example, alanine transaminase (ALT)27, gamma  
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Figure 1 

 

Figure 1. System designed for the quantitative measurement of analyte levels in a drop of 

blood. A small device fabricated from paper patterned with wax, a filter membrane, and a 

plastic sheath processes and analyzes a drop of blood from a fingerstick. The 

multifunctional device, encased in two self-adhesive laminating sheets, uses the paper to 

store the reagents for the assays, and the filter on top of the paper to separate plasma from 

the red blood cells. A cell phone or desktop scanner digitizes the results from the assays, 

which can be analyzed off-site by trained personnel. Incineration of the devices easily 

disposes the bio-hazardous waste.  
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glutamyl transpeptidase (GGT)28, lactate dehydrogenase (LDH)29,30, or total bilirubin31) 

could also be measured. 

 This bioanalytical system provides a complete assay, from processing blood to 

giving a digital read-out that operates with only minimal manipulation. We believe it has 

characteristics that will make it useful in programs of public health in resource-limited 

environments. (It may also be useful in military operations, border security, and 

environmental and agricultural applications). In particular, “innovative developing 

countries” (IDCs) may benefit from this technology. For these countries, cost, operational 

ease, and portability of an analytical system are just as important as sensitivity and 

specificity. In this paper, we present the development and performance of these devices. 

Although we used a scanner instead of a camera phone to digitize the devices and 

quantify these data as proof of principle, the principles of electronic analysis and 

communication apply across all classes of devices. 

EXPERIMENTAL DESIGN 

 Monitoring Liver Function. Liver disease or dysfunction may be caused by 

several factors, including infections (especially viral infections such as: hepatitis A, B, C, 

delta, and E, HIV, malaria, and cancer), abuse of alcohol, and the overuse of or reaction 

to medications. As an example, drug-induced damage to the liver causes serious illness or 

even death, and occurs in 2–28% of patients taking medications (such as isoniazid, 

rifampicin, and pyrazinamide) for tuberculosis32, and 8–28% of patients using 

Nevirapine, a first-line treatment for HIV.33 The risk of hepatotoxicity increases for 

patients with co-infections.34,35 Therapies for diabetes and heart disease also affect the 

liver and require constant monitoring of liver function. These diseases are increasing in 
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prevalence in developing regions.36 The initial onset of liver damage often goes 

unnoticed by patients, so screening for liver toxicity has become standard practice for 

many drug regimens in industrialized countries. In developing countries, however, the 

cost of monitoring toxicity associated with a treatment over an extended period is 

prohibitive.  

 Blood as the test medium. Blood contains the common markers of liver function 

that are not found in urine. 

 Obtaining Blood from a Fingerstick. Sticking a finger is probably the only kind 

of blood sampling that is routinely practical in resource-poor settings since it does not 

require a trained professional. It produces a small volume of blood (between 10 and 20 

μL) from an average adult finger. This quantity can be applied directly to the device 

platform, and it requires minimal manipulation for successful analysis (ASSURED – 

User friendly). Small amounts of blood produce less waste than a vial of blood used for 

conventional liver function tests. Using blood from a fingerstick does have challenges. A 

lancet is required for the fingerstick (cheap, single use, disposable lancets are an option). 

The levels of analytes in capillary blood may not perfectly reflect the levels in veins.37 

Hemolysis can occur from puncture with a lancet. The volume of blood obtained from 

infants (from a heel prick) is very low (~ 4 μL); this volume may be insufficient to 

perform the tests. These challenges can be overcome, for example, by adjusting the 

diagnostic levels of the analytes to those found in a fingerstick or generating tests specific 

for the volume obtained from an infant.  

 Design of the Device. A vertical-flow device design has several advantages over 

a lateral-flow configuration: i) a smaller sample size is required, ii) the assay develops 
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more quickly, iii) the device is simpler in construction, and iv) the overall weight of the 

device is lower. Capillary forces allow this device to function without the need of an 

external pump (ASSURED – Equipment-Free). The microsystem consisted of: i) a 

plastic sheath, ii) a filter capable of separating red blood cells from plasma, and iii) a 

patterned piece of paper with wax ink38 functioning as hydrophobic barriers, and creating 

three hydrophilic zones for running colorimetric assays.(Figure 2) Two plastic pieces 

formed a sheath around the device that served to protect it from excess blood and to limit 

evaporation of water from the plasma.(Figure 2a) The sheath also protected the reagents 

from contamination and the worker from contact with the blood of the patient. The 

lamination sheets encased a circular filter membrane and a piece of patterned paper in a 

vertical-flow configuration. Red blood cells applied to the device adsorbed on the filter 

and the plasma flowed vertically into the detection zones of the patterned paper. The 

removal of the red blood cells reduced their interference in the colorimetric read-out of 

the assay. Hydrophobic barriers patterned in the paper using a commercial wax printer 

defined hydrophilic zones. Patterning had the advantage that the colorimetric assays 

could be performed without cross-reactions or mixing of the coloring agents between 

hydrophilic zones. The hydrophobic areas also reduced the amount of plasma needed, 

since no plasma spread into the hydrophobic areas. We designed the size of the 

hydrophilic zones to have the largest colored spot for easy read-out, while keeping the 

plasma volume needed to fill them within the range available from a fingerstick. A 

microsystem fabricated from paper lowers the overall cost of the device (ASSURED – 

Affordable), minimizes its weight and volume (characteristics that are especially relevant  
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Figure 2. 

 

Figure 2. Design of a vertical-flow device for detecting and quantifying i) the levels of 

total serum protein (Protein), ii) alkaline phosphatase (ALP), and iii) aspartate 

aminotransferase (AST) in blood obtained from a fingerstick. (a) An oblique view of the 

assembled device. The device comprises three inexpensive, lightweight, and readily 

available components: Fellows® single-sided, self-adhesive cold lamination sheets (the 

top and bottom sheets used to encase the paper holding the reaction zones), Whatman 

Grade 1 Chromatography paper (patterned to create three reaction zones), and a Pall 
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plasma separation membrane (PSM) (Vivid GX PSM for filtering red blood cells). b) 

Paper patterned with three circular hydrophilic zones (d ~ 2 mm) surrounded by a 

hydrophobic wax barrier. 
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to portability and for shipping large quantities) (ASSURED - Deliverable), and allows 

the bioharzardous waste to be incinerated. 

 Choice of Assays. Colorimetric assays are attractive because they are generally 

complete in a short time (~30 minutes) and they provide easily interpretable results as 

colors, which can be read without sophisticated equipment. Results can be evaluated i) 

on-site by comparison with a color chart, or digital scanning and analyzing using 

software, or ii) off-site if integrated with telemedicine (ASSURED – Equipment Free). 

 Choice of Analytes for Measuring Liver Function. A liver-function panel 

consists of several different assays, which typically include: aspartate aminotransferase 

(AST), alkaline phosphatase (ALP), alanine aminotransferase (ALT), bilirubin, albumin, 

and total serum protein. Other analytes that can provide diagnostically useful information 

are gamma glutamyl transferase (GGT) and lactate dehydrogenase (LDH). The 

prothrombin time (PT) is also valuable.39 In this paper, we describe the development of 

three of these assays, AST,22 ALP,23-25 and total serum protein,26 on the paper-

microfluidics diagnostic microsystem. These three assays have simple colorimetric tests 

and in combination can give a first indication on the liver function of a patient. 

 Aspartate Aminotransferase (AST): The blood of a healthy adult contains low 

concentrations of AST (5-40 U/L), while liver cells contain high concentrations. A 

diseased or damaged liver releases AST into the bloodstream and elevates its 

concentrations there; this elevation can be detected and monitored using the AST test. For 

example, patients with acute hepatitis will have ten times the normal level of AST in their 

blood (~400 U/L), whereas those with chronic hepatitis will have four times the normal 

level (~160 U/L).39 
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 Alkaline Phosphatase (ALP): The blood of a healthy adult has low 

concentrations of ALP (30-120 U/L). The liver (as well as bone, the intestines and 

kidneys) generates ALP. ALP released into the bloodstream from damaged or diseased 

livers causes elevated concentrations. High levels of blood ALP can indicate liver 

conditions such as blocked bile ducts.39 

 Total Serum Protein (Protein): A Protein test measures the total amount of 

protein in the blood. The blood contains two main groups of proteins: albumin and 

globulins. Albumin is present in higher concentrations and it helps maintain blood 

pressure; globulins are important for the immune system. Normal levels range from 60-

83 g/L. Low levels of total serum protein can indicate, for example, liver disorders, 

kidney disorders, or malnutrition.39 

 Details for preparing, running, and analyzing the assays are described in the 

supplemental information. 

RESULTS AND DISCUSSION 

Design of the device 

 Patterned Paper: A device that performs multiple assays in parallel requires 

distinct reaction zones for each assay. Martinez et. al., previously reported a simple, 

inexpensive method to generate multiple reaction zones.13,40 They described the use of 

paper as a substrate and reaction zones created by making parts of that paper hydrophobic 

with SU-8. Carrilho et al., described the same features using commercial wax-based ink 

to pattern paper.38 Using wax-based ink is cheaper and more scalable than SU-8 (even 

“home-made” photoresist broadly similar to SU-8).10 In our system, devices with wax-

based hydrophobic barriers showed better wetting of the reagents and plasma in the 
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hydrophilic zones than did those in devices made using SU-8 as the hydrophobic barriers; 

complete removal of residual uncrosslinked SU-8 photoresist from the patterned paper in 

the reaction zones was difficult and required many rinsing steps using organic solvents 

(e.g., propylene glycol methyl ether acetate (PGMEA), toluene, and hexanes). Simply 

printing wax-based ink onto the desired paper, and then heating it briefly, allowed the 

wax to spread vertically through the whole thickness of the paper. This vertical spreading 

generated hydrophobic barriers around hydrophilic zones. The wax also spread laterally 

when heated;38 the diameter of the circles for the hydrophilic reaction zones in the printed 

sheets therefore had to be larger than the target size. We established empirically that the 

optimal diameter for these zones was 3 mm; these dimensions shrank to ~2 mm after 

heating. The minimal amount of blood needed to develop the assays dictated the final 

size and spacing of the zones.  

 The Filter or Plasma Separation Membrane (PSM): The red color of whole 

blood samples can interfere with the interpretation of colorimetric assays. A filter placed 

on top of the patterned paper removed the red blood cells and allowed only colorless 

plasma to flow into the detection zones. We tested seven commercially available filters 

(from Pall Corporation and Whatman) for their ability to separate red blood cells from 

plasma in a vertical configuration. We added 15 μL of whole blood to the top of 

assembled devices (Figure 3, the reaction zones were reagent-free). After 15 minutes, 

each of the three hydrophilic zones was assessed to determine if: i) plasma completely or 

partially wetted the zone, and ii) if blood —red coloration—was present in the zones. We 

considered a filter functional if all three zones were wetted with blood plasma only. A 

filter failed if: i) any of the three zones were only partially filled with blood plasma, ii) 
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Figure 3. 

 

Figure 3. Images of two Liver Function Test (LFT) devices constructed with a Vivid GX 

PSM (top) and a Fusion 5 filter (bottom). Top: a) The topside of the GX PSM with 

adsorbed red blood cells. b) The bottom side of the GX PSM device showing all three 

hydrophilic zones wetted with blood plasma; this device passed as fully functional. 

Bottom: c) The topside of the Fusion 5 showing adsorbed red blood cells. d) The bottom 

side of the Fusion 5 device showing all three zones containing red blood cells; this device 

failed for ineffective plasma separation. 
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any of the three zones were not wet at all, or iii) any of the three zones contained red 

blood cells. Table 1 summarizes the effectiveness of each filter type. Figures 3a and 3b 

show the results from a fully functional device assembled with a GX PSM; blood plasma  

wetted all three zones. Figures 3c and 3d show a failed device assembled with a Fusion 5 

filter; all three zones contain red blood cells. Both GX and GR membranes proved to be 

suitable for reliably filtering red blood cells from plasma in a vertical-flow 

configuration.41 GX PSMs were designed to work with smaller volumes of blood than the 

GR PSMs. We chose to continue using GX PSMs in all remaining experiments. 

 Alignment and assembly: Efficient transfer of the blood plasma required careful 

alignment of the filter above the reaction zones. Fellows® cold lamination sheets 

protected the reagents and held the PSM in place on the paper devices. 

 Assays on paper: The colorimetric assays for each analyte reached saturation 

after a given amount of time, which depended on the concentration of reagents stored in 

the reaction zones. A lower concentration of substrate reagents resulted in a faster 

development of the colorimetric assay, but at the cost of a decrease in the sensitivity of 

the assay to analyte concentration. Optimization of the assays on paper required a balance 

between sensitivity and time for development of each assay.  

 Calibration Curves: We generated calibration curves by spotting all three 

reaction-zones with the reagents for one assay and assembling devices with the PSM and 

plastic sheath. These conditions approximated those of actual device usage. Solutions of 

each analyte (from zero to ten times the upper limit of the normal range for AST and 

ALP, and from zero to ~two times the lower limit for Protein) prepared in an artificial 

blood plasma42 (ABP) buffer for a series of concentrations spanning the entire clinical 
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Table 1. Evaluation results of the ability of each filter to separate erythrocytes from 

plasma and wet all three zones on the device. Both GX and GR plasma filters (Pall 

Corporation) could reliably filter red blood cells from plasma in a vertical-flow 

configuration. 

Table 1. Assessment of red blood cell filtration of various filter types. 

Filter Supplier Zones Filled % Zones 
Filled 

Functional 
Devices 

GX Pall 24/24 100 8/8 

GR Pall 24/24 100 8/8 

GF Pall 21/24  88 5/8 

VF1 Whatman 9/24  38 0/8 

VF2 Whatman 4/24  17 0/8 

MF1 Whatman 0/24    0 0/8 

Fusion 5 Whatman 0/24    0 0/8 
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range were warmed to 37ºC and added to the device. We scanned the devices in five-

minute intervals as the assays developed, and analyzed each image for the total color, 

grayscale, red, green, and blue color intensity channels. The image that provided the best 

dynamic range of intensities over the different concentrations determined the best time 

and color channel with which to generate the calibration curve. For AST, the total color 

intensity channel analyzed at 20 minutes provided the largest range (zero concentration to  

saturation) of 71-125; for ALP, grayscale intensity analyzed at 30 minutes provided the 

largest range of 144-54; for Protein, red intensity analyzed at 30 minutes provided the 

largest range of 207-30. Overall, the test takes ~35 minutes to complete, from obtaining a 

sample of blood, to assay read-out to enable assessment and treatment within one visit 

(ASSURED - Rapid). Figures 4a-i, b-i, c-i plot the calibration curves for AST, ALP, and 

Protein, respectively. Exponential curves fitted the calibration curves to give equations 

relating concentration and color intensity (Table S1). It is important that the color of the 

assay at different levels of concentrations be sufficiently different to make an accurate 

interpretation of the results. For example, the color for the normal concentration range of 

AST (5-40 U/L) should be different from two-three times the upper normal limit (80-120 

U/L) and ten times the upper limit (400 U/L) to differentiate normal levels of enzyme 

from slightly elevated and dangerously elevated levels of enzyme.43 The calibration curve 

for AST indicates a sufficient difference in the color intensity for each of these ranges 

(the intensity at 40 U/L is ~76 ± 4, at 80 U/L is ~103 ± 11, and at 400 U/L is ~125 ± 4). 

The color intensity for the normal concentration range of ALP (~50 U/L) should be 

different from the value just above the upper normal limit (150 U/L) and ten times the 

upper limit (400 U/L).44 The calibration curve for ALP indicates a sufficient difference in 
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Figure 4. 
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Figure 4. Calibration (left) and Limit of Detection (LOD) Curves (right) for a) AST, b) 

ALP, and c) Protein. The boxes outlined in dotted lines on the calibration curves indicate 

the normal range for each analyte. The total color intensity analyzed at 20 minutes for 

each concentration generated the AST calibration curve. Grayscale intensity analyzed at 

30 minutes for each concentration generated the ALP calibration. Red intensity analyzed 

at 30 minutes for each concentration generated the Protein Calibration. The limits of 

detection were determined to be ~44 U/L, ~15 U/L, ~1 g/L for AST, ALP, and Protein, 

respectively. 
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the color intensity for each of these ranges (the intensity at 50 U/L is ~112 ± 4, at 200 

U/L is ~87 ± 6, and at 400 U/L is ~67 ± 4). The Protein assay is more sensitive to low 

levels of total serum protein than to high levels of total serum protein. To be clinically 

relevant, intensity values for concentrations lower than 45 g/L should be different from 

the lower normal limit (60 g/L).44 The calibration curve for Protein indicates a sufficient 

difference in the color intensity for these concentrations (the intensity at 40 U/L is ~82 ± 

12, and at 60 U/L is ~50 ± 7).The sufficient differences between normal range and high 

or low ranges for the assays meet the criteria for sensitive devices (ASSURED - 

Sensitive). The sizeable error bars for some of the analyte concentrations can be 

attributed to two sources: i) variation in the quantity of spotted reagents in the reaction-

zones due to manual fabrication of the devices, and ii) reagents that rendered the paper 

hydrophobic and made wetting of the zones with aqueous blood plasma difficult; 

insufficient wetting of the reaction-zones by the blood plasma caused incomplete or no 

assay development, and hence incomplete or no color change.45 Automating the spotting 

of reagents during device manufacture would likely decrease the variability from manual 

fabrication. Addition of surfactants to the reaction-zones helped to increase their 

hydrophilicity, which improved the wetting of the zones with plasma. Hill Plots46 

determined the limit of detection (LOD) for each assay (Figures 4a-ii, b-ii, c-ii). The 

LOD was determined to be in the normal range for both the AST and ALP assays (~44 

U/L and  ~15 U/L, respectively); the LOD for the Protein assay was determined to be at 

the low end of the range (~1.0 g/L). 

 Shelf-Life: Viable devices must still function after storage in different 

environments for at least one year.4 Drying of the reagents on paper helped to stabilize 
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them during storage, as did additives such as trehalose (AST assay).47 We tested devices 

containing ALP and AST assays that had been stored at room temperature for up to three 

months; the ALP assay still developed as expected, while the AST reaction zone already 

showed discoloration before the assay was performed (results not shown). AST assays 

were stable for at least one month at room temperature and for at least 3 months when 

stored at 4 ºC. Extensive testing in different environments (cool and hot, dry and humid) 

would be required to determine the shelf-life of these devices. 

 Cross-Reactivity: The colorimetric assays we chose for the markers of liver 

function are specific enough to prevent cross-reactivity with the other analytes tested on 

the device. We tested this hypothesis by assembling regular test devices (each of the three 

test zones contained the reagents for the different assays) and applying ABP spiked with 

only one analyte to the top of the device (unspiked ABP was used as a control). 

Sufficiently high concentrations of the analytes in ABP (AST (780 U/L), ALP (1200 

U/L), or BSA (150 g/L) elicited a response in the reaction zone containing the 

corresponding assay. Figure 5 summarizes the results from this cross-reactivity 

experiment. A sample device is shown above the intensity bars for each solution tested. 

We analyzed the intensities of all of the zones for each assay at the appropriate time and 

on the appropriate color channel (as determined from the calibration curves) and 

normalized the intensities against those from the control devices (unspiked ABP 

solution). The control devices treated with ABP solution showed no response in any of 

the assays, i.e., the ALP reaction zone remained colorless, the AST reaction zone 

remained dark blue, and the Protein reaction zone remained yellow. The devices treated 

with AST only showed a response in the AST assay; it turned pink, whereas the ALP 
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Figure 5. 

 

 

Figure 5. Results from testing the cross-reactivity of the enzymes prepared in artificial 

blood plasma. Samples were prepared with sufficient quantities of one analyte (AST (780 

U/L), ALP (1200 U/L), or BSA (150 g/L) to elicit a response in each assay. Analysis of 

each assay on the devices at the appropriate time and color channel determined the 

intensity of each analyte. Normalized intensities of each assay against the control ABP 

solution shows that each series of devices only elicited a response (i.e. an increase or 

decrease in intensity)48 between the analyte and their respective assay, indicating that 

each assay was specific for its analyte and that no cross-reactivity occurred.  
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zone remained colorless and the Protein zone remained yellow. Similarly, the ALP 

solution elicited a response only in the ALP assay (it turned purple), and the BSA 

solution elicited a response only in the Protein assay (it turned green). These results 

indicate that cross-reactivity between assays and analytes did not occur; each assay is 

specific for its intended analyte (ASSURED - Specific). 

 Analysis in whole blood: We have established the performance of the devices 

using artificial blood plasma as a surrogate for whole blood. To validate that the new 

blood testing platform is a viable prototype, we demonstrated its ability to process whole 

blood samples and still reliably develop the assays. Five different samples of blood were 

assessed: an unspiked sample of blood obtained from a fingerstick of a human subject, a 

sample of human blood purchased from a blood bank and spiked with: i) all three 

analytes (AST, ALP, and BSA), ii) AST only, iii) ALP only, and iv) BSA only. A device 

spotted with ABP served as a control in which no reaction would occur. Figure 6 shows 

the devices from this experiment. The blood from a fingerstick gave results consistent 

with the colors within the normal range for AST and ALP analyte compared to a control 

using ABP; the Protein assay developed green, which is consistent with protein being 

present in blood. The blood sample spiked with all three analytes produced a response in 

all three assays; AST turned pink, ALP turned purple and Protein turned green. The blood 

sample spiked with only AST registered a response in the AST assay. The sample spiked 

with ALP registered a response in the ALP assay. Both AST-spiked and ALP-spiked 

samples also registered a response for Protein which is normal since the blood of a 

healthy person should measure between 60 and 83 g/L of protein. The sample of blood 

spiked with BSA registered a response only in the Protein assay. 
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Figure 6. 

 

Figure 6. Samples of devices tested using whole blood samples after 30 minutes. a) An 

unspiked sample from a fingerstick. A sample of whole blood spiked with sufficient 

quantities to elicit a response in each assay: b) all three analytes, c) AST only, d) ALP 

only, e) BSA only. f) A control with ABP without any analytes. 
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 The actual concentrations of the analytes in the spiked whole blood samples were 

not measured. Based on the estimated quantity of enzyme added from the stock solutions, 

the theoretical concentrations in the samples were ~4000 U/L for AST, ~26000 U/L for 

ALP, and/or ~50 g/L for Protein. The concentrations calculated based on the color 

intensity for the samples analyzed at the specified times for each analyte are summarized 

in Table S2. The values calculated for AST and ALP in the spiked samples were lower 

than the theoretical values. The discrepancies could be the result of one or a combination 

of several factors. i) We generated the calibration curves using a surrogate artificial blood 

plasma (ABP) and not real blood plasma, which could affect the measured color 

intensities. The presence of a background color from the red blood cells on the top side of 

the filter could affect the color intensity of the developed assay. ii) The activities of the 

enzymes could have been lower than the measured value on the bottle, perhaps due to 

aging of the stock solution. iii) The variation in the quantity of spotted reagents in the 

reaction-zones due to manual fabrication of the devices could potentially alter the rate of 

color development for a particular assay. The platform, overall, is effective for separating 

blood plasma and developing three separate assays simultaneously.  

Conclusions 

 This paper presents a new platform for measuring analytes in blood obtained from 

a fingerstick that consists of three simple components: paper, a plasma filter, and a plastic 

sheath. The platform satisfies all aspects of the ASSURED guidelines developed by the 

WHO for POC diagnostic devices suitable for low-resource settings. It offers  

several advantages including: i) the device only requires microliter volumes of fluid 

which can be obtained from a fingerstick and alleviates the challenge of specimen 
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collection, ii) sample preparation and processing is all done on one device; the use of a 

single chip simplifies the challenge of specimen processing—reagents are all stored on 

chip, iii) multiple assays develop simultaneously, iv) the device is inexpensive, light 

weight, portable, energy efficient (no pump or external equipment is needed to run the 

assays), robust, and contains no integrated sharps, v) the device can be integrated with 

telemedicine for quantitative off-site diagnosis of disease, and vi) the device can be 

incinerated for easy disposal.  

 Although this paper presents significant initial work towards a complete point-of-

care liver function device, several issues need to be resolved before the device would be 

truly suitable for distribution in low-resource settings. For instance, more in-depth 

stability analyses – particularly at elevated temperatures, and studies of other potential 

substances that could interfere with the assays. A manufacturability assessment will also 

need to be addressed before field-testing. The calibration curves presented here do not 

account for background color contributed by blood plasma. This problem can be 

addressed by either generating calibration curves using whole blood samples with known 

concentrations of analytes, or including an extra zone on the device as a control that can 

be used to subtract the background color from the plasma. Additionally, while we have 

demonstrated the performance of our device on spiked samples of whole blood, a more 

rigorous analysis of device performance on clinical specimens, especially in the hands of 

minimally trained users, is needed. These studies will be performed in future work. 

Current methods of monitoring health based on symptoms in developing countries 

are often times ineffective. The introduction of a zero-cost diagnostic platform for 

monitoring liver function establishes a new level of health care currently unavailable in 
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resource-poor settings. Diagnostics for All, Inc. (DFA), a non-profit organization, is 

working towards commercializing a version of the liver function device described in this 

paper.49 
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