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Abstract. We validate satellite methane observations from
the Tropospheric Emission Spectrometer (TES) with 151 air-
craft vertical profiles over the Pacific from the HIAPER Pole-
to-Pole Observation (HIPPO) program. We find that a col-
location window of±750 km and±24 h does not introduce
significant error in comparing TES and aircraft profiles. We
validate both the TES standard product (V004) and an exper-
imental product with two pieces of information in the ver-
tical (V005). We determine a V004 mean bias of 65.8 ppb
and random instrument error of 43.3 ppb. For V005 we de-
termine a mean bias of 42.3 ppb and random instrument er-
ror of 26.5 ppb in the upper troposphere, and mean biases
(random instrument errors) in the lower troposphere of 28.8
(28.7) and 16.9 (28.9) ppb at high and low latitudes respec-
tively. Even when V005 cannot retrieve two pieces of in-
formation it still performs better than V004. An observation
system simulation experiment (OSSE) with the GEOS-Chem
chemical transport model (CTM) and its adjoint shows that
TES V004 has only limited value for constraining methane
sources. Our successful validation of V005 encourages its
production as a standard retrieval to replace V004.

1 Introduction

Methane is the second most powerful anthropogenic green-
house gas after carbon dioxide (Forster et al. 2007). Present
day methane concentrations are∼2.5 times higher than those

of the pre-industrial atmosphere (Etheridge et al., 1998).
This change is presumably driven by increasing emissions,
but may also reflect changes in the chemical sink (reaction
with the OH radical) (Forster et al. 2007). The magnitude
of global methane emissions is constrained within±15 %
by knowledge of the global sink, but the magnitudes and
trends of emissions from different source types and source
regions are far more uncertain (Forster et al. 2007, Denman
et al. 2007). Inverse modeling of atmospheric observations
has emerged over the past decade as a powerful tool to re-
duce these uncertainties. Most inverse studies so far have re-
lied on surface observations (Bergamaschi et al., 2005, 2010;
Bousquet et al., 2006; Chen and Prinn, 2006; Fletcher et al.,
2004; Hein et al., 1997; Houweling et al., 1999; Meirink et
al., 2008b) but the sparsity of the network limits the abil-
ity to resolve sources (Villani et al., 2010). A few stud-
ies have used observations from the SCIAMACHY satel-
lite instrument over land (Bergamaschi et al., 2007, 2009;
Meirink et al., 2008a). Satellite observations of atmospheric
methane provide dense spatial coverage but must be care-
fully validated to enable inverse modeling. We use here ex-
tensive vertical profiles of methane measured from aircraft
by the HIAPER Pole-to-Pole Observation (HIPPO) program
over the Pacific (Wofsy et al., 2011) to characterize errors
in methane retrievals from the Tropospheric Emission Spec-
trometer (TES) aboard the NASA Aura satellite. We show
that the standard product currently available from TES is of
limited utility for inverse modeling, but also validate a new
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TES product with increased vertical information and more
promise.

Tropospheric methane is well-mixed, with a lifetime of
about 9 yr (Denman et al. 2007). Space-borne observa-
tions of column methane require precision of 1–2 % and
accuracy of at least 1 % for inverse modeling of methane
sources (Meirink et al., 2006). Methane can be retrieved
from nadir measurements of solar backscatter in the near
infrared (NIR) or terrestrial radiation in the thermal in-
frared (TIR). NIR retrievals are sensitive to the entire tro-
pospheric column, but their dependence on reflected sunlight
precludes observations at night, over most ocean surfaces,
and over most cloudy targets. NIR retrievals are available
from the Scanning Imaging Absorption SpectroMeter for At-
mospheric CHartographY (SCIAMACHY) for 2003–2009
(Frankenberg et al., 2011) and from the Greenhouse gases
Observing SATellite (GOSAT) for 2009–present (Yokota et
al., 2009).

TIR methane retrievals have limited sensitivity to the
lower troposphere due to lack of thermal contrast, but they
can be performed day and night, over land and ocean, and
for partly cloudy scenes. Uncertainties in atmospheric tem-
perature, surface emissivity, and spectroscopic parameters of
methane and interfering gases including water vapor, N2O,
and HDO limit the precision of TIR methane retrievals (Wor-
den et al., 2004; Xiong et al., 2008). The Interferomet-
ric Monitor of Greenhouse gases (IMG) aboard the ADEOS
satellite was the first space-borne instrument used to retrieve
tropospheric methane from the TIR (Clerbaux et al., 2003;
Kobayashi et al., 1999). It was operational only from Au-
gust 1996 to June 1997. The Atmospheric Infrared Sounder
(AIRS) and the Infrared Atmospheric Sounding Interfer-
ometer (IASI) have provided TIR methane retrievals from
2002-present and 2007-present respectively (Crevoisier et
al., 2009; Razavi et al., 2009; Xiong et al., 2008). The
Tropospheric Emission Spectrometer (TES) aboard the Aura
satellite was launched in July 2004 and remains operational,
providing so far seven years of nearly continuous global
methane retrievals. The current standard methane data prod-
uct is version 4 (V004), but no validation has been published
so far. A new TES methane product (V005) has recently been
developed and is in the prototype stage (Worden et al., 2012).
The V005 retrieval offers sensitivity lower in the atmosphere
by expanding the spectral range used in the retrieval, thus in-
creasing the value of TES methane for identifying methane
sources.

Before satellite retrievals can be used for inverse modeling
of methane sources, their systematic and random errors must
be characterized. Previous validations of SCIAMACHY
and GOSAT have used coincident observations from a lim-
ited number of ground based Fourier transform spectrome-
ters (FTS), most of which are located in Europe and eastern
North America (Dils et al., 2006; Morino et al., 2011; Suss-
mann et al., 2005). AIRS methane has been validated with
NOAA/GMD aircraft profiles from 22 locations (Xiong et

al., 2008), though mainly in a small latitudinal range over
North America and not extending above 400 hPa. HIPPO
provides a unique resource for satellite validation with near-
continuous curtains of methane vertical profiles from near-
surface to 330–180 hPa over a wide latitudinal range (67◦ S–
85◦ N).

2 Data

2.1 TES

TES is in a sun-synchronous polar orbit with an equator
overpass local time of∼13:45. It makes nadir observations
with a spatial resolution of 5.3 by 8.3 km2. Observations are
made every 182 km along the orbit track. Successive orbit
tracks are separated by about 22◦ longitude. The most re-
cent publicly available TES methane product is V004 (avail-
able athttp://eosweb.larc.nasa.gov/), using spectral windows
of 1292.02–1305.76 cm−1 (7.658–7.740 µm) and 1307.02–
1307.8 cm−1 (7.646–7.651 µm). Vertical methane profiles
are retrieved using the Rodgers (2000) optimal estimation
technique:

lnẑ = lnza+A(lnz− lnza) (1)

whereẑ is the retrieved vertical profile vector consisting of
mixing ratios on a fixed pressure grid,A is the averaging
kernel matrix that represents the sensitivity of the retrieved
profile to the true profilez, andza is the a priori specified
from the MOZART chemical transport model (CTM). The
retrieval method and error characterization are described by
Bowman et al. (2006). A previous version of the methane
retrieval (V003) is described by Payne et al. (2009).

Figure 1 (left panel) shows a typical TES V004 averag-
ing kernel matrix in the tropics. The sensitivity peaks in
the mid-upper troposphere at 200-400 hPa. The degrees of
freedom for signal (DOFS) is defined as the trace of the av-
eraging kernel matrix and estimates the number of pieces
of information in the vertical profile. TES V004 methane
retrievals have 0.6-1.6 DOFS, highest over warm surfaces.
In view of this limited resolution we reduce each TES ver-
tical profile to a single representative tropospheric volume
mixing ratio (RTVMR) as recommended by the TES Level
2 Data User’s Guide (http://tes.jpl.nasa.gov/uploadedfiles/
TESDataUsersGuideV40.pdf) and described by Payne et
al. (2009). The RTVMR is a tropospheric column average
mixing ratio weighted by vertical sensitivity. The RTVMR
approach maps the retrieved methane profile from the stan-
dard 67-level pressure grid to a four-level grid uniquely de-
fined for each TES retrieval and consisting of points at (1)
the Earth’s surface, (2) the altitude of maximum sensitivity,
(3) the tropopause, and (4) the top of the atmosphere:

ẑc = M∗ẑ (2)

Atmos. Chem. Phys., 12, 1823–1832, 2012 www.atmos-chem-phys.net/12/1823/2012/

http://eosweb.larc.nasa.gov/
http://tes.jpl.nasa.gov/uploadedfiles/TESDataUsersGuideV4_0.pdf
http://tes.jpl.nasa.gov/uploadedfiles/TESDataUsersGuideV4_0.pdf


K. J. Wecht et al.: Implications for inverse modeling of methane sources 1825

Fig. 1. Typical averaging kernel matrices for TES methane retrievals over the tropical ocean: V004 (left) and V005 (right). Data are from
the same target on 7 November 2009 at 1.1◦ S and 166.9◦ W. Lines are the individual rows of the averaging kernel matrix and represent
the sensitivities of retrieved methane at given pressure levels to methane concentrations throughout the atmospheric column. Black circles
indicate the pressure levels used for comparison to the HIPPO aircraft observations.

Here ẑc is the TES profile on the four-level RTVMR grid,
ẑ is the TES profile on the 67-level pressure grid, andM∗

is the triangular interpolation matrix that maps the fine grid
onto the coarse grid. Values ofẑc at the second lowest ele-
vation define the RTVMR, termedyR, and represent most of
the TES information. The black circle in Fig. 1 marks the
pressure level associated withyR for that particular profile.

V005 methane offers sensitivity lower in the atmosphere
by expanding the spectral range of the retrieval (Worden
et al., 2012), and lower systematic biases by normalizing
the methane columns using simultaneously retrieved N2O
columns. For this study, V005 retrievals were performed on
an experimental basis along the HIPPO I and II flight paths.
Figure 1 (right panel) shows the V005 averaging kernel ma-
trix from the same target as previously shown for V004.
V005 DOFS are on average 0.5 greater than for V004. Verti-
cal sensitivities for V005 targets with DOFS>1.6 have two
tropospheric maxima in the upper and mid troposphere, near
200 and 550 hPa respectively. In order to capture these two
pieces of vertical information, we modify the RTVMR ap-
proach for scenes with DOFS>1.6 by defining a five-level
pressure grid onto which we map the 67-level TES retrieval.
The five pressure levels are uniquely defined for each TES re-
trieval and are located at (1) the Earth’s surface, (2) the lower
tropospheric level of maximum sensitivity, (3) the upper tro-
pospheric level of maximum sensitivity, (4) the tropopause,
and (5) the top of the atmosphere. The second and third
pressure levels define lower and upper tropospheric VMRs,
termedyL andyU respectively. The black circles in Fig. 1
mark the levels associated withyL andyU. For TES V005
scenes with DOFS≤1.6, we follow the original RTVMR ap-
proach and validate a single piece of information,yR.

2.2 HIPPO and application of the TES Operator

Figure 2 shows the flight paths of NSF’s Gulfstream V (GV)
during the first two HIPPO missions in January and October–
November 2009 (HIPPO I and II respectively). The GV
transected the Pacific Ocean from 85N to 67S, performing
in-progress vertical profiles every∼220 km or 20 minutes
(Wofsy et al., 2011). Methane was measured with a Quan-
tum Cascade Laser Spectrometer (QCLS) at 1 Hz frequency
with accuracy of 1.0 ppb and precision of 0.5 ppb (Kort et al.,
2011). HIPPO methane data are reported on the NOAA04
calibration scale. Latitudinal curtains of the data are shown
in Fig. 2. For direct comparison to TES methane we isolate
each vertical profile performed by the GV, map the data on
the 67 levels of the TES pressure grid, and extrapolate above
the GV ceiling using the shape of the TES a priori profile.
We then apply the TES observation operator to the resulting
HIPPO profile,zH:

lnẑH = lnza+A(lnzH − lnza) (3)

Here ẑH represents the profile that would have been re-
trieved had TES sampled the same air as HIPPO, according
to the averaging kernel matrix and in the absence of other
errors. We calculateyR, yL , andyU from ẑH as described
earlier.

3 TES validation

3.1 Approach

TES and HIPPO profiles are not perfectly coincident in
time and space. To compare the data sets, we must define
an appropriate spatio-temporal coincidence window. Pre-
vious TES validation studies for tropospheric ozone with
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Fig. 2. The left panel shows flight paths of HIPPO missions I and II during January and October–November 2009 respectively. Center and
right panels show methane concentrations as a function of latitude and pressure measured during southbound and northbound flight paths of
HIPPO I and II. Black lines show the aircraft profiles with methane data. Solid contours are interpolated.

Fig. 3. Error statistics for TES V004 methane plotted as a function of the size of the coincidence window for the HIPPO I and II vertical
profiles. Green and blue symbols represent coincident time windows of±24 h and±12 h respectively. Values shown are the mean value
(mean bias) and residual standard deviation of the difference1yR between TES and HIPPO representative tropospheric volume mixing ratios
(RTVMRs). The numbers of observations in the statistics are shown in the right panel. Error bars in the left panel represent standard errors
on our estimates of the mean bias.

ozonesondes used coincidence criteria from±9 h to ±48 h
and 300 km to 600 km (Worden et al., 2007; Nassar et al.,
2008). The high density of the HIPPO data allows an ob-
jective analysis of the collocation error and its effect on the
validation constraints.

For each HIPPO vertical profile (covering∼220 km in
∼20 min), we calculate a mean location and time. We then
find all TES observations coincident with the HIPPO profile
in a specified (space, time) coincidence window. Where a
single TES observation is coincident with multiple HIPPO
profiles, we match it to the nearest HIPPO profile in time
and space, weighting time and space equally within the co-
incidence window. We calculateyR, yL , andyU from the
TES and HIPPO profiles. From the statistics of the TES-
HIPPO differences,1yR, 1yL , and 1yU, we calculate a
mean TES bias (mean value of1y) and residual standard
deviation (standard deviation of1y).

Figure 3 shows the TES V004 mean bias and residual stan-
dard deviation as a function of the size of the coincidence
window. If collocation error were significant, we would ex-
pect the residual standard deviation to increase with the size
of the coincidence window. This is not the case, implying
that collocation error is not significant on scales up to 750 km
and 24 h. This may reflect the lack of fine-scale variabil-
ity in the HIPPO data (Fig. 2) due to the remoteness from
methane sources. We will use coincidence requirements of
750 km and 24 h in what follows, matching 151 HIPPO pro-
files to 398 V004 TES observations. Validation statistics are
reported in Table 1 and discussed below.

3.2 V004 validation

Figure 4 shows the TES-HIPPO differences1yR as a func-
tion of latitude. We combine HIPPO I and II data because

Atmos. Chem. Phys., 12, 1823–1832, 2012 www.atmos-chem-phys.net/12/1823/2012/
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Table 1. TES V004 and V005 Methane Validation Statistics1.

Observations Mean Bias (ppb) Instrument Error (ppb) # TES

V004yR 65.8 43.3 398
V005yR (DOFS≤1.6) 28.7 24.7 109

yU 42.3 26.5 280
yL (20◦ S–20◦ N) 16.9 28.9 136
yL (>20◦) 28.8 28.7 144

1 Mean biases and random instrument errors for representative tropospheric volume mixing ratios (RTVMRs) from the TES V004 and V005 retrievals. The V004 retrievals and the
V005 retrievals with DOFS≤1.6 yield a single RTVMR valueyR. The V005 retrievals with DOFS>1.6 yield two RTVMR values, one for the upper troposphere (yU) and one for
the lower troposphere (yL ), as described in the text. Mean biases and random instrument errors are obtained from TES-HIPPO difference statistics (1y). Mean biases foryL are
significantly different for low latitudes (20◦ S–20◦ N) and high latitudes (>20◦). Other error statistics do not vary significantly with latitude.

Fig. 4. Latitudinal profile of the difference1yR between TES V004
and HIPPO methane concentrations (RTVMRs) during HIPPO I &
II in January and October–November 2009. Symbols represent in-
dividual HIPPO vertical profiles, and associated vertical bars are the
theoretical error standard deviations reported in the TES retrievals.
Black circles and vertical bars are the means and standard devia-
tions of1yR binned by 10◦ latitude.

validation statistics are similar. We find a mean bias
of 65.8 ppb (3.7 %) with a residual standard deviation of
43.8 ppb (2.4 %). The residual standard deviation contains
contributions from random instrument error in the TES re-
trievals and error induced by extrapolating above the ob-
served HIPPO profiles. We estimate the extrapolation er-
ror from the variability in upper troposphere lower strato-
sphere (UTLS) methane concentrations observed during
HIPPO, the Airborne Southern Hemisphere Ozone Exper-
iment (ASHOE), the Stratospheric Tracers of Atmospheric
Transport (STRAT), and the Photochemistry of Ozone Loss
in the Arctic Region in Summer (POLARIS) (Elkins et al.,
1996; Hurst et al., 1999). From these data sets we infer neg-
ligible error in extrapolation up to the local tropopause or
200 hPa, whichever is higher, and an error standard deviation
of 6 % above. Using local tropopause data from the GEOS-
5 assimilation by the NASA Global Modeling and Assim-
ilation Office (GMAO). We estimate an extrapolation error

Fig. 5. Vertical profiles of V004 (top) and V005 (bottom) observed
and theoretical relative errors. Blue lines represent the relative stan-
dard deviation of̂z− ẑH. Black and yellow lines represent the mean
and standard deviation of the diagonals of the TES observation error
covariance matrices.

standard deviation of 6.7 ppb, Assuming that instrument and
extrapolation errors add in quadrature, we conclude that the
TES instrument error is 43.3 ppb (2.4 %).

This TES instrument error quantified by comparison with
HIPPO observations is larger than the TES V004 theoreti-
cal error of 1.1 %. Theoretical errors are the square roots of
the diagonals of the TES self-reported error covariance ma-
trices described by Boxe et al. (2010). Figure 5 shows the
vertical structure of V004 theoretical and observed errors,
the latter defined as the standard deviations of TES-HIPPO
residual profiles (̂z− ẑH). Observed errors are consistently
higher than theoretical errors.

There is no apparent trend in1yR bias as a function of
latitude. An analysis of variance (ANOVA) fails to find

www.atmos-chem-phys.net/12/1823/2012/ Atmos. Chem. Phys., 12, 1823–1832, 2012



1828 K. J. Wecht et al.: Implications for inverse modeling of methane sources

Fig. 6. Latitudinal profiles of the differences1y between TES
V005 and HIPPO methane concentrations during HIPPO I and II
in January and October–November 2009. The top two panels show
results for the lower and upper tropospheric TES data (1yL and
1yU, respectively) in scenes where the degrees of freedom for sig-
nal (DOFS) exceeds 1.6. The bottom panel shows results for the
RTVMR (1yR) in scenes where the DOFS is lower than 1.6. Blue
vertical bars are the theoretical error standard deviations reported in
the TES retrievals. Black circles and vertical bars are the means and
standard deviations binned by 10◦ latitude.

statistically significant differences between the mean biases
in 10-degree latitude bins (Fig. 4), with a p-value of 0.80.
The standard deviation of1yR increases north of 40◦ N. This
trend is driven by larger1yR values over land (residual stan-
dard deviation of 52.0 ppb) than over ocean (39.6 ppb). The
mean biases of land and ocean observations are 68.4 ppb
(3.8 %) and 64.6 ppb (3.6 %), respectively. The biases are not
statistically significantly different, with a two-sidedp-value
of 0.43.

Fig. 7. Methane emissions [Mg per grid square per month] in the
GEOS-Chem CTM for July–August 2008 at 4◦

×5◦ horizontal res-
olution. These are taken as the “true” emissions for the OSSE inver-
sion of methane sources. Gray represents regions covered by ocean
or ice.

3.3 V005 validation

Figure 6 shows the latitudinal distribution of V005-HIPPO
residuals for all observations within coincidence require-
ments determined previously (±750 km,±24 h). The bot-
tom panel depicts1yR comparisons for scenes with DOFS
≤1.6. These show V005yR to be more accurate and pre-
cise than V004yR, with a mean bias of 28.7 ppb (1.6 %) and
residual standard deviation of 30.0 ppb (1.7 %). We subtract
extrapolation error in the same way as before and calculate a
V0051yR instrument error of 24.7 ppb (1.4 %). This error is
larger than the V005 self-reportedyR error of 0.8 %. There is
no significant trend in error over the limited latitudinal range
of the data.

Figure 6 top and middle panels show the latitudinal distri-
butions of1yU and1yL for scenes with DOFS> 1.6. There
is no significant trend in1yU bias or residual standard devia-
tion as a function of latitude. We therefore calculate a single
mean bias of 42.3 ppb (2.4 %) with a residual standard devi-
ation of 30.9 ppb (1.7 %). Removing the extrapolation error
implies a TES instrument error of 26.5 ppb (1.5 %). There is
no significant trend in1yL residual standard deviation as a
function of latitude, but an ANOVA reveals that1yL mean
biases in 10-degree latitude bins are marginally significantly
different, with a p-value of 0.06. We therefore report separate
validation statistics for1yL at low latitudes (20◦ S–20◦ N)
and at high latitudes. Mean biases for low and high lati-
tude1yL are 16.9 ppb (0.9 %) and 28.8 ppb (1.6 %), respec-
tively. Residual standard deviations of low and high latitude
1yL are 29.2 ppb (1.6 %) and 29.8 ppb (1.7 %), respectively.
Removing extrapolation error implies low and high latitude
1yL TES instrument errors of 28.9 ppb (1.6 %) and 28.7 ppb
(1.6 %), respectively.

V005 observed errors are larger than self-reported errors
for yU andyL of 1.0 % and 0.9 % respectively. Errors for

Atmos. Chem. Phys., 12, 1823–1832, 2012 www.atmos-chem-phys.net/12/1823/2012/
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Fig. 8. Relative (left) and absolute (right) error of a priori (top) and optimized (bottom) methane emissions. Red and blue represent over and
underestimates respectively. Gray represents regions covered by ocean or ice.

individual retrievals are typically larger than the theoretical
error, as indicated by the error bars in Fig. 6. Figure 5 shows
the vertical structure of V005 theoretical and empirical er-
rors. Observed errors match the vertical shape of theoretical
errors but are larger. This suggests that a uniform scaling
of the observation error covariance matrix is needed for suc-
cessful use of the V005 product for inverse modeling.

4 Utility of TES V004 data for inverse modeling of
methane sources

We conduct here a simple observation system simulation ex-
periment (OSSE) to evaluate the utility of the TES V004
standard methane product for constraining methane sources
through inverse analysis. For this purpose we generate
“true” atmospheric methane concentrations in the GEOS-
Chem CTM (Pickett-Heaps et al., 2011) with 4◦

×5◦ horizon-
tal resolution using a “true” emission distribution as shown in
Fig. 7. We sample the “true” concentrations at the times and
locations of TES observations, apply the TES observation
operator, calculateyR, and add random Gaussian noise with
standard deviation of 40 ppb, as per our validation results in
Table 1. We then perturb the “true” emission distribution to
produce a deliberately incorrect a priori, and assimilate the
synthetic observations to generate an “optimized” emissions
estimate. Comparison of the “true” and “optimized” emis-
sions provides a measure of the utility of TES for constrain-
ing methane emissions.

We perform the OSSE for July–August 2008. There are
40 600 TES observations during this period. The ensemble of

synthetic observations sampling the “true” atmosphere con-
stitutes a vectoryO of RTVMR values. The GEOS-Chem
simulation with perturbed emissions generates a correspond-
ing model vectoryM . The “true” emissions on the 4◦

×5◦

grid (land only) define a state vectorx. The perturbed emis-
sion values represent the a priorixa and are increased or de-
creased by 50 % relative tox in large blocks as depicted in
Fig. 8. We perform Bayesian optimization by minimizing the
least squares scalar cost function,J (x):

J (x) = (yM −yO)T S−1
e (yM −yO)+(x −xa)

T S−1
a (x −xa) (4)

HereSe andSa are the observational and a priori error covari-
ance matrices, respectively.Se contains contributions from
instrument, model, and representation errors. We estimate
the total observational error by applying the Relative Resid-
ual Error (RRE) method to actual TES data and correspond-
ing GEOS-ChemyR (Heald et al., 2004). This method at-
tributes the temporal mean of model-observation differences
for a given grid square to an error in methane emissions,
and the residual to observational error. We calculate a mean
44.6 ppb RRE for the ensemble of TES observations used in
the V004 validation and use this value to populate the diago-
nal of Se. From the residual difference between HIPPO and
GEOS-Chem RTVMR, we estimate a combined model and
representation error of 16.3 ppb, indicating that the observa-
tional error is principally contributed by the instrument error.

Error correlations between observations can be neglected
at 4◦

×5◦ resolution (Heald et al., 2004), soSe is diago-
nal. Sa is also diagonal and assigns 50 % error to emis-
sions, commensurate with the perturbation made to the “true”

www.atmos-chem-phys.net/12/1823/2012/ Atmos. Chem. Phys., 12, 1823–1832, 2012
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Fig. 9. Scatterplot of optimized vs. “true” methane emissions for
individual 4◦×5◦ grid squares. Blue and red points show emissions
with negative and positive a priori perturbations, respectively. The
a priori perturbations correspond to the blue and red lines.

emissions. Although the a priori errors in Fig. 8 are highly
spatially correlated through the use of homogeneous pertur-
bations in large blocks, this correlation is mainly for ease of
interpretation and we would not expect such correlation in
actual a priori errors. We therefore do not include error co-
variance terms inSa.

We use GEOS-Chem and its adjoint to iteratively solve
∇xJ (x) = 0. The GEOS-Chem adjoint was developed by
Henze et al. (2007) with application to CO source optimiza-
tion by Kopacz et al. (2009). Our application to methane fol-
lows that for CO. The GEOS-Chem adjoint methane simu-
lation calculates∇xJ (x), and in combination with a steepest
descent algorithm, iterates to find∇xJ (x) = 0.

Figures 8 and 9 show the extent to which the optimization
can correct the initially wrong a priori. TES has success for
some individual 4◦×5◦ grid squares with particularly large
emissions and therefore large∇xJ (x). In general, however,
it corrects less than half of the a priori error. We conclude
that V004 is only of limited value for constraining methane
emissions. Considering that most of the observational error
is due to instrument error, reducing that error would improve
the inversion. The TES V005 data with smaller errors and
higher DOFS therefore hold promise but quantitative testing
must await availability of a global database of averaging ker-
nels.
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