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Abstract. We propose modifying the aperture of a conventional color
camera so that the effective aperture size for one color channel is smaller
than that for the other two. This produces an image where different color
channels have different depths-of-field, and from this we can computa-
tionally recover scene depth, reconstruct an all-focus image and achieve
synthetic re-focusing, all from a single shot. These capabilities are en-
abled by a spatio-spectral image model that encodes the statistical rela-
tionship between gradient profiles across color channels. This approach
substantially improves depth accuracy over alternative single-shot coded-
aperture designs, and since it avoids introducing additional spatial dis-
tortions and is light efficient, it allows high-quality deblurring and lower
exposure times. We demonstrate these benefits with comparisons on syn-
thetic data, as well as results on images captured with a prototype lens.

1 Introduction

Coded-aperture depth-from-defocus (DFD) techniques (e.g., [1, 2]) have signif-
icantly improved our ability to computationally recover depth from a single
image. The recovered depth information can be used to deblur the observations
and generate a sharp image of the scene, and this provides post-capture op-
portunities for extending depth of field, changing focus, and creating synthetic
views—all from a single exposure. The key idea in these methods is to control
the optical blur induced by defocus by inserting a coded pattern into the aper-
ture of a conventional camera. The pattern is designed so that images of scene
patches at different depths exhibit distinctive statistical spatial structure, and
this improves one’s ability to discriminate between depth levels.

Existing single-shot DFD techniques recover depth by relying on statistical
models that encode the spatial structure of sharp natural images. This is neces-
sary because the problem is ill-posed, with both the depth map and the scene
radiance being unknown. Depth accuracy is therefore limited by the inherent
variability of the visual world, and even though existing aperture codes dra-
matically improve depth discrimination, user intervention is still often required
to produce a reliable depth map [1]. Furthermore, the improvement in depth
discrimination comes at a cost: the quality of the sharp image that can be ob-
tained from the depth map and the input observations is diminished because (1)
a coded aperture transmits less light than a regular aperture; and (2) the blur
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Fig. 1. The proposed color-coded aperture generates reliable estimates of scene depth
with greater accuracy than color-neutral approaches (no user interaction is required),
while simultaneously allowing high-quality deblurring.

it induces is harder to invert [3]. These drawbacks have motivated consideration
of acquisition systems that compromise on the convenience of a single exposure,
and sequentially acquire multiple images with complimentary aperture codes [3].

This paper proposes an alternative aperture design and estimation approach
for single-shot DFD based on the following premise: while spatial gradients in any
individual color channel exhibit substantial variability, there is a stronger statis-
tical relationship between spatial gradient profiles across different color channels.
We exploit this relationship for depth recovery by inserting a ring-shaped color
filter in the camera aperture (see Fig. 1), thereby inducing different depths-of-
field in different color channels. The channels in the recorded image are affected
by different degrees of defocus blur, and by appropriately defining a spatio-
spectral image prior, we can reliably estimate depth from this spectrally-varying
defocus. We show empirically that this approach yields depth estimates that
are more accurate than those of existing single-shot DFD methods, and that
it enables the automatic recovery of depth without user intervention. We also
show that it can provide high-quality sharp images— both because the aperture
pattern is more light efficient and because the approach relies on introducing
spectral blur variation instead of increased spatial distortion— and that deblur-
ring can be achieved efficiently through the use of a color-adapted version of fast
deconvolution approaches based on half-quadratic splitting [4].

1.1 Related Work

Cameras with finite apertures record images that are affected by depth-dependent
defocus blur, and so blur can be used as a cue for recovering depth. To obtain
depth this way, traditional DFD approaches capture multiple images of the same
scene with varying focal distance (e.g., [5]) or aperture size [6]. When the camera



Depth and Deblurring from a Spectrally-varying Depth-of-Field 3

is calibrated, this is often sufficient to disambiguate between depth and surface
radiance. In contrast, estimation with a single image is considerably more ill-
posed. To address this, coded-aperture techniques [1, 2] use a prior model for
the spatial structure of natural images—usually a probability distribution on
spatial gradients of greyscale images— and an aperture mask that is designed
from this prior. Together, the mask and the prior significantly improve single-
shot depth estimation over what is possible with a regular un-coded aperture.

However, coded single-shot approaches still struggle to handle the variability
in real-world images, and often require manual intervention to generate reliable
depth maps [1]. Moreover, one’s ability to use the observations and the recovered
depth to subsequently recover a sharp all-focus image is diminished because
the spatial distortion introduced by the code for depth discrimination has the
undesirable side-effect of attenuating important spatial frequency content [3].
These limitations have inspired researchers to re-consider the less convenient
multi-shot DFD, where distinct and complimentary aperture codes are applied
in sequential exposures for reliable deblurring and depth estimation [3, 7].

A key observation is that these existing coded DFD techniques ignore color in-
formation by using color-neutral codes and leveraging spatial statistics alone.We
show that a statistical model encoding joint spatio-spectral image structure is
significantly more powerful for single-shot DFD. It enables depth estimation with
greater accuracy than a color-neutral aperture optimized for the same task, while
allowing the same quality of deconvolution as a regular un-coded aperture.

Recently, Cossairt and Nayar [8] proposed a color-based approach to invert
defocus blur without explicitly estimating depth. They assert that in images ac-
quired using a lens with significant chromatic aberration, the effective blur kernel
for the luminance channel (i.e., the mean across color channels) can be treated
as constant for depth values that lie within the range of per-wavelength focal dis-
tances for the lens. A sharper image can then be recovered by deconvolving the
luminance channel with this kernel, although this leaves the chrominance chan-
nels with residual blur and chromatic aberration. In contrast, we seek to recover
scene depth explicitly which allows us to deblur all color channels when forming
the all-focus image, and is useful for applications such as synthetic refocusing.

Our approach relies on inserting a color filter pattern into the aperture plane,
a property that it shares with some existing single-shot techniques for stereo-
based depth estimation [9–11]. In these methods, the aperture is divided into
non-overlapping per-channel apertures so that the observed color channels expe-
rience parallax. Depth is estimated by assuming that pixel colors of an aligned
image will be correlated. An important limitation of this approach is that divid-
ing a regular aperture into three non-overlapping ones blocks a large amount of
light. For example, assuming ideal color filters, the aperture pattern of Bando
et al. [11] transmits only 16% of the incident light, compared to 40% for the
color-neutral pattern proposed in [1], and 78% for the design proposed in this
paper. Moreover, our experiments indicate that even with longer exposure times
to compensate for light attenuation, the stereo-based approach does not provide
better depth accuracy than traditional DFD-based patterns (see Sec. 6).
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Bando et al. [11] recover depth using a color image model defined in terms
of statistics of local per-pixel color distributions. Similar models have been used
for segmentation [12], matting [13], restoration [14], and so on. In contrast, we
model properties of gradients across color channels, since these spatio-spectral
statistics [15] are better suited for analyzing the effects of blur.

2 Problem Formulation and Camera Design

Based on the thin lens model, the projection Y (n) of a fronto-parallel surface
patch observed by a color camera at image location n ∈ R

2, can be expressed
as the convolution of a latent sharp image X(n) of that patch with a depth-
dependent blur kernel kr(n):

y{i}(n) = (x{i} ∗ kr(n))(n), ∀i ∈ {R,G,B}, (1)

where kr is a scaled version of the camera’s aperture shape, and y{i} and x{i}

are the ith color channels of Y and X respectively. We assume in this paper that
the blur kernels kr are circular pill-box kernels of radius r.

The effective blur radii r(n) in pixels can be related to scene depth d(n), focal
length f , and aperture radius A as r(n) ∝ A(d(n) − f)/f , where the constant
of proportionality depends on camera parameters. For negative values of r, the
kernel kr corresponds to a mirrored version of the aperture shape. But when the
aperture is symmetric, kr = k−r, and this induces an ambiguity between depth
values at equal distances in front of and behind the plane of focus. As in [1],
we assume that during capture the camera is focused to the nearest surface or
closer, i.e., d(n) ≥ f . With a calibrated camera and known focal length, the blur
radius r(n) can therefore be directly related to the scene depth d(n), and the
problem of depth estimation reduces to one of recovering r(n). While this model
is based on the simple thin lens model, and neglects diffraction effects and lens
distortion, we find it to be a reasonable approximation when imaging surfaces
at a reasonable distance from the camera (> 1m for a standard 50mm lens).

2.1 Aperture Modification

The aperture pattern we propose is designed to induce a different defocus blur

kernel k
{i}
r in each color channel i. As illustrated in Fig. 2, we construct this

pattern by cutting a ring shape from a color filter that, in the ideal case, atten-
uates all light in one of the recorded color channels while perfectly transmitting
the other two. In our design, we choose to attenuate the green channel which is
typically recorded with the highest signal-to-noise ratio (SNR) by digital camera
sensors. The outer boundary of the mask has radius equal to that of the lens
aperture A, and the inner boundary has a smaller radius: αA, α < 1. This in-
ner radius acts as the effective aperture radius for the green channel, while the
other channels remain unaffected and are imaged with the full aperture radius
A. Images captured with this mask therefore have a spectrally-varying depth of
field, with a larger depth of field in the green channel than in red and blue.
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Fig. 2. Aperture Modification. A ring-shaped color mask is placed in the lens aperture
to induce defocus blur that varies across color channels. Ideally, the filter attenuates
only the green channel inducing a more compact defocus blur kernel in that channel
for any depth. This is approximated using a readily-available color filter, which induces
per-channel defocus blur kernels (at a specific depth) shown in the red box, right.

A low value for the parameter α causes greater spectral variation in the depth
of field and provides a stronger depth cue, but also reduces light efficiency by a
factor of (1−α2)/3 (assuming an ideal color filter with perfect attenuation in one
channel and perfect transmission in the other two). Through experiments with
a digital SLR camera, we find that α = 0.59 provides a good balance between
these concerns, and corresponds to an efficiency of 78%. Interestingly, this choice
of parameter α is close to the optimal ratio of pill-box radii for two-shot DFD
techniques [3, 16], even though our depth estimation approach is quite different.

2.2 Prototype Lens

To evaluate our design, we constructed a prototype by modifiying a Canon EF
50mm F/1.8 II lens. A mask was cut out of a sheet of the “Roscolux CalColor-
60-Magenta” filter based on the specifications above, and placed in the aperture
diaphragm of the lens (see Fig. 2). This filter was chosen because it is readily
available, and has spectral characteristics that are reasonably close to our re-
quirements, with a significantly higher attenuation in the green channel than in
red and blue. However, the constructed mask has a reduced light-efficiency of
about 60%. While this serves to demonstrate the efficacy of our approach, we
recommend ultimately using camera sensors and a color aperture filter that are
jointly constructed to better match the design criteria.

For calibration, we first estimate the spectral transmission of the color fil-
ter separately using images of a color checker chart taken with a regular lens,
with and without the color filter in front of the camera. The effect of the fil-
ter is modeled as a diagonal linear transform M in a modified color space V :
V TX ′ = MV TX, where X ′ and X ∈ R

3 are camera sensor responses with and
without the filter, and V is a unitary matrix. We use the transformed color space
defined by V for both depth estimation and deblurring.

Next, we capture sharp and blurred image pairs of a calibration target with
the modified lens to estimate the relative location and radius of the “inner ring”
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with respect to the full aperture. As shown in Fig. 2, the final calibrated kernels
(in the transformed color space) are formed by modifying a regular pill-box
kernel to account for per-channel attenuation outside this inner ring.

3 Image Model

To recover depth from images captured using the proposed color-coded aperture,
we use a spatio-spectral model for images of real-world scenes. In particular, we
define an image model that characterizes the relationship between local gra-
dient profiles across color channels. An important distinction of our approach
is that we do not rely on the sharpness of these gradient profiles, as is done
in existing single-shot DFD approaches [1], and other blur estimation applica-
tions (e.g., [17]). Instead, we rely only on the agreement of the gradient profiles
across color channels, whether or not they are sharp. Therefore, the proposed
model describes any real-world image in which all channels are affected by the
same blur, while being sensitive to spectral variations in blur.

Let X∇(n) ∈ R
3 be the color gradient vector at pixel n, obtained by applying

an oriented gradient filter ∇ to each color channel:

X∇(n) =
[

(x{1} ∗ ∇)(n), (x{2} ∗ ∇)(n), (x{3} ∗ ∇)(n)
]T

. (2)

We consider a spatial profile of these gradient vectors {X∇(n)}n∈W , over a local
one-dimensional (1D) window W that has the same orientation as the gradient
filter, and we create our model based on the expectation that spatial profiles
of the different color gradient channels (x{i} ∗ ∇)(n) will be scaled versions of
one another. This can be represented using a generative probabilistic model that
factorizes these vectors into spatial and spectral components as

X∇(n) = S t(n) + Z(n), Z(n) ∼ N (0, σ2
zI3×3), (3)

where S ∈ R
3 contains the latent per-channel scale factors; t(n) ∈ R is the latent

common spatial profile; and Z(n) is white Gaussian noise with variance σ2
z . This

is equivalent to expecting that the different color gradient vectors in the window
W will lie on a line through the origin in R

3.
Figure 3 motivates this model using two example windows from a typical

color image. When the window W back-projects to a region containing the same
diffuse material (Fig. 3 (right)), color gradients are induced by scalar changes
in shading that do not affect chromaticity. In this case, the model fits with S
proportional to the diffuse material color. On the other hand, when W spans a
material boundary (Fig. 3 (left)), the common spatial profile t(n) encodes the
shape of the edge between the two materials (which are typically large relative
to the shading gradients within the materials on either side), and S encodes
the contrast between their colors. Note that these properties also hold when
the image is blurred with a spectrally-uniform kernel since this only affects the
profile t(n) (Fig. 3 (bottom)). Now, if one channel— green in our design— is
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Fig. 3. Examples of gradient profiles in a linear RGB image (source: [18]), correspond-
ing to a material boundary (left, red), and a homogeneous region (right, magenta). The
profiles in different channels are seen to be approximately scaled versions of each other,
in both the sharp image (top), and in the presence of spectrally-uniform blur (bottom).
However, when the green channel image is blurred with a comparatively smaller blur
(as is the case with the proposed aperture in Fig. 2), the corresponding profile, shown
with a dotted line, no longer matches the profiles in the other two channels.

blurred less than the other two, the corresponding gradient profile (dotted green
in Fig. 3) has a distinctly different shape, and the gradient vectors X∇(n) can
not be factorized as in (3). The intuition above ignores many effects present in
natural images— specular highlights, lighting variation, high-frequency texture,
etc. However, this simple model proves to be adequately sensitive to the presence
of spectral variation in blur, and enables reliable depth estimation.

Next, we define the function L∇ to measure the likelihood of an observed
image window W under the model in (3) as

L∇(X,W) = max
S,{t(n)}

log p
(

{X∇(n)} |S, {t(n)}
)

. (4)

The maximization above essentially corresponds to fitting a line to the gradient
vectors {X∇(n)}, and therefore (4) simplifies (up to a constant) to

L∇(X,W) = − (tr(Λ)− λ1(Λ)) , Λ =
∑

n∈W

X∇(n)X∇(n)
T
, (5)

where tr(Λ) is the trace of Λ, and λ1(Λ) its largest eigenvalue. Note that a
complete eigen-decomposition of Λ, which would be expensive if required for
every patch, is not needed to compute (5). The largest eigen-value λ1(Λ) can
be obtained using power iterations, and since Λ is a 3 × 3 matrix, the method
typically converges with sufficient accuracy in just three or four iterations.

Finally, we pool likelihoods from gradient profiles over multiple orientations
at each location:

L(X,n) =
∑

θ

L∇θ
(X,Wθ(n)), (6)

where ∇θ refers to a gradient filter at orientation θ, and Wθ(n) to a window
at the same orientation centered at location n. In our implementation, we use
Gaussian-derivative filters (with a standard-deviation of one) at four orientations
at multiples of 45◦, and a window size of fifteen pixels.
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4 Depth Estimation

In this section, we describe a method to recover scene depth from an image Y (n)
captured with the proposed color-coded aperture. Our goal is to estimate a depth
value d(n) ∈ D at each image location n, where D is a discrete set of candidate
depth levels. In our current implementation, we consider a set of thirteen levels
corresponding to aperture radii {rd : d ∈ D} ranging from 0 (i.e., no blur) to
24 pixels in steps of two pixels (depth accuracy is limited by estimation ability
beyond this level of quantization). We employ a two-step estimation approach:
we first generate local depth estimates using the color model in Sec. 3, and then
combine these estimates with a smoothness constraint in a Markov random field
(MRF) framework to segment the image into layers of constant depth.

4.1 Local Inference

Local depth estimates are computed by evaluating how well gradient profiles
in each region of the observed image are explained by spectral variation in the
induced defocus blur at each hypothetical depth level. We generate candidate
blur-aligned versions Ỹd(n) of the observed image Y (n) for each d ∈ D, by

compensating for the variation between the different per-channel kernels {k
{i}
rd },

and then evaluate the likelihood of Ỹd(n) under our model. Without loss of

generality, let the blur kernel k
{R}
rd for the red channel be equal or larger than

the kernels for the other two. To construct Ỹd(n), we assume that each channel
y{i}(n) in the observed image was blurred with the kernel that is known to occur

in its channel at depth d, k
{i}
rd , and compensate for the lower degrees of defocus

in the blue and green channels. Intuitively, this can be achieved by deconvolving

y{i}(n), i ∈ {G,B} with k
{i}
rd , and then convolving both channels with k

{R}
rd . With

an ideal aperture pattern, only the green channel would require correction.

Since the overall effect of the correction k
{R}
rd ∗ (k

{i}
rd )−1 is to increase the

amount of defocus in the green and blue channels, we find that it can be reliably
achieved by single convolutions with filters having limited support, ensuring that
the resulting depth estimates d̂(n) will be well-localized. These corrective kernels,

denoted k
{R/i}
rd , i ∈ {G,B}, are constructed in the Fourier domain:

k{R/i}
rd

= F−1







F
[

k
{R}
rd

]

F
[

k
{i}
rd

]
∗

∣

∣

∣
F
[

k
{i}
rd

]∣

∣

∣

2

+ λk

(

|F [dx]|
2
+ |F [dy]|

2
)






, (7)

where F and F−1 are the K×K forward and inverse discrete Fourier transforms,
with K being the desired spatial extent (in pixels) for the corrective kernels.
The second term in the denominator of (7) serves to regularize the deconvolu-
tion step. Here, dx and dy denote horizontal and vertical finite-difference filters
(i.e., [−1, 1]), and λk is the regularization weight (10−3 in our implementation).

The corrective kernel size K in (7) must be large enough to prevent aliasing
in the Fourier domain, and depends on variation in the Fourier spectra of the dif-

ferent per-channel kernels k
{i}
r . After inspecting the corrective kernels generated
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with different choices, we choose K to be five times the support of the largest
channel kernel kRrd for the ideal design, and half that size for kernels induced by
the prototype lens. (The latter exhibit less variation between channels because
of the non-ideal color filter and can therefore be corrected with a smaller correc-
tive kernel, but require correcting two channels instead of one.) Note that the
per-depth corrective kernels need only be computed once after lens calibration.

Once the aligned images Ỹd(n) have been constructed for each depth level,

the local depth estimates d̂(n) are computed as:

d̂(n) = argmax
d∈D

L(Ỹd, n), (8)

where L is the likelihood measure defined in (6). In addition to choosing the
most likely depth, we also seek to characterize the confidence of this choice.
For example, in overly smooth regions, the observed gradient profiles can be
dominated by image noise and lead to arbitrary local depth assignments. To
detect this, we construct an image Ỹφ by simply blurring the green and blue
channels of the observed image with a low-pass filter (we use a circular pill-
box filter with support K in our implementation). This does not correspond to
correction for any physically plausible depth value, and therefore serves as the
“null hypothesis”. In the next section, we will gauge the reliability of the local
depth estimates d̂(n) from (8) by comparing its likelihood, L̂(n) = L(Ỹd̂(n), n),

to that of the null hypothesis, Lφ(n) = L(Ỹφ, n).

4.2 Regularized Depth Map Estimation

We generate a layered depth map d̄(n) by combining the local estimates above
with a smoothness cost in an MRF model. This model is defined on a four-
connected grid over the image, and the depth map d̄(n) is computed to minimize
an energy function defined as

E(d(n)) =
∑

U(d(n), n) + η
∑

Vn,n′ (d(n), d(n′)) , (9)

where η is the relative weight of the smoothness term V to the local term U .
We use a clipped linear cost for the local energy term U(d(n), n):

U(d, n) = min
(∣

∣

∣
rd̂(n) − rd

∣

∣

∣
, 8
)

, if L̂(n) > κ Lφ(n), (10)

and zero otherwise (indicating a lack of confidence in the local estimate). We

prefer this smooth cost for U over a zero-one indicator (i.e., δ[d̂ 6= d]) as used in
[1], because it makes the minimization of E less prone to local-optima. This is

supported by our observation that even when the local estimates d̂(n) are not
perfectly accurate, they are close to the true depth value (see Fig. 4).

Like [1], we use a smoothness cost V that encourages depth layer boundaries
to align with image edges:

Vn,n′(d1, d2) =

{

0, if d1 = d2,
exp(−‖∇n‖

2/σ2), otherwise,
(11)
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where ‖∇n‖
2 is the gradient energy at n, and the parameter σ is set to four

times the median of ‖∇n‖ values across the image.
We solve for the depth map d̄(n) using graph-cuts, with the α-expansion step

to handle multiple labels [19]. However, since the energy in (9) is not convex, this
computation is expensive and often requires multiple restarts when the number of
candidate labels is large. Therefore, we solve for d̄(n) over a reduced set of depth
values that correspond to peaks of the histogram of the local depth estimates
d̂(n), over the entire image. After computing a solution over this reduced set,
the depth value for each layer (i.e., each connected region with constant depth)

is set to the most frequent value of local depth d̂(n) in that layer. As a final
post-processing step, we reassign any isolated regions with an area smaller than
1% of the image size to an adjoining layer with the closest depth value.

5 Deblurring and Refocusing

We can now generate a sharp image of the captured scene, where all regions ap-
pear to be in focus, by deconvolving each layer of the image with the per-channel
kernels corresponding to its estimated depth. To deal with depth discontinuities,
regions near a boundary between different depth layers are assigned the smallest
of these depths. This simple approach proves effective because unlike the kernels
in [1], those induced by our aperture are such that deconvolution assuming a
smaller blur radius does not cause ringing artifacts, although some regions near
layer boundaries do remain smooth in the deblurred image.

For each depth layer in the image with depth d, we first estimate Xd(n) by

deconvolving Yd(n) with the corresponding per-channel kernels {k
{i}
rd }i. Here,

Yd(n) is formed from the observed image Y (n) by blurring regions outside that

layer, i.e., Yd(n) = Y (n) if d̄(n) = d, and y
{i}
d (n) = (y{i}∗k

{i}
rd )(n) otherwise. This

ensures that the deblurred layer in Xd(n) is not affected by ringing artifacts from
neighboring regions. For deconvolution, we employ a new sparse regularization-
based algorithm described in a supplementary technical report [20]. This method
extends an existing fast deconvolution algorithm [4] to enforce local consistency
in gradient colors. The expected chromaticity of each gradient is computed from
an initial over-smoothed estimate of the sharp image (that is inexpensive to
compute), and used as a hard constraint in each iteration of [4].

The different Xd(n) are combined to generate a sharp image of the entire
scene as X(n) = Xd̄(n)(n). This sharp image can subsequently be used to create
synthetic views, where each depth layer is assigned an arbitrary degree of defocus.
These generated views can correspond to different layers being in focus, and with
a user-specified depth of field. We use spectrally-uniform circular pill-box kernels
to blur each layer since this simulates capture with a regular aperture.

6 Experimental Results

We begin our evaluation by comparing the depth estimation accuracy of our
approach to the color-neutral DFD design of [1] and the color-based single-
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Fig. 4. Depth estimation performance for different single-shot coded-aperture methods,
using synthetic experiments on three color images (left). Estimation error is measured
as the absolute difference between true and estimated aperture radii in pixels. We
show the error distribution for different approaches (center), as well as the mean error
(right). For the latter, we also show performance with higher exposure times for the
other designs, to compensate for the lower light efficiency of their aperture patterns.

shot stereo approach of [11]. Figure 4 shows results of synthetic evaluation on
three linear color images from a public database [18]. We create synthetically
blurred versions of these images at all candidate depth levels for each technique,
through convolution with the kernels corresponding to their (ideal) aperture
patterns followed by addition of Gaussian noise. We then use the respective local
estimation algorithms (without MRF-based regularization) to estimate depth at
each location. Bando et al. [11] recommend a window size of 15×15, and we use
the same size for [1], as well as 1D windows of length 15 for our approach. Note
that we use the same three test images for the training step (for parameters
“λk”) in [1], which may give an optimistic estimate of their performance.

We measure depth estimation error using the absolute difference between
the aperture radii in pixels at the true and estimated depth values. We show
the distribution and mean value of this error for each method in Fig. 4 (over
roughly 108 samples over the three images and all simulated depth levels). The
proposed approach offers a distinct advantage in accuracy over the other tech-
niques. We also show mean error values for [1] and [11] by simulating higher
exposure times to compensate for the lower light efficiency to generate images
with SNR equivalent to our aperture. While this leads to an improvement in
accuracy, the resulting mean errors are still higher than that from our design.

Next, we compare deblurring performance for images captured with our aper-
ture to those captured with a regular aperture and the coded aperture in [1].
We show deconvolution results on synthetically blurred versions of a natural im-
age that simulate capture for these apertures, assuming a known uniform depth,
and equal exposure times for all three. Figure 5 shows the synthetically blurred
images and deconvolution results, along with reconstruction quality (in terms of
PSNR values) for the latter. We find that our design closely matches the per-
formance with a regular aperture, with visually indistinguishable results and a
negligible drop in PSNR. In contrast, the image recovered from [1] exhibits a
comparatively higher loss of detail. In summary, the proposed design recovers
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Fig. 5. Deconvolution performance. We compare deconvolution ability for images cap-
tured with different apertures, when the true depths are known. Deblurred estimates
from the proposed aperture are almost identical to those from a regular aperture.

Fig. 6. Estimated depth maps and all-focus images, for two additional scenes captured
with the prototype lens. We recover reliable depth maps in both cases, but the deblurred
image for bottom scene has several artifacts. This scene was captured at close range,
and is affected to a greater degree by lens distortions.

scene depth with greater accuracy than other single-shot coded-aperture tech-
niques, while allowing the same quality of deblurring as an un-coded aperture.

Finally, we evaluate depth estimation and deblurring performance on real
images captured with the prototype lens. Figures 1 and 6 show the recovered
depth maps and all-focus images for three scenes. We are able to recover accurate
depth estimates in all cases, and high-quality sharp images for the first two scenes
(even in the presence of severe blur in Fig. 1). However, the bottom image in
Fig. 6 was captured at close range with the camera roughly at a distance of 40cm
from the foreground object. This leads to a greater degree of lens distortion in
the induced defocus blur, causing artifacts in the recovered sharp image.

Figure 7 demonstrates the generation of synthetically refocused images from
the estimated depth maps and deblurred images, by reassigning each of the depth
layers to manually specified defocus levels. Note that despite the poor deblurring
quality for the bottom image from Fig. 6, the estimated depth map for that scene
still provides opportunities for creating synthetic views where the out-of-focus
regions are blurred even further, thus simulating a shallow depth-of-field.
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Fig. 7. Synthetic refocusing results. These images were generated by reassigning layers
from the depth map to user-specified levels of defocus.

7 Discussion

We introduce a single-shot coded-aperture DFD technique that leverages spatio-
spectral image statistics. Unlike color-neutral designs for the same task, this
approach avoids making a trade-off between depth discriminability and decon-
volution ability. The relationship between gradient profiles across different color
channels is strong enough to enable accurate, fully-automatic depth estimation,
using a light-efficient aperture pattern that does not exaggerate spatial distor-
tion, and this enables efficient, high-quality deblurring. Associated MATLAB
code and data are available at http://vision.seas.harvard.edu/ccap/.

Worthwhile directions of future work include investigating coded-aperture
designs and inference methods that combine the proposed model for gradient-
agreement, together with more common greyscale models for sharp images (anal-
ysis along these lines was conducted in [21], but was based on a simplifying as-
sumption that the recorded intensities in different channels were exactly equal).
While our approach enables depth estimation while matching the deblurring per-
formance of a regular aperture, it might be possible to exceed this performance,
for example, by optimizing the spatial aperture pattern for deconvolution [22]
(i.e., to induce blur with fewer zeroes than a regular aperture), and combining
it with spectral filtering for access to depth information.

Furthermore, the image model proposed here, as well as more general spatio-
spectral image models [15], are potentially useful in other computational pho-
tography applications. For example, coded-exposure techniques could exploit
spatio-spectral statistics by introducing a color filter in the light path for a por-
tion of the exposure time, to estimate and invert subject motion blur.
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