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Abstract

We introduce a new task for exploring the relationship between action and attention. In this interactive multiple object
tracking (iMOT) task, implemented as an iPad app, participants were presented with a display of multiple, visually identical
disks which moved independently. The task was to prevent any collisions during a fixed duration. Participants could perturb
object trajectories via the touchscreen. In Experiment 1, we used a staircase procedure to measure the ability to control
moving objects. Object speed was set to 1u/s. On average participants could control 8.4 items without collision. Individual
control strategies were quite variable, but did not predict overall performance. In Experiment 2, we compared iMOT with
standard MOT performance using identical displays. Object speed was set to 2u/s. Participants could reliably control more
objects (M = 6.6) than they could track (M = 4.0), but performance in the two tasks was positively correlated. In Experiment 3,
we used a dual-task design. Compared to single-task baseline, iMOT performance decreased and MOT performance
increased when the two tasks had to be completed together. Overall, these findings suggest: 1) There is a clear limit to the
number of items that can be simultaneously controlled, for a given speed and display density; 2) participants can control
more items than they can track; 3) task-relevant action appears not to disrupt MOT performance in the current experimental
context.
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Introduction

Psychologists have long been interested in the extent to which

we can divide attention [1–3]. Across a wide range of experimental

paradigms, the general finding has been that while it is clearly

possible to allocate attention to more than one object or event,

such division almost always results in performance costs,

particularly when overall processing demands are high [4–6].

Outside of the laboratory, the requirement to divide attention

during daily life appears to be ever increasing. The proliferation of

mobile technology, for example, often leads to situations where a

private information stream, such as a text or e-mail message, is

being processed in parallel with a more public activity, such as

walking in a crowded street, watching TV with friends, or even

holding a face-to-face conversation. One critical situation where

the limits of dividing attention become highly relevant is driving.

David Strayer and colleagues, for example, have demonstrated

that almost any interaction with a mobile device while driving a

car can impair vehicle control and situational awareness to a level

where lives are put at risk [7–8].

The multiple object tracking paradigm (MOT, [9]) has proven

to be a very useful laboratory tool for exploring the limits of

dividing attention in complex, dynamic contexts (for a review see

[10]). In a typical display, observers are shown a fixed number of

identical objects. Half of the objects are identified as targets, by

briefly highlighting or blinking them. With the highlighting

removed, the display is set in motion, with all of the (now

identical) objects following random, independent trajectories. At

the end of a variable tracking period, the motion stops and the

observer is probed for the identity of the target set. The dependent

measure is the inferred proportion of targets correctly tracked

[11].

The MOT task has proven popular, at least in part, because the

displays appear to capture some of the complexity that we might

encounter in our day-to-day environment. With this in mind, there

are two main findings of particular interest that have emerged.

The first is simply that observers are actually able to do the task.

That is, MOT is a very powerful demonstration that attention can

be divided and controlled across multiple objects for sustained

periods of time, despite the motion of the objects across the

display. The second major finding is that such attentive tracking is

limited to 3–5 items. While observers have no trouble perceiving

the motion of dozens or even hundreds of objects, they can only

track a handful (cf. [12]). Several explanations have been proposed

for this limit, including a fixed set of virtual pointers [13–14],

flexible attentional resources [15], and limitations in oscillation

phase space [16].

The purpose of the current work was to explore how action

might influence such limits. The relationship between action and

attention has been well established. Indeed some theorists have
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even suggested that it is the limited capacity to act that determines

attentional resources [17–19]. Planning an action clearly has

important consequences for the deployment of attention. For

example, it can facilitate processing at intended target locations

[20–21] and can modulate the salience of object features [22–23]

and object groupings [24–25].

The majority of these action-attention findings relate to the

selection of single targets (i.e. focused attention). How does the

need to act influence the deployment and control of divided

attention? Here, we introduce a new task aimed at answering this

question by exploring performance limits when individuals must

interact with multiple objects in addition to simply tracking them.

Our aim was both to explore the influence of action during divided

attention tasks and to extend MOT to more fully capture the

active dimension of day-to-day life that has thus far been ignored

in laboratory studies.

interactive Multiple Object Tracking (iMOT)
The task we introduce in the current paper is illustrated in

Figure 1. Similar to standard MOT tasks, it consists of a visual

display in which multiple identical objects move at random.

However, instead of passively tracking the targets, the goal of

iMOT is to actively prevent objects from colliding. In designing

this task, we wanted to exploit what we see as an interesting

difference between laboratory MOT and the real world tasks that

seem most directly analogous to it.

When we track objects outside the laboratory, there may be

some situations in which we simply want to passively follow objects

of interest while ignoring distractors, such as when watching

sporting events. However, in many other situations, in addition to

tracking, we must also interact with and/or control elements of

our environment. To return to an earlier example, when driving in

heavy traffic or approaching a busy junction, we need to track and

predict the behavior of other vehicles as well as control our own

position in space. In CCTV monitoring stations and air traffic

control rooms, operators need to both attend to and control

multiple channels. For CCTV operators, tracking a group of

individuals through an environment requires selection and control

of multiple cameras [26]. For air traffic control (ACT) tasks, all

designated planes are relevant objects and, particularly during the

approach/departure phase, specific actions are required to achieve

collision-free allocation of appropriate airspace/runways [27].

The design of our experiments was directly inspired by mobile

games such as Flight Control (Firemint Pty Ltd) and Harbor

Master (Imangi Studios, LLC) that mimic aspects of the ACT task.

In these games, which are typically implemented on touchscreen

devices such as the iPad (Apple, Inc.), the players try to keep planes

and ships from colliding, while directing them to the appropriate

runways or harbors.

In designing the iMOT task, then, we moved away from asking

participants to localize the target set or discriminate between

targets and distractors. Instead, all objects become targets and the

goal is to prevent any object from coming into contact or colliding

with any other object. Participants are given control over the

trajectories of the objects using the standard touch interface

implemented on most mobile devices. Touching and dragging

away from an object with a finger either creates a visible path for

the object to follow (Experiment 1) or nudges the object in the

appropriate direction (Experiments 2 & 3). We note that although

the initial iMOT experiments have been carried out on an iPad,

the paradigm can easily be implemented on any device with

similar displays and touch-response capabilities.

iMOT Task Demands
To perform well in this task participants need to both monitor

for impending collisions and to plan and execute motor

interventions aimed at keeping specific objects apart. Collision

detection might involve actively tracking objects, in the manner of

MOT. Alternatively, there might be a more passive collision-

detection system. Collision detection might be based on simple

proximity, so that a signal is generated if two items get too close to

one another, or a more sophisticated algorithm might take into

account the speed and trajectory of items to predict potential

collisions.

Collision detection is also involved in MOT, of course. Work by

Zelinsky and Todor [28] has shown that the visual system

responds proactively to potential collisions, shifting gaze to the

relevant location in advance in order to help disambiguate

potential collisions (Zelinksy and Todor call this behavior ‘‘rescue

saccades’’). However, little or no work has been done on

determining ‘‘how’’ collisions are detected in multiple object

displays. While there is some evidence that MOT involves

prediction [29–31], at least in predictable displays [32], we do

not know if this extends to collision detection.

The iMOT task differs from MOT in that the participant can

actively respond to potential collisions. Consider two possible

strategies that might be adopted. A participant with a reactive

approach might wait until an collision seemed imminent before

taking steps to avoid it. This strategy is similar to the ‘‘rescue

saccades’’ described in MOT by Zelinsky and Todor [28]. A

participant with a proactive approach, on the other hand, might try

to continually modify the position of objects on the screen to

maximize the distance between them, thus reducing the likelihood

of collisions. As the two approaches would likely give rise to quite

different touch behavior, examining intervention style should be

able to shed light on which approach is more prevalent.

Although the overall goals of iMOT and MOT are quite

different – collision avoidance versus target identification – in

terms of task demands, collision management may be a shared

requirement. That is, while the goal of iMOT is to avoid collisions,

Figure 1. A typical iMOT display for a trial at Level 6 in
Experiment 1. The spheres move at random unless a path is drawn by
touching and dragging away with a linear or curved movement. The
white path remains visible until the path has been traversed; the object
then resumes random motion. The task is to avoid collisions. The timer
at the top of the screen counts down from 30 seconds to zero, and the
fields along the bottom of the screen provide information about the
current trial status.
doi:10.1371/journal.pone.0086974.g001

iMOT
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in MOT it may be useful to have a strategy to minimize the impact

of collisions on tracking. Thus, the two tasks may rely on a

common collision detection mechanism (active or passive), or they

may not. In the current paper, we attempt to directly compare

iMOT and MOT performance in the same participants as a way

to initially assess whether tracking and collision avoidance involve

similar cognitive processes. We should note that in making such

comparisons we intend to focus purely on performance measures.

That is, we do not assume, a priori, that behavior is limited by a

fixed set of task-specific mechanism [13–14] rather than being

determined via the flexible allocation of central attentional

resources [15].

As already mentioned above, one of the main aims of this paper

is to explore the influence of action when attention needs to be

divided. To successfully avoid collisions during iMOT, actions

must be planned and effectively executed with respect to a single

object at a time. Understanding whether such focused action has

consequences for the ability to monitor other parts of the display

should become clear by examining iMOT performance. Further-

more, by directly comparing iMOT to MOT performance in the

same participants, we hope to shed light on whether these two

components – action and attention – operate independently or rely

on overlapping cognitive resources.

Experimental Overview
Experiment 1 was intended as ‘‘proof of concept’’, to

demonstrate that observers could in fact successfully perform the

iMOT task. We chose a speed of object movement (1u/s) that was

relatively sedate, taking into account the need for physical control,

and used a staircase procedure to obtain individual thresholds and

control distributions. We were interested in both the absolute

number of items that could be controlled and the variability of this

figure across participants. One prominent feature of MOT is the

finding that, in the majority of displays, estimates of tracking

capacity show little individual variability around the oft-cited limit

of 4–5 items [10]. Factors that are known to modulate group mean

estimates in MOT tasks, such as speed of motion [15,33], set size

and display density [34–37], are also discussed in Experiment 1.

In Experiment 2, we directly compared MOT and iMOT

performance. Using identical displays and motion parameters, we

obtained estimates of both MOT tracking performance and

iMOT control performance in the same individuals. The goal was

to establish the relative demands of the two tasks and to assess

whether performance on MOT and iMOT appeared to be

drawing on similar resources.

In Experiment 3, we used a dual-task approach to examine

whether MOT and iMOT could be performed simultaneously. In

single-task displays, participants either tracked or controlled four

target objects. Difficulty was manipulated by changing the

distractor set-size. In the critical dual-task condition, the same

four objects had to be both tracked for later identification and

controlled to avoid collisions. Under these conditions, we were

interested in establishing how resources would be balanced

between the two tasks. If MOT and iMOT relied on completely

separate resources, then dual-task performance should be compa-

rable to the single-task baselines. The presence of a dual-task

deficit would indicate some overlap in processing resources.

Experiment 1

The purpose of Experiment 1 was to demonstrate that

participants could successfully perform the iMOT task. We

compared two groups of participants. The first consisted of young

adults from Korea University in Seoul. The second were young

adults from Swansea University in the UK. The motivation for

including this cross-cultural variable, aside from the availability of

separate pools of participants, was to probe for possible differences

in cognitive style. Previous research has suggested that there may

be fundamental differences between East Asian and Western

participants, with the former attending more to background

context, and the latter to figural elements [38–39]. Such

differences could potential impact performance in the current task.

Previous research has also suggested that there may be sex

differences in spatial selective attention [40–42], specifically in the

context of multiple object tracking [43]. Therefore, we ensured

that each group consisted of an equal number of male and female

participants, and we included sex as a factor for exploratory

purposes in all three experiments.

Method
Participants. A total of 24 participants took part in this study

on a voluntary basis. A group of 12 younger adults (six female and

six male) aged between 18–26 years (M = 24.1, SD = 2.5) were

recruited directly from members of the Brain Engineering

Department at Korea University. A further group of 12 younger

adults (six female and six male), aged between 19–33 years

(M = 23.2, SD = 4.3), were recruited from the Psychology Depart-

ment at Swansea University. All participants were asked to assess

their familiarity with game-like tasks on mobile devices on a scale

from 1 (no experience) to 5 (expert player). There were no

differences between the Korean group (M = 3.2, SD = 1.2) and the

Swansea group (M = 3.3, SD = 1.0), t,1, n.s. All participants gave

written informed consent, and the methods and procedures

conformed to the ethical guidelines set out by the Declaration of

Helsinki for testing human participants. All aspects of the

procedure was reviewed and approved by the Ethics Committee

at Swansea University.

Equipment. All experiments reported here used a first

generation iPad with a screen dimension of 20615 cm and a

resolution of 10246768 pixels. In this and all subsequent

experiments, participants were instructed to hold the iPad in a

standard posture: the participant cradled the iPad (in landscape

orientation) in their left arm, with the fingers of their left hand

grasping the furthest edge of the device. They were told to interact

with the objects using the index finger of their right hand. While

the viewing distance was not fixed, we estimate that it averaged

approximately 50 cm from screen surface to eyes. For this reason,

we report stimulus characteristics both in terms of approximate

degrees of visual angle (u) and pixels. Text was set to run from left-

to-right.

Experiments were run in a quiet environment under low

lighting conditions with no overhead lights, in order to minimize

screen glare.

Stimuli and Task. The iMOT task was introduced to

participants as a simple game in which the goal was to prevent

moving objects from colliding with each other. All participants

began with a display containing six objects. If they successfully

controlled these objects without collision for 30 s, an additional

object would be added on the subsequent trial. Any collision

between two objects ended a trial. After a collision, the number of

objects would be reduced but would never go below the initial

level of six items. Performance was assessed over a total of 30 trials

per participant. From a player’s perspective, success in the game

involved achieving and maintaining the highest level (i.e., greatest

number of objects) possible.

Objects were identical orange spheres with a diameter of 52

pixels (1.2u). The objects were shaded to appear lit from above.

This was done to enhance the impression of 3D and help segment

iMOT
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them from the uniform black background. At the start of each

trial, the objects were distributed at equal distances around the

circumference of an invisible circle centered on the iPad display.

The radius of this circle was 160 pixels (3.1u). The position of

spheres around the circle was determined by choosing a random

starting angle for the first object and then distributing each

subsequent object by adding an equidistant angular step of (360/

Set Size) u.The objects were stationary for the first two seconds of

the trial, and then began to expand outwards in a straight line,

following an angular trajectory equivalent to their position around

the circle. In the absence of participant input, each object followed

this path for 200 pixels, when a new straight line path would be

selected at random. Directions were randomly sampled from the

full 360u in 1u increments and the path length varied between 200

pixels (3.9u) and 300 pixels (5.9u). At all times, objects moved at a

constant speed of approximately 1u/s.

The participant’s task was to keep the objects separated by

perturbing their trajectories via the touchscreen interface. Touch-

ing and dragging away from an object gave rise to a visible white

path that the object would follow. In this experiment, the length

and complexity of the path was not restricted. When the object

reached the end of a user defined path, it reverted to following

random linear paths, as described above. Note, that user input was

allowed immediately at the start of the trial, that is, within the first

two seconds. In these circumstances, the user defined path would

override the default linear expansion for the touched object.

In line with the idea of ‘‘game-play’’, four information fields

were visible to the participants during the entire trial. At the top of

the screen was a time counter that reduced from 30 s to 0 s. In the

bottom left corner was a collision counter and in bottom right an

indication of the current number of objects in the display. At the

bottom of the screen in the center was an indication of the number

of touches or interventions made during the current trial.

Procedure. Participants were run in individual sessions. Each

session began with a brief questionnaire aimed at establishing

educational and work experience, gaming habits and familiarity

with mobile devices. Questions were a mixture of open-ended

items and rating scales designed to quantify relevant experience.

This lasted approximately 5 minutes. Participants were then

familiarized with the iPad and the basic display and control

components of the task. They were allowed to practice with the

application until they felt comfortable. This familiarization phase

typically lasted less than 5 minutes, with participants completing

two or three practice trials. The main experimental session then

began in which participants completed a block of 30 trials, each

trial lasting 30 s. At the end of each trial, a self-paced pause was

allowed. Participants could wait as long as long as they liked until

pressing a ‘‘Continue’’ button. In practice, few of these paused

lasted more than 10 seconds, with the entire block being

completed within 20 minutes.

Analysis. The main dependent measure in Experiment 1 was

the number of objects that could be successfully controlled for

30 seconds without collision. Our analyses thus focused on the

distribution of collision-free trials as a function of set size. As well

as reporting the mean of these distributions, in this and all

subsequent experiments, we also extracted a full range of

parameters (i.e., variability, skewness, kurtosis, maximum) that

might help characterize performance. These will be reported in

the accompanying tables, but analysis will focus on the central

tendency and the maximum level achieved. In Experiment 1, these

dependent variables were analyzed using a 2 (Group: KU vs. SU)

62 (Sex) ANOVA.

We also looked at how often participants touched the objects to

change their trajectories, which we termed ‘‘interventions’’. We

calculated the average number of interventions per collision-free

trial, and fitted a line to the intervention x set size function of each

participant. Both the slope of this function, and the baseline

interventions with a set size of 6 items were examined. Average

interventions were analyzed using a 2 (Group: KU vs. SU) 62

(Sex) 65 (Set Size) ANOVA, while slope and baseline measures

used a 2 (Group: KU vs. SU) 62 (Sex) ANOVA.

Finally, we looked to see whether intervention strategy had any

impact on overall performance. To do this we used multiple

regression to explore whether the number of items controlled

could be predicted from the slope and baseline interaction

measures.

Results
Figure 2 shows examples of individual staircase sessions for six

participants, three from KU in the left hand column, three from

SU in the right hand column. In each panel, the solid line indicates

the mean and the dashed line the maximum number of items

controlled for that individual. The panels are labeled so that data

from the corresponding participant can be found in Tables 1

and 2.

In the upper row are two participants whose performance

fluctuated around the lower end of the range. In the first example

(KU Female 3), performance initially stays close to the starting

level of 6 items, but gradually rises to fluctuate between 7 and 9

items, never exceeding this maximum level. The second example

(SU Male 1) also has a maximum of 9 items, but here there is an

initial rise and fall, which is repeated before performance stabilizes

around 7 items in the latter half of the session. The second row of

examples shows participants who were able to successfully control

at least 10 items without collision. For KU Male 5, this only occurs

once (at trial 16), and performance seems to stabilize for this

participant at 9 items. SU Female 2 is able to control 10 items on 4

occasions, but their overall performance shows a more periodic

increase and decrease. The final two examples show those

participants with the highest sustained performance from the

two sites.

As expected, given our one-up, one-down staircase procedure,

participants were collision-free on just over half of the 30

experimental trials (Mean = 16.8; SE = 0.1). Figure 3 shows the

distribution of these collision-free trials as a function of set size,

collapsed across all participants. It is immediately clear that the

central tendency of this distribution falls at slightly above 8 items,

while the maximum number of items controlled was 13. The full

range of parameters extracted from the distributions of each

individual participant are summarized in Tables 1 (KU partici-

pants) and 2 (SU participants).

The mean number of items that could be controlled without

collision, averaged across participants, was 8.4 (SE = 0.1) and the

averaged maximum value was 10.4 (SE = 0.2). These values did

not vary as a function Sex or Group and there were no significant

main effects or interactions.

Figure 4 illustrates our analyses of the number of interventions.

On average, participants made just over 30 control interventions

per trial (M = 34.4, SE = 1.6). However, it is clear from the

distribution of symbols in Figures 4A and 4B that there were

consistent individual differences in intervention strategy. For

example, at the starting level of 6 items, the number of

interventions across participants ranged from 13 to 41

(M = 25.1, SE = 2.0). These initial differences in intervention

strategy also appear to be maintained as the number of objects in

the display increases.

In general, the number of interventions increased with the

number of objects participants had to control. All 24 participants

iMOT
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had positive intervention x set size slopes, with approximately 4

additional interventions occurring each time a new item was

added (M = 4.4, SE = 0.4). The mean goodness of fit for these

functions was relatively high (M R2 = 0.8, SE = 0.1).

A 2 (Group) 62 (Sex) 65 (Set Size) ANOVA on the average

intervention data revealed only a significant main effect of Set

Size, F(4,64) = 59.6, MSE = 13.6, p,0.001, eta_2 = 0.8. Analysis

of the Slope and Baseline values revealed no main effects or

interactions.

Figure 2. Example staircase data in Experiment 1. The left hand column shows data from three Korea University (KU) participants, the right
column three Swansea University (SU) participants. The Y-axis indicated the number of items in the current trial, and each data point represents one
of the 30 trials in a session. A collision-free trial always results in an increase in set size while any collision results in a decrease, except that set size was
not allowed to drop below six items. The solid line shows the mean level achieved by the participant and the dotted line the maximum level. See text
for more details.
doi:10.1371/journal.pone.0086974.g002

iMOT
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To explore whether interaction style related to collision

performance, we performed a multiple regression analysis with

slope and baseline as predictors and mean number of items

controlled as the criterion variable. Interaction behavior appeared

to contribute very little to the overall success of object control,

R2 = 0.1, F(2, 21) = 1.0, MSE = 3.2, n.s.

Discussion
There are several findings of interest from this experiment. First,

as with standard MOT, it is clear that participants were able to

divide their attention between multiple dynamic objects. Here,

rather than tracking the objects to identify them, participants were

able to monitor the display for impending collisions and execute

appropriate actions. Thus, we have shown that attention can be

divided across multiple objects in both active and passive contexts.

Second, this ability to control objects and avoid collisions was

clearly limited; we found that participants could only control

approximately 8 items without collisions. We do not assume that

this is a hard limit on human performance on this task. As with

MOT [12,15,34], we assume that stimulus parameters such as

object speed and display density will modulate levels of perfor-

mance; we will address this issue in Experiment 2. Clearly,

however, given any fixed parameter set, we would expect a clear

upper limit on how many objects can be controlled. In the current

experiment, although there was some individual variation, the

estimate of 8 items was surprisingly stable. In particular, we found

no variation across experimental site, suggesting that cultural

differences play little role in this task. There was no reliable

difference between the sexes, although as can be seen in Tables 1

and 2, there was a trend for Male participants to outperform

Female participants, a theme we return to in the next experiment.

These results bring up two questions. First, what is responsible

for the eight item limit? In MOT, several explanations have been

proposed for the capacity limit, including a fixed set of virtual

pointers [13–14], flexible attentional resources [15], and limita-

tions in oscillation phase space [16]. What might underlie the

limitations on iMOT performance? One hypothesis is that iMOT

is relying on the same processes that subserve MOT, and therefore

whatever explains MOT limitations will explain iMOT limita-

tions. Another possibility is that the iMOT limit is purely a

product of the limitations of the motor system. A third option is

that the limit is a product of an interaction between the attentional

and motor systems. We will return to this question in

Experiment 3.

Second, what is the role of intervention strategy? The increase

in interventions with set size is easy to understand, since with

increasing density, the number of potential collisions is presumably

increasing. We also observed consistent individual differences in

the number of interventions that were maintained across

variations in task difficulty. This is consistent with the suggestion

raised in the introduction that some participants may adopt a

more reactive intervention strategy and others a more proactive

Table 1. Korea University participants from Experiment 1: Individual Parameter Estimates for Distributions of Collision-free Trials.

Female Male

Part. Count Mean Var Skew Kurt Max Count Mean Var Skew Kurt Max

1 17 9.59 2.26 20.94 1.05 12 18 9.89 3.99 20.78 20.02 13

2 16 7.63 1.05 0.46 0.83 10 17 8.41 1.26 20.35 20.11 10

3 16 7.56 1.06 20.19 20.95 9 16 7.94 1.00 0.14 0.22 10

4 16 7.88 0.65 20.63 0.75 9 18 8.67 1.65 20.23 20.23 11

5 16 8.56 1.46 20.55 20.32 10 17 8.29 0.97 20.68 0.55 10

6 17 7.88 1.11 20.10 0.16 10 17 8.47 1.51 0.08 0.28 11

Mean 16.33 8.18 1.27 20.33 0.26 10.00 17.17 8.61 1.73 20.30 0.12 10.83

SE 0.23 0.34 0.25 0.22 0.35 0.49 0.34 0.30 0.51 0.17 0.13 0.52

doi:10.1371/journal.pone.0086974.t001

Table 2. Swansea University participants from Experiment 1: Individual Parameter Estimates for Distributions of Collision-free
Trials.

Female Male

Part. Count Mean Var Skew Kurt Max Count Mean Var Skew Kurt Max

1 17 7.88 1.99 0.23 21.21 10 16 7.38 1.05 0.39 20.80 9

2 17 8.35 1.62 20.14 21.07 10 17 8.71 1.72 20.32 20.26 11

3 16 7.75 1.27 0.24 20.40 10 16 9.19 2.03 20.69 0.27 11

4 16 7.75 2.07 0.19 21.38 10 18 9.44 2.50 20.54 20.17 12

5 18 9.17 2.50 20.31 20.39 12 17 9.00 1.75 20.55 0.39 11

6 17 7.88 1.11 20.47 20.93 9 17 8.06 1.06 20.13 20.32 10

Mean 16.83 8.13 1.76 20.04 20.90 10.17 16.83 8.63 1.68 20.31 20.15 10.67

SE 0.34 0.25 0.23 0.14 0.19 0.44 0.34 0.35 0.25 0.18 0.19 0.46

doi:10.1371/journal.pone.0086974.t002
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strategy. Perhaps more surprisingly, however, we found no clear

relationship between intervention style and collision performance.

We return to this issue in the General Discussion.

Experiment 2

The goal of Experiment 2 was to directly compare the ability to

actively control objects in iMOT with passive tracking ability as

measured by MOT. A new group of Swansea students were asked

to complete both tasks in separate blocks of trials. We modified the

iMOT task in order to ensure that the visual characteristics of the

two types of display were as similar as possible (details are given

below). As in Experiment 1, a staircase procedure was used to

provide individual estimates of the number of objects that could be

tracked/controlled. Our main interest was in how estimates for

MOT and iMOT performance would compare given identical

displays. In addition to examining overall level differences, we also

correlated the performance of individual participants as a first step

in determining whether the two tasks appeared to draw on similar

resources. We also assessed the impact of the iMOT display

modifications by directly comparing performance estimates with

those obtained in Experiment 1.

Method
The equipment and viewing conditions were identical to those

described in Experiment 1.

Participants. A group of 16 younger adults (eight female and

eight male) aged between 21–32 years (M = 24.3, SD = 3.2) took

part in this study on a voluntary basis. They were recruited directly

from the Psychology Department at Swansea University. All

participants gave written informed consent, and the methods and

procedures conformed to the ethical guidelines set out by the

Declaration of Helsinki for testing human participants. All aspects

of the procedure was reviewed and approved by the Ethics

Committee at Swansea University.

iMOT. We modified the iMOT stimuli and task mechanics in

order to make it more compatible with the typical MOT task. We

made three changes to the stimuli. First, we increased object speed

from 1u/s to 2u/s. Second, we changed from a circular starting

arrangement to a random distribution. Finally, we began the

session with four objects, rather than six.

In Experiment 1, a trial would terminate as soon as there were

any collisions, whereas in a typical MOT task, participants are

asked to track for a fixed duration. In order to avoid different

overall trial durations for the iMOT and MOT tasks, we changed

the iMOT procedure so that each trial continued for the full trial

duration, and participants were instructed to minimize the number

of collisions. Concurrently, we decreased the trial duration from

30 s to 20 s. For staircase purposes, any trial with at least one

collision was considered an error trial, which would result in a

reduction of the set size on the subsequent trial.

We did make one significant change to the method. In

Experiment 1, participants drew new paths for the stimuli, which

appeared as visual traces. This would create an obvious visual

difference between iMOT and MOT. We eliminated the visible

paths, and simplified the control actions, such that objects could be

‘‘nudged’’ in any direction. Touching an object and dragging in

any direction would cause the object to immediately change

direction and follow the appropriate (non-visible) linear path for a

random duration.

As in Experiment 1, we provided status information during each

trial. At the top center of the display was a timer that provided a

countdown from 20 s to 0 s. At the bottom left of the screen was

the trial number, and aligned with this in the center was a text

indication of whether the current session was a ‘Training’ or

‘Testing’ block of trials. At the bottom right of the display was a

counter that indicated the number of collisions that occurred

during the trial. Participants were instructed to minimize this

number. In order to avoid visual clutter, we omitted the counter of

the number of control interventions.

Figure 3. Distribution of collision-free trials in Experiment 1. Percentage of total collision-free trials, collapsed across all participants from
both sites. The maximum number of items controlled was 13 and the mean number of items controlled was 8.4.
doi:10.1371/journal.pone.0086974.g003
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MOT. The stimuli in the MOT task were identical to those

described for the iMOT in the previous section. Instead of asking

the participant to prevent collisions, however, participants were

asked to track a subset of the objects, the targets, during the

motion phase of the trial, and then identify these targets at the end.

Each MOT session began with four objects, two targets and two

distractors, randomly distributed across the display. The target

objects were highlighted for three seconds by rapidly blinking at

the start of the trial. For the remainder of the trial, targets and

distractors were visually identical. All objects moved at 2u/s for

20 s, following the algorithm described in Experiment 1.

Participants could not affect the trajectory of these objects.

At the end of the trial, the participant was asked to indicate all

of the targets by touching them. If the participant correctly

identified all targets, one target and one distractor would be added

on the next trial. If any errors were made, one target and one

distractor were subtracted on the next trial, down to a minimum

set size of four items. Feedback was provided during practice trials

by blinking the actual targets once a selection had been made.

This feedback was not provided during the experimental blocks.

Participants were instructed to try to maintain the highest possible

level of performance throughout experiment.

Procedure. The order of the two tasks was counterbalanced

between participants. We note that as block order did not affect

the results in any way, this factor will not be discussed further.

Before the start of each block, specific instructions were given and

participants were allowed to practice until they felt comfortable

with the task and response method. Each block consisted of 25

trials, and self-paced breaks were offered between trials to

minimize fatigue.

Results
iMOT – number of controlled items. As before, the

staircase procedure ensured that participants were collision-free

on just over half of the experimental trials (Mean = 13.9; SE = 0.2).

Figure 5A shows the distribution of collision-free trials as a

function of set size, collapsed across participants. It is immediately

clear that the overall level of performance has shifted down,

relative to Experiment 1 (cf. Figure 3). The central tendency of the

distribution in Figure 5A is approximately 6 items, while the

maximum level achieved is 10 items.

As in Experiment 1, we extracted a range of parameters from

the distributions of individual participants (Table 3). A 2

(Experiment) 62 (Sex) between-subjects ANOVA was used to

analyze the Mean and Maximum level achieved, using the current

data and those from Experiment 1 (see Figure 6). In terms of the

average number of items that could be controlled, this analysis

confirmed that the task used in Experiment 2 (Mean = 6.6;

SE = 0.2) led to lower estimates than those obtained in Experiment

1 (Mean = 8.3; SE = 0.2), F(1,24) = 76.7, MSE = 0.3, pEta = 0.8,

p,0.001. A similar pattern was found in relation to the Maximum

number of items that could be controlled (Max_Exp2 = 8.4,

SE = 0.2; Max_Exp1 = 10.4, SE = 0.2), F(1,24) = 28.6,

MSE = 15.9, pEta = 0.6, p,0.001.

Another feature of these data is also obvious in Figure 6.

Collapsed across experiments, Male participants consistently out-

performed Female participants, both in terms of mean number of

items controlled (Mean_Male = 7.8, SE = 0.1; Mean_Female = 7.2,

SE = 0.1), F(1,24) = 10.2, MSE = 0.3, pEta = 0.3, p,0.01 and

maximum number of items controlled (Max_Male = 9.8, SE = 0.2;

Max_Female = 9.2, SE = 0.2), F(1,24) = 5.9, MSE = 0.7, pEta = 0.2,

p,0.05. There were no interactions between Sex and Experiment,

as can be seen by comparing the individual gray (Experiment 1) and

black (Experiment 2) squares in Figure 6.

iMOT – interventions. Participants made close to 40 control

interventions per trial (M = 38.8, SE = 3.2). As can be seen in

Figure 7, there was again considerable between-participant

variation in the level of interventions. At the starting level of 4

items, the number of interventions ranged from 11 to 38

(M = 22.5, SE = 1.8) and this variability appears to be maintained

as set size increases. There was a relatively sharp increase in

interventions as a function of set size (M Slope = 5.6; SE = 0.4)

with a mean goodness of fit of 90% (M R2 = 0.9, SE = 0.03). As in

Experiment 1, neither the slope nor the baseline interventions at

level 4 had any predictive relationship with the number of items

that could be controlled, R2 = 0.1, F(2, 13) = 1.1, MSE = 0.3, n.s.

MOT – number of tracked items. Figure 5B shows the

distribution of successful tracking trials as a function of set size,

collapsed across all participants. Participants were able to track

approximately 4 items (M = 4.0, SE = 0.1) with a maximum of just

over 5 (M = 5.5, SE = 0.2). Table 4 shows the full range of

parameters extracted from the individual MOT distributions. As

with the iMOT data, Male participants did slightly better than

Female participants both in terms of Mean (Male = 4.4, SE = 0.1;

Female = 3.8, SE = 0.2), t(14) = 22.6, p,0.05, and Maximum

(Male = 5.9, SE = 0.1; Female = 5.1, SE = 0.3), t(14) = 22.3,

p,0.05, number of items tracked. These patterns can be clearly

seen in Figure 6.

Figure 4. Interventions as a function of set size in Experiment
1. Data are shown separately for Korea University (KU; Panel A) and
Swansea University (SU; Panel B) participants. Data are plotted for each
participant using unique symbols and mean performance is represent-
ed by the dotted line. Legend codes refer to individual Female (F) and
Male (M) participants in Tables 1 and 2, respectively.
doi:10.1371/journal.pone.0086974.g004
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iMOT versus MOT. To examine the relationship between

iMOT and MOT, we conducted two sets of analyses. First we

directly compared the parameter estimates for the two tasks using

a series of 2 (Task) 62 (Sex) mixed model ANOVAs. Second, we

examined whether individual performance across the two tasks

was correlated.

For the Mean data, there was a significant main effect of task,

with iMOT performance (Mean = 6.6; SE = 0.1) outstripping

MOT performance (Mean = 4.0; SE = 0.1), F(1,14) = 53.1,

MSE = 0.2, pEta = 0.9, p,0.001. There was also a main effect

of Sex with Male participants (Mean = 5.6; SE = 0.1) performing

slightly better than Female participants (Mean = 5.0; SE = 0.1),

Figure 5. iMOT and MOT performance in Experiment 2. Panel A is the distribution of collision-free trials for the iMOT task, which has a mean of
6.4 and a maximum of 10. Panel B is the distribution of successfully-tracked trials for the MOT task, which has a mean of 3.9 and a maximum of 7.0.
Data are collapsed across participants.
doi:10.1371/journal.pone.0086974.g005
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F(1,14) = 24.7, MSE = 0.1, pEta = 0.6, p,0.001. There were no

interactions.

There were also simple main effects for the Maximum level

achieved, both for Task (iMOT_Mean = 8.4; SE = 0.2; MOT_

Mean = 5.5; SE = 0.2), F(1,14) = 119.5, MSE = 0.6, pEta = 0.9,

p,0.001 and Sex (Male_Mean = 7.4; SE = 0.1; Female_

Mean = 6.5; SE = 0.13), F(1,14) = 22.9, MSE = 0.3, pEta = 0.6,

p,0.001. Again, there were no interactions.

Figure 8 shows the relationship between mean iMOT & MOT

performance for this group of observers. An initial analysis

including all 16 observers showed a positive correlation that was

not statistically significant, r(16) = 0.37, p = 0.16. Visual inspection

of the data in Figure 7 shows that two participants (grey symbols)

had a bimodal pattern of performance that was quite distinct from

the other 14 participants. Regression analysis confirmed that these

were the only two cases with standardized residual errors more

than 1.5 standard deviations from the mean, suggesting that they

strongly influenced the overall pattern. Excluding these data points

gave rise a strong positive correlation that was significant,

r(14) = 0.72, p,.01. Thus, for at least the majority of participants,

those that did well on the iMOT would also be predicted to do

well on the MOT task and vice versa.

Discussion
The main aim of Experiment 2 was to compare standard MOT

tracking performance with the active control performance of

iMOT. Our participants were able to track approximately 4 items

in the standard MOT condition, consistent with typical MOT

findings [9–10]. The novel finding was that in the active iMOT

task, with identical display characteristics, the same participants

could control 6 items without collision. In both the iMOT and the

MOT, there were clear sex differences, with Male participants

consistently outperforming Female participants. We return to this

pattern of sex differences in the General Discussion.

Note that in the iMOT condition, performance was reduced

relative to Experiment 1, from approximately 8 to 6 objects. This

is probably due to both the increase in speed in this experiment,

and the constraint of ‘‘nudging’’ rather than ‘‘guiding’’ objects.

The effect of speed is fairly intuitive: faster moving objects leave

less time for the participant to react to impending collisions, and

there is more uncertainty as to where to aim finger movements.

Note that MOT performance is also sensitive to speed [15,33].

One problem in directly comparing iMOT and MOT

performance is the presence of distractors in the MOT task. A

participant controlling four objects in iMOT is dealing with a four-

object display, while a participant tracking four objects in MOT is

dealing with an eight-object display. This fundamental difference

between the two tasks clearly limits the conclusions that can be

drawn from directly comparing absolute levels of performance.

For example, additional display crowding and/or the need to

allocate resources to ‘‘suppress’’ distractors could clearly influence

estimates of MOT performance [34–37]. One solution would be

to include both distractors and targets when estimating MOT

performance. In this case one could argue that MOT performance

actually outstrips iMOT performance in the current experiment.

While this may prove to be a more equitable way to compare

performance levels in later studies, it also clearly deviates from the

way MOT capacity is usually reported.

A potentially important finding from Experiment 2 is the

suggestion of a positive relationship between performance on the

iMOT and MOT tasks. That is, better MOT performance

appeared to predict better iMOT performance. Such a pattern is

not consistent with the notion that active control and passive

tracking are completely divorced. Rather, it suggests they may be

drawing on similar resources. Clearly, some caution is needed in

interpreting this finding as our sample size is relatively small.

Furthermore, at least two out of 16 participants did not conform to

the overall pattern. One motivation for implementing our task on

an iPad was to plan future studies using much larger sample sizes.

Having a large number of participants download and run the app

on their own device would provide sufficient power to establish

whether the observed relationship is stable and whether the

participants we have treated as ‘‘outliers’’ are just that, or rather

reflect consistent variability in task strategy or individual

differences.

If we take these two findings at face value – partially shared

resources and the ability to control more objects than can be

tracked – what might this tell us about the underlying mecha-

nisms? While we can only speculate, the most parsimonious

explanation would be for the two tasks to draw on similar

resources for object localization, but for the inclusion of action to

bring additional precision to this localization and/or additional

mechanisms that supplement overall levels of performance.

Table 3. interactive Multiple Object Tracking (iMOT): Individual Parameter Estimates for Distributions of Collision-free Trials in
Experiment 2.

Female Male

Part. Count Mean Var Skew Kurt Max Count Mean Var Skew Kurt Max

1 13 6.38 1.76 20.85 20.22 8 14 7.07 1.76 21.07 1.13 9

2 15 6.07 1.64 0.80 0.86 9 12 7.33 1.52 20.42 20.45 9

3 14 5.93 0.69 20.80 1.16 7 14 7.07 1.92 20.96 0.43 9

4 13 6.23 1.19 20.08 0.67 8 15 7.67 3.38 20.86 20.52 10

5 14 6.14 1.21 20.32 20.42 8 15 7.33 1.95 21.24 1.22 9

6 14 5.86 0.75 20.53 0.24 7 14 6.07 1.30 0.20 20.12 8

7 14 6.57 1.65 20.57 20.55 8 14 6.57 1.19 21.05 1.26 8

8 14 6.50 1.35 20.52 0.20 8 14 6.93 1.76 20.77 0.59 9

Mean 13.88 6.21 1.28 20.36 0.24 7.88 14 7.01 1.85 20.77 0.44 8.88

SE 0.24 0.09 0.15 0.20 0.23 0.24 0.35 0.19 0.26 0.17 0.28 0.24

doi:10.1371/journal.pone.0086974.t003
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Finally, we also note that while MOT performance appeared to

predict iMOT performance, the intervention strategy on the

iMOT task itself did not. As in Experiment 1, there were clear

individual differences in intervention strategy. The lack of a clear

relationship between these strategies and collision avoidance

suggests that object tracking and detection of impending collisions

are more critical to success on the iMOT task than precisely how

the collisions are avoided. Thus, the task would seem to more

heavily on attention and perception than on motor processes. In

the next experiment we continue to explore the relationship

between iMOT and MOT.

Figure 6. Performance in Experiments 1 and 2 as a function of participant sex. Panel A depicts mean number of tracked/controlled items
and Panel B the maximum number of items tracked/controlled. Gray squares denote iMOT data from Experiment 1, black squares denote iMOT data
from Experiment 2, and black circles denote MOT data from Experiment 2. Error bars denote the standard error of the mean; error bars are smaller
than plotting symbols in some cases.
doi:10.1371/journal.pone.0086974.g006
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Experiment 3

The goal of Experiment 3 was to directly test the hypothesis that

iMOT and MOT rely on a common mechanism by asking

participants to perform both tasks simultaneously. In contrast to

Experiments 1 and 2, we fixed the number of target items at four,

and manipulated difficulty by changing the number of distractor

items. In addition to the four target items, there could be four,

eight, or twelve distractor items, randomly interleaved within a

block of trials. There were three blocks in total. The first two

blocks were single-task blocks in which participants performed

only iMOT or MOT. In a final block of trials, both tasks were

carried out at the same time, on the same stimuli. Critically,

participants could only control the four target items. In the single-

task iMOT condition, the target items were visually distinct from

the other objects, but in the dual-task condition, they were

identical to the distractors and could only be differentiated if the

participant was correctly tracking. Note that this design equalizes

display density between the two tasks, both under single-task and

dual-task conditions.

Broadly speaking, this design can yield three outcomes. The

most likely is dual-task interference, in which the dual-task

condition yields performance below the single-task baseline for

one or both tasks. Our strong intuition when designing this

experiment was that the need to focus attention during action

would disrupt the ability to successful track multiple objects. The

second possibility is complete independence, in which perfor-

mance in the dual-task case is equivalent to the single-task

baselines. The third, rarer possibility might be termed ‘‘synergy’’,

in which performing the two tasks together actually improves

performance on one or both tasks.

Method
Participants. A new group of 16 younger adults (eight female

and eight male) aged between 21–32 years (M = 24.3, SD = 3.2)

took part in this study on a voluntary basis. They were recruited

directly from the Psychology Department at Swansea University.

All participants gave written informed consent, and the methods

and procedures conformed to the ethical guidelines set out by the

Declaration of Helsinki for testing human participants. All aspects

of the procedure was reviewed and approved by the Ethics

Committee at Swansea University.

Task & Design. Each participant completed three blocks of

trials, single-task iMOT, single-task MOT and dual-task iM-

OT+MOT. On each trial there were always 4 target items. The

number of distractors varied between 4, 8, and 12 items. Each

block consisted of 15 trials, with five repetitions of each set-size

presented in an order that was randomly determined for each

participant. The order of the two single-task blocks was

counterbalanced across participants and the dual-task block was

always performed last. As in Experiment 2, objects moved at 2u/s,

and each trial lasted for 20 s.

The single-task blocks (MOT and iMOT) were identical to the

corresponding blocks in Experiment 2, with the following

exceptions. First, we replaced the staircase procedure with the

interleaved set-size manipulation described above. Second, during

the single-task iMOT block, the four target items were drawn in

blue to distinguish them from the orange distractors. Furthermore,

only these target objects responded to directional control touches.

We made this change in order to reduce the likelihood that

participants would try to ‘‘herd’’ the targets and distractor items

into separate areas of the screen, a strategy that could have a

major impact on dual-task MOT performance. Removing touch

Table 4. Multiple Object Tracking (MOT): Individual Parameter Estimates for Correctly Identified Targets in Experiment 2.

Female Male

Part. Count Mean Var Skew Kurt Max Count Mean Var Skew Kurt Max

1 14 3.43 0.73 20.18 20.30 5 15 4.40 1.26 20.59 0.04 6

2 13 3.23 0.53 20.39 20.76 4 14 4.14 1.21 20.32 20.42 6

3 14 4.57 1.80 20.18 20.09 7 14 4.14 1.05 20.32 0.40 6

4 14 3.86 0.59 20.91 1.86 5 14 4.07 1.30 20.52 0.12 6

5 14 3.71 0.99 20.42 20.55 5 14 4.57 1.19 21.05 1.26 6

6 14 3.71 0.53 20.89 1.53 5 14 4.50 1.35 20.52 0.20 6

7 13 3.77 0.69 20.53 0.52 5 14 3.79 0.64 20.61 0.80 5

8 14 4.14 0.75 21.14 1.75 5 15 4.47 1.12 21.15 0.81 6

Mean 13.75 3.80 0.83 20.58 0.49 5.13 14.25 4.26 1.14 20.63 0.40 5.88

SE 0.17 0.16 0.16 0.14 0.41 0.32 0.17 0.10 0.08 0.12 0.20 0.13

doi:10.1371/journal.pone.0086974.t004

Figure 7. Interventions as a function of set size in Experiment
2. Data are plotted for each participant using unique symbols and
mean performance is represented by the dotted line. Legend codes
refer to individual Female (F) and Male (M) participants in Table 3.
doi:10.1371/journal.pone.0086974.g007
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control from distractors also helps to equate the salience of the 4

target objects across the two tasks.

The main dependent variable for the single-task MOT blocks

was the number of correctly identified targets. For the single-task

iMOT blocks, the main dependent variable was the number of

target-distractor or target-target collisions. Distractor-distractor

events did not increment the collision counter.

In the dual-task block all items were identical and were drawn in

orange. The four target items were briefly flashed as in the single-

task MOT trials and during the trial, only these four items would

respond to touch control. Participants were instructed to try to

prevent collisions between these target items and any other items.

As in the single-task iMOT block, distractor-distractor collisions

did not increment the collision counter. After 20 s of motion, the

animation halted and participants were asked to indicate which

four items were the targets by tapping them, as in the single-task

MOT block. Participants were asked to perform well both tasks

and we did not provide explicit instructions about which task was

to be given priority.

Analysis. Since we did not use a staircase procedure, the

dependent variables in this experiment were different than in

Experiments 1 and 2. For the iMOT task, we measured the

number of collisions and the number of control interventions

made during the 20 s motion interval. For the MOT task, we

measured the number of target items correctly identified and the

overall reaction time to select the four options. Each measure was

subjected to the same 2 (Sex) 62 (Condition: single or dual task)

63 (set-size) ANOVA. Initial examination indicated that block

order did not affect performance in any way, and this factor will

not be discussed further.

Results
iMOT Performance. Figure 9 shows the number of colli-

sions per trial as a function of set size and condition. For

comparison purposes, we also plot the number of collisions from

the single-task MOT block, in which participants did not interact

with the targets; this provides an estimate of how many collisions

would have occurred ‘‘naturally’’, allowing us to determine

whether participants’ interventions were effective in reducing the

number of collisions.

The collision data show a clear dual-task cost. There were more

collisions during dual-task trials (M = 12.8, SE = 2.0) than during

single-task trials (M = 9.2, SE = 1.2), F(1,14) = 8.4, MSE = 318.3,

pEta = 0.4, p,0.05. The number of collisions increased with set

size, with a slope of approximately 0.8 collisions/item,

F(2,28) = 36.5, MSE = 321.9, pEta = 0.7, p,0.001. Although the

slope appears slightly steeper for dual-task trials (M = 1.0

collisions/item, SE = 0.1) compared to single-task trials (M = 0.6

collisions/item, SE = 0.1), the Condition x Set Size interaction was

not significant, F(2,28) = 1.7, MSE = 7.1, pEta = 0.1, n.s. There

were no other significant effects or interactions.

Comparing the number of collisions that occurred during the

passive MOT condition (as estimate of the number that would

have occurred without intervention) to those that actually occurred

under active conditions produces an interesting result. As can be

seen in Figure 9, single-task iMOT (M = 9.2, SE = 1.2) appears to

slightly reduce collisions compared to the MOT baseline

(M = 11.2, SE = 0.2), reflected in marginal main effect of

Condition, F(1,15) = 3.2, MSE = 103.8, pEta = 0.2, p = 0.093,

and a significant Condition x Set Size interaction, F(2,30) = 3.8,

MSE = 19.4, pEta = 0.2, p,0.05. In contrast, the dual-task

condition (M = 12.8, SE = 1.9) actually resulted in more collisions

than the MOT baseline (M = 11.2, SE = 0.2) and overall

performance did not statistically differ in any way. This further

illustrates the dual-task cost to iMOT performance.

On average, participants made approximately 36 interventions

per trial (M = 36.4, SE = 4.4). As can be seen in Figure 10,

however, there was even greater between-participant variation

than observed in Experiments 1 & 2. For example, in the single-

task condition at the baseline set size of 8 items, interventions

ranged from 9 to 69 (M = 34.8, SE = 4.7), a pattern that is

maintained as the number of distractors increases. Overall, there

was a slight positive slope to the single-task trials (M = 0.6,

RSQ = 0.7, SE = 0.29), and a slight negative slope for the dual-task

trials (M = 20.3, RSQ = 0.6, SE = 0.26). Across single- and dual-

task conditions, the baseline levels of interventions were highly

correlated for individual participants, r(16) = 0.9, p,.001, but the

slopes were not, r(16) = 20.3, n.s.

Analysis of the average intervention data revealed a significant a

Condition x Set Size interaction, F(2,28) = 3.5, MSE = 92.8,

pEta = 0.2, p,0.05, confirming the presence of a dual-task change

in interaction behavior. Analysis of the slope and baseline data

revealed only a marginal main effect of slope, F(1,14) = 4.3,

Figure 9. Collisions in Experiment 3 as a function of condition
and set size. Dual-task performance (open squares) is clearly worse
than single task performance (solid squares). Performance in the MOT
condition (closed circles), in which collisions were not avoided, is
plotted for comparison purposes. In all conditions, there is a clear
increase in collisions as a function of set size. Error bars denote the
standard error of the mean.
doi:10.1371/journal.pone.0086974.g009

Figure 8. Relationship between iMOT and MOT performance in
Experiment 2. MOT performance is plotted on the x-axis and iMOT
performance on the y-axis. The black line denotes the regression line
derived from the 14 participants represented as black diamonds. Two
participants (gray squares) were omitted from the analysis (see text).
doi:10.1371/journal.pone.0086974.g008
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MSE = 1.3, pEta = 0.2, p = 0.057. No other main effects or

interactions were significant for any of the dependent measures.

Examination of the relationship between interventions and

collision data also reflects the dual-task influence on iMOT

performance. In the single-task condition there was a non-

significant, negative correlation between average interventions

and average collisions, r(16) = 20.3, p = 0.27. In the dual-task

condition, however, there was a clear positive correlation,

r(16) = 0.8, p,0.001. Thus under dual-task conditions, those

participants who interacted more frequently actually collided more

often. Regression analysis indicated that the slope and baseline (i.e.

set size 8) intervention data did not predict the slope of the

collision function, either for single-task, R2 = 0.2, F(2, 13) = 1.9,

MSE = 0.12, n.s., or dual-task R2 = 0.2, F(2, 13) = 1.9,

MSE = 0.04, n.s., conditions.
MOT Performance. Figure 11 shows the data from the

MOT task, with accuracy plotted as a function of set size and

condition in panel A, and reaction time (RT) as a function of set

size and condition in Panel B. In contrast to the iMOT results,

there was a dual-task benefit for MOT accuracy. Collapsing across

set size, dual-task performance (M = 3.0, SE = 0.1) exceeded

single-task performance (M = 2.8, SE = 0.1), F(1,14) = 5.6,

MSE = 1.3, pEta = 0.3, p,0.05. As expected, accuracy dropped

as set size increased, F(2,28) = 85.8, MSE = 16.2, pEta = 0.9,

p,0.001. The dual-task advantage increased as a function of set

size, F(2,28) = 3.8, MSE = 0.5, pEta = 0.2, p,0.05, probably due

to ceiling effects at set size 8. The only other effect to reach

significance was a main effect of Sex, with Male participants

(M = 3.1, SE = 0.1) correctly identifying more targets than Female

participants (M = 2.7, SE = 0.1), F(1,14) = 5.0, MSE = 3.9,

pEta = 0.3, p,0.05.

A similar dual-task benefit is observed in the RT data, where

dual task responses (M = 2.0 s, SE = 0.2) were consistently faster

than single task responses (M = 2.6 s, SE = 0.1), F(1,14) = 13.1,

MSE = 8.1, pEta = 0.5, p,0.01. RTs also increased as a function

of Set Size, F(2,28) = 5.4, MSE = 1.2, pEta = 0.3, p,0.05, with a

slope of approximately 47 ms/item. No other effects or interac-

tions were significant.

Discussion
Consistent with the results of Experiment 2, the current findings

suggest that iMOT and MOT rely, at least to some extent, on

common underlying mechanisms. Specifically, dual-task perfor-

mance was clearly modulated relative to the singe-task baseline

conditions. The precise pattern of this modulation, however, is

Figure 10. Interventions as a function of set size in Experiment
3. Data are shown separately for the single-task (A) and dual-task (B)
conditions. Individual participants are represented with unique symbols
and mean performance with the dotted line. There is a weak positive
trend to the single-task set size data and a less coherent, negative
pattern for the dual-task condition.
doi:10.1371/journal.pone.0086974.g010

Figure 11. MOT performance as a function of set size in
Experiment 3. Panel A shows accuracy in terms of the mean number
of identified targets. Performance drops with increasing number of
distractors, but less steeply under dual-task (open symbols) than single-
task (closed symbols) conditions. Panel B shows reaction time to
identify the targets in the final display. Across all levels of set size, dual-
task responses are consistently faster than single-task responses. Error
bars denote the standard error of the mean.
doi:10.1371/journal.pone.0086974.g011
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both surprising and intriguing. That is, we observed a dual-task cost

for iMOT, and a dual-task benefit for MOT. Explaining this

asymmetrical finding and what it might more generally tell us

about the impact of action when attention is divided will be a main

focus of the General Discussion, which we return to shortly.

Several other features of the data from Experiment 3 are also

worth commenting on. For example, single-task iMOT perfor-

mance at first glance seems worse than would be expected from

Experiments 1 & 2. Given that participants in Experiment 2, on

average, could control 6 items with no collisions on half of the

trials, why were participants in Experiment 3 encountering

roughly 6 collisions per trial while only controlling 4 items? The

answer probably has to do with the fact that only the 4 target items

could be controlled, in Experiment 3, whereas participants could

control all of the items in Experiment 2. As mentioned above, we

made this change to avoid ‘‘herding’’ behavior, but it clearly may

also have had an impact on overall collision avoidance.

Alternatively, the drop in performance may have arisen due

simply to the target/distractor distinction that was not present for

Experiments 1 and 2. Although collision with any item had to be

avoided, the existence of two ‘‘sets’’ of objects may have invoked

additional processes, such as distractor suppression, that could

have influenced iMOT performance over and above dual-task

costs per se.

As in Experiments 1 and 2, there was considerable variability in

the level of interventions made between participants. Indeed, here

the spread of interventions seemed even greater, and was still

obvious even under dual-task conditions, when control behavior

seemed to break down. This latter finding is at least suggestive that

the tendency to touch the device might relate more to idiosyncratic

motor preferences, rather than to collision avoidance strategies.

The clear sex differences seen in Experiment 2 were only

present in the single-task MOT condition of the current

experiment. In contrast, in both single and dual-task iMOT

condition, Female participants recorded less collisions, although

these differences were not significant.

Finally, we should note that this experiment is only a first step in

exploring the dual-task relationship between iMOT and MOT.

Additional studies will be needed in order to more fully explore

this relationship while controlling for additional factors. Explicitly

manipulating the priority of one or other task, by requiring zero

iMOT collisions or 100% MOT tracking performance, for

example, would be a useful approach for testing the limits of

shared resources. Similarly, returning touch control to all objects,

would remove the ability to recover MOT targets by hand. As we

discuss in more detail below, we believe the current dual-task study

has already shed light on the ability to act while dividing attention,

but clearly further studies will need to confirm and extend our

results.

General Discussion

In this paper we have introduced a new task, interactive

Multiple Object Tracking (iMOT), designed to measure the ability

to actively track and control a set of identical targets. In

Experiment 1 we showed that participants were able to divide

their attention between multiple targets over extended periods of

time and, in addition, were able to plan and execute actions

designed to control objects in order to avoid collisions. As with

MOT, this ability appears to be limited, with the precise limit

varying depending on display conditions such as speed (Experi-

ment 1 versus 2) and object density (Experiments 1–2 versus 3).

In Experiment 2, we showed that when the same group of

participants perform iMOT and MOT under identical display

conditions, they can actively control more items than they can

passively track. This experiment also demonstrated that for 14 out

of 16 participants, there was a positive correlation between the two

tasks, suggesting possible common underlying mechanisms.

In Experiment 3, using a dual-task design, we found converging

evidence for a relationship between the two tasks. However, rather

than a simple pattern of dual-task interference, we found a dual-

task cost for iMOT, and a dual-task benefit for MOT. As mentioned

in the introduction to Experiment 3, finding ‘‘synergy’’, where

performance on a task actually improves under dual-task

conditions, is quite rare.

Dual task benefits for MOT
How might we explain the dual-task benefit for MOT observed

in Experiment 3? Previous research has demonstrated that object

collisions and/or close approaches between items are a major

source of errors in MOT [12,35–37]. As the goal of iMOT is to

avoid collisions, the presence of interventions could indirectly

improve MOT performance by increasing object spacing. The

only problem with this explanation is that collisions actually

increased in the dual-task condition relative to those that occurred

by chance in the single task MOT condition. This makes object

separation seem an unlikely explanation for the dual-task benefit.

Another possibility is that action is being used as an additional

tagging mechanism to improve localization and identification.

Pylyshyn’s seminal account of MOT [13] proposed that the ability

to track multiple objects simultaneously reflected the existence of

virtual mental pointers or indexes, used for deictic reference in

spatial computations (see also [37]). Pylyshyn coined the term

FINSTs to refer to these pointers, from ‘‘FINgers of INSTanti-

ation’’. Perhaps there are additional ‘‘fingers’’ brought into play to

represent the action targets of our physical fingers during dual-task

trials?

A more prosaic possibility is that the dual-task condition allows

participants to test hypotheses about which items are targets and

which are not. Imagine that you lose track of one of the targets. In

the single-task MOT condition, there is no way, except by chance,

to recover from this loss. However, in the dual-task condition, you

can touch an item, and if it responds, then it’s a target, if it doesn’t

respond, it’s a distractor. We restricted touch control in this way in

order to reduce the possibility that participants would strategically

segregate the display, pushing all distractors to one area of the

screen and all targets to another. As an aside, we should note that

it remains possible that targets alone were ‘‘herded’’ in this way in

order to make them more easily available for tracking.

In any event, it remains a possibility that being able to identify

targets by touch accounts for some or even all of the dual-task

benefit we observed in Experiment 3. Certainly, this additional

avenue for recovering targets could be obscuring more general

dual-task costs for the MOT task. Of course, in order for this

factor to fully account for the dual-task MOT data, we would have

to assume that all of our participants ignored instructions to track

and simply used touch to probe for possible targets. Had this been

a common strategy we might have expected performance to

remain fairly constant across set size, which was not the case.

Similarly, none of our participants reported that they stopped

tracking during the dual-task trials, although we did not ask

specific debrief questions. Clearly, in future studies it would be

useful to attempt to control ‘‘herding’’ by other means, such as

more variable trajectories, and to reinstate touch to all objects.

Although we have been focusing on MOT accuracy, RT data in

Experiment 3 also showed a consistent dual-task improvement.

Participants were approximately 600 ms faster to locate the targets

in the dual-task than the single-task condition, suggestive of

iMOT
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improved confidence in localization. As the dual-task block always

followed the single-task block, it is possible that some of this

increase in speed is simply familiarity with the method of

responding. Similarly, with the current design, we cannot rule

out the possibility that some component of the dual-task benefit is

simply a MOT-specific practice effect.

Whatever the cause, it is clear that task-relevant action does not

appear to greatly disrupt MOT performance as measured in

Experiment 3. However, as already mentioned, we need to be

cautious in generalizing from these findings as the ‘‘target-

recovery’’ possibility afforded by touch could be artificially

inflating estimates of MOT dual-task performance. We thus feel

it remains a real possibility that in other settings the need to focus

attention in order to act could prove disruptive for tracking

multiple objects in parallel [44], an outcome we alluded to in the

introduction to Experiment 3. The contribution of the current

work is that it makes a first attempt to examine whether actions

can be planned and executed at the same time as tracking multiple

objects. Further studies will be required to establish whether the

apparent enhancement of tacking generalizes to situations where

additional cues to target identify are more tightly controlled. We

return to more generally implications for action and divided

attention below.

Dual task costs for iMOT
Next, we turn to the dual-task cost observed for iMOT.

Compared to single-task conditions, the need to separate target

and distractor sets – both to complete the standard MOT task and

to control objects – could have decreased the resources available

for collision avoidance. Similarly, as previous research has

suggested that successful MOT performance involves distractor

suppression [34–37], this could have had consequences for action.

That is, if suppression operated by inhibiting the spatial location

occupied by a distractor, then when target and distractor approach

one another this may reduce the effectiveness of actions. For

example, it may still be possible to ‘‘touch’’ a target, but not to

plan effective avoidance manoeuvers in an inhibited part of space.

This could explain both the increase in collisions and the reduction

in interventions as a function of set size, since more of the collisions

would be of a target-distractor nature as the distractor:target ratio

increased.

Finally, we cannot rule out the possibility that participants

simply strategically allocated resources to MOT at the expense of

iMOT. Although we instructed participants to perform equally

well in both tasks, the need to explicitly identify the four targets in

the final phase of each trial and/or the clear demands of

maintaining tracking-for-identity may have shifted priority on to

MOT. Also, we should note that our fixed target set size of 4 items

would have been close to capacity in terms of MOT, but below

capacity in terms of iMOT, based on estimates from Experiment

2. This may also have resulted in priority being given to the MOT

task. To test these ideas, it might be possible to shift priority to

iMOT by terminating trials after the first collision, as in

Experiment 1, or by manipulating the target set size so that

MOT is less demanding. If the current pattern of dual-task costs

and benefits reflects strategic allocation, we might expect iMOT to

show ‘‘synergy’’, and MOT interference, under such conditions.

On a relate point, it is important to keep in mind that so far we

have only measured one point along the attentional operating

characteristic (AOC) between iMOT and MOT. Generally

speaking there are two basic families of AOC curves that could

be compatible with the data from Experiment 3. These are shown

in Figure 12. The first family of possible AOC curves would be

inherently asymmetrical, such that dual-task iMOT is always at a

disadvantage relative to single-task iMOT, while dual-task MOT

may be advantaged or disadvantaged, depending on the priority

given to iMOT (purple curve in Figure 12). In the second

alternative (green curve in Figure 12), the characteristic is

essentially symmetrical, and either iMOT, MOT, or both could

benefit from synergy, depending on priority allocation.

The current data does not allow us to definitively exclude either

possibility. Average performance indicates that there exists a

region in the AOC space in which iMOT performance is

degraded, while MOT performance is improved. However, the

presence of at least two participants with better dual-task

performance in both MOT and iMOT, and the better overall fit

to our data would tend to favor a symmetrical solution. Clearly,

future studies will be needed to more fully explore this AOC space.

Integrating attention and action
An important goal of this paper was to explore the influence of

action when attention is distributed rather than focused. As

mentioned in the Introduction, previous studies have shown that

planning or executing an action has clear consequences in the

context of focused attention [21–22]. Similarly, attention is

thought to play an important role in some aspects of motor

learning and control [45–46]. Our interest in the current paper

was in whether the need to act in order to control specific targets

would conflict with the need to distribute attention across the

whole display in order to track and monitor for impending

collisions.

The findings of Experiments 1 and 2 indicate that these two

components can be integrated in our new task to support

performance that is equal to or even exceeds those observed in

passive tracking alone, suggesting little conflict. Single-task iMOT

performance, then, would appear to demonstrate that action has

little impact on standard estimates of the ability to divide attention.

We should note, however, that in these initial studies, it remains

possible that participants were serially deploying attention to

individual targets [47] rather than distributing attention in parallel

across the whole display [44].

Indeed, in Experiment 3, when concurrent MOT demands

required parallel tracking, both the quantity and the quality of

control actions were reduced. A goal of future studies will be to

determine whether this apparent conflict reflects fundamental

differences in tracking per se (i.e., serial versus parallel tracking) or

reflects demands placed by additional processes, such as distractor

inhibition or fine motor control.

Clearly, one of the main novel features of iMOT is the need to

control objects. What have the current studies told us about this

active component of performance? First, in all three experiments

there was considerable between-participant variation in interven-

tion strategy. Participants seemed to adopt a particular level of

intervention and to maintain this level regardless of subsequent

increase in difficulty. That is, differences in baseline levels of

intervention appeared to outweigh the set size slopes in all of the

experiments. This behavior might reflect quite stable preferences

to be reactive or proactive in dealing with impending collisions. An

interesting avenue for future studies will be to attempt relate such

strategic behavior to more general individual differences [48].

Second, individual intervention strategy did not a appear to be a

good predictor of task success. Indeed, the only dataset when there

appeared to be a clear relationship was in the dual-task condition

of Experiment 3. Here, more interventions were associated with

more collisions. In general, it would appear that iMOT can

support a range of intervention strategies and further research will

be needed to establish how the tracking and prediction demands of

the task relate to motor planning and execution. In addition to

iMOT
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strategies relating to collision avoidance, it may be that partici-

pants are trading off number of interventions for some other

quantity that we did not think to measure, for example the spatial

or temporal precision of motor movements.

Remaining with the topic of individual differences, previous

research has indicated that male participants might outperform

female participants on MOT tasks [35]. MOT accuracy data from

Experiments 2 & 3 confirm this finding. The iMOT data in

Experiments 1 & 2 also showed a similar pattern, with male

participants outperforming female participants. In Experiment 3,

however, although there were no reliable differences, in both the

single- and dual-task condition, female participants recorded fewer

collisions than male participants. In future studies it will be

interesting to establish whether these patterns reflect the use of

different strategies, as suggested by [43] in which case they might

easily be overcome with training [40], or whether they reflect

more fundamental differences in spatial cognition [41].

A few notes on the iPad as an experimental platform
The current work represents our group’s first attempt to

conduct research using a mobile device, such as an iPad. There are

a number of features that lead us to believe such devices will

become commonplace in laboratories that need to measure

human performance. Here, we list a few observations that might

prove useful for others’ contemplating experimental work in this

area. As the devices are relatively cheap and available, it is possible

to equip a lab with a number of identical experimental devices,

even given a quite limited budget. As ‘‘mobile’’ devices, they

enable extreme flexibility in where studies are carried out, making

it possible to make the most of limited lab space and to go offsite to

work with special populations (e.g., in clinics, homes, schools). Of

course, control over environmental conditions (e.g., lighting,

extraneous noise) can become problematic. The same is true if

applications are designed to be downloaded on to personal

devices, rather than lab devices. The appeal here, of course, is the

potential to collect data from very large samples of the general

public.

In general, it is relatively easy to design and implement

experiments via device-specific development environments (e.g.,

XCode) or third party, device-independent software such as Unity

3D. As the devices themselves are built to display high quality

video and to have response times that can support real-time game-

play, they would appear suitable for many types of experiments. At

least on some devices, obtaining accurate technical benchmarks

can be problematic, when precise control of display or response

are needed. However, we expect that both the specifications of

such devices and access to technical material will continue to

improve.

Our impression is that participants approached the current tasks

with a very different attitude to standard screen-and-keyboard

tasks. Clearly, we designed these experiments to be game-like.

Figure 12. Attentional Operating Characteristic for Experiment 3 data. The dashed line shows the typical AOC space, so that the vertical line
indicates MOT single task performance, and the horizontal line iMOT single task performance. Data falling at the intersection indicates independence,
data inside the box indicates dual-task costs and data outside of the box indicates ‘‘synergy’’. The red points indicate dual-task performance for each
individual participant. Data have been transformed relative to single task performance. MOT performance is thus dual-task targets correct as a
proportion of single-task proportion correct. iMOT data have been similarly transformed, except inverted, as higher collision scores ordinarily
represent worse performance. Equivalent dual and single task performance on both measures would thus result in a score of 1.0. The black square is
the overall mean. The purple curve represents the family of AOC curves in which concurrent MOT always hurts iMOT, but there is a range over which
MOT gets a benefit. The green curve is a symmetrical solution, where, depending on how participants allocate priority between the two tasks, we
could observe synergy on both tasks, or costs for MOT and benefits for iMOT.
doi:10.1371/journal.pone.0086974.g012
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Even beyond this, holding and controlling the device seemed to

change the dynamics of conducting the study in a way that made

the participants seem more engaged and at-ease, a feature that

may important for populations beyond typical young adults.

Finally, we have began to explore the potential of indirect

measures of behavior made available through built in hardware,

such as the iPad’s 3-axis accelerometer. We noted above that

direct measures, such as the number of interventions, were poor

predictors of overall performance. In pilot testing for the current

work, we used the accelerometer to record individual differences in

device orientation and the force applied during each touch.

Unsurprisingly, increases in task difficulty led to more interven-

tions and greater overall force being applied. Unexpectedly, we

found reliable correlations between device tilt and collision

avoidance, with flatter orientations leading to better performance

[49]. We believe that such indirect assessments of performance

could have great potential as additional measures of the mind.

Conclusions

How does action affect performance when tracking multiple

objects? We found that active tracking (iMOT) actually increased

participant’s functional capacity, relative to passive tracking

(MOT). Active and passive tracking do seem to share processing

resources, insofar as participants who were better at one also

tended to be better at the other. Finally, the two processes

interacted in an intriguing fashion under our experimental

conditions: while actively avoiding collisions improved MOT

performance, explicitly keeping track of target locations impaired

the ability to control objects. These findings suggest that our ability

to track multiple objects is not just a clever attentional trick for

playing perceptual shell games. Instead, these same processes can

be harnessed to effectively manipulate multiple objects in the

world. Conversely, the inherently serial nature of action does not

appear to constrain our parallel attentional processes. Attention

and action cooperate to allow us to interact with our dynamic

environment.
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