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Abstract
Predicting physical and functional links between cellular components is a fundamental challenge
of biology and network science. Yet, correlations, a ubiquitous input for biological link prediction,
are affected by both direct and indirect effects, confounding our ability to identify true pairwise
interactions. Here we exploit the fundamental properties of dynamical correlations in networks to
develop a method to silence indirect effects. The method receives as input the observed
correlations between node pairs and uses a matrix transformation to turn the correlation matrix
into a highly discriminative silenced matrix, which enhances only the terms associated with direct
causal links. Achieving perfect accuracy in model systems, we test the method against empirical
data collected for the Escherichia coli regulatory interaction network, showing that it improves on
the best preforming link prediction methods. Overall the silencing methodology helps translate the
abundant correlation data into valuable local information, with applications ranging from link
prediction to inferring the dynamical mechanisms governing biological networks.

The currently incomplete maps of molecular interactions between cellular components limit
our understanding of the molecular mechanisms behind human disease1-6. Ultimately, high-
throughput mapping projects7-10 are expected to provide the accurate maps of interactomes
necessary to systematically unlock disease mechanisms. Yet, as a complete interaction map
is at least a decade away, we need to develop tools that allow us to infer the structure of
cellular networks from empirically obtained biological data11,12. Many current tools
designed to infer functional and physical interactions in the cell rely on the global response
matrix,

(1)

which captures the change in node i's activity in response to changes in node j's13. This
matrix can be measured directly from gene knockout or overexpression experiments, or
inferred indirectly using related measures such as Pearson or Spearman correlations14,
mutual information15,16 or Granger causality17. Traditional methods for predicting
links15,16,18,19 assume that the magnitude of Gij correlates with the likelihood of a direct
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functional or physical link between nodes i and j. Yet Gij cannot distinguish between direct
and indirect relationships: a path i → k → j can result in a significant response measured
between i and j, falsely suggesting the existence of a direct link between them (Fig. 1a-b).

Several methods correcting for such effects have been proposed: information theoretic
approaches evaluate the association between nodes by measuring the entropy of their mutual
activities, where a low entropy indicates a statistical dependence between the node
activities16,18,20; probabilistic models, such as the graphical Gaussian model, allow one to
evaluate the correlation between i and j, while controlling for the state of node k, and
thereby provide a more indicative measure of direct linkage21-25; other models rely on
assumptions pertaining to the network topology, such as the tendency of real networks to
exhibit strong degree correlations26. The ultimate solution, however, should enable us to
fully unwind the direct from the indirect effects, providing a measure which distinctly
indicates the existence of direct links. Consequently, here we focus on the local response
matrix

(2)

in which the contribution of indirect effects is eliminated. In contrast with (1), which allows
for global changes in i and j's environment, here the “∂” indicates that Sij is defined to
capture only local effects, namely the response of i to changes in j when all surrounding
nodes except i and j remain unchanged. Hence Sij > 0 implies a direct link between i and j.

Here we derive a method for calculating the local response matrix (2) from experimentally
accessible correlation measures, allowing us to mathematically discriminate direct from
indirect links. We show that the resulting Sij matrix, in which the contribution of indirect
paths is silenced, is more discriminative than the empirically obtained Gij matrix, enhancing
our ability to extract direct links from experimentally collected correlation data.

Results
The silencing method

To extract Sij from the experimentally accessible Gij, we formally link (1) and (2) via

(3)

Equation (3) is exact and the sum accounts for all network paths connecting i and j
(Supplementary Note S.I.1 - 2). It is of limited use, however, as it requires us to solve N2

coupled algebraic equations. In Supplementary Note S.I.1 we show that (3) can be
reformulated as

(4)

where I is the identity matrix and  sets the off-diagonal terms of M to zero. To obtain
an approximate solution for S we use that fact that typically, perturbations decay rapidly as
they propagate through the network, so that the response observed between two nodes is
dominated by the shortest path between them. This allows us to approximate  with

 (Supplementary Note S.I.3), obtaining

Barzel and Barabási Page 2

Nat Biotechnol. Author manuscript; available in PMC 2014 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

Equation (5), our main result, provides Sij from the experimentally accessible Gij. It
achieves this through a 'silencing effect’, in which direct response terms are preserved, while
indirect responses are silenced. To understand this consider a specific term in Gij,
documenting the response of node i to j's perturbation. As indicated by Eq. (3), this response
is a consequence of all direct and indirect paths leading from j to i. As we document below,
the transformation (5) detects the indirect paths and silences them, maintaining only the
contribution of the direct paths (Fig. 1d-f).

Silencing in model systems
To demonstrate the predictive power of (5), we implemented Michaelis-Menten dynamics
on a model network (Supplementary Note S.III), as commonly used to model
generegulation27,28. We obtained Gij by perturbing the activity of each node and then
calculated Sij using (5). Figure 2a shows the Gij and Sij terms associated with interacting
(green) and non-interacting (orange) node pairs. Although Gij is higher for direct
interactions, the overlap between the orange and the green symbols indicates a lack of a
clear threshold q that separates direct and indirect interactions. In contrast, Sij displays a
clear separation between direct and indirect interactions, accurately predicting each direct
link. Indeed, the ROC curve derived from Gij (Fig. 2b, red) has an area of AUROC = 0.91,
reflecting inherent limitations in separating direct from indirect interactions based on Gij
only. In contrast for Sij we obtain AUROC = 0.997 (blue), where the true positive rate (TPR)
reaches 100% with a false positive rate (FPR) of less than 10–3. Also, although for Gij
precision increases gradually with the threshold q (Fig. 2c), for Sij precision jumps to one
for q > 10–4. Hence, in our well controlled model system effectively any non-zero Sij
corresponds to a direct link.

The performance of (5) is due to the silencing effect: it leaves Gij unchanged if i and j are
linked, while it systematically lowers all Gij not rooted in a direct interaction. To quantify
this effect we measured the discrimination ratio ΔG = 〈Gij〉Dir/〈Gij〉Indir (ΔS = 〈Sij〉Dir/
〈Sij〉Indir) which captures the ratio between Gij (Sij) terms associated with direct links and
those associated with indirect links (Fig. 1c and g). We find that Sij is much more
discriminative than Gij owing to its silencing of indirect responses. To quantify this effect
we measure the silencing

(6)

which captures the increased power of Sij to discriminate between direct and indirect links
compared to Gij. In our model system we find that κ = 15, a silencing of more than an order
of magnitude (Fig. 2d). Furthermore, the longer is the distance dij between two nodes, the
larger is the silencing (Fig. 2e). As an illustration, consider a linear cascade in which
changes in any node result in a finite response Gij by all other nodes (Fig. 2f). Equation (5)
silences all indirect responses, while leaving the response of direct links effectively
unchanged, offering a discriminative measure that enables a perfect reconstruction of the
original network.

Predicting molecular interactions in E. coli
To test the predictive power of (5) on real data we used the E. coli datasets distributed by the
DREAM5 network inference challenge19. The input data include a compendium of
microarray experiments measuring the expression levels of 4,511 E. coli genes (141 of
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which are known transcription factors) under 805 different experimental conditions
(Supplementary Note S.IV.1). We constructed three separate global response matrices Gij
between the 141 transcription factors and their 4,511 potential target genes, based on (i)
Pearson correlations; (ii) Spearman rank correlations; and (iii) mutual information, which
are three commonly used methods for link detection (Supplementary Note S.IV.3). From
each of the three Gij matrices we obtained Sij via (5), and compared the performance of Gij
with the pertinent Sij. To validate our predictions we relied on the gold standard used in the
DREAM5 challenge, consisting of 2,066 established gene regulatory interactions.
Measuring AUROC from Gij and Sij, we find an improvement of 56% for Pearson
correlations (Fig. 3a), 67% for Spearman rank correlations (Fig. 3b) and a smaller
improvement of 6% for mutual information (Fig. 3c), e.g. allowing us to improve upon the
top performing inference methods19.

We further tested the discrimination ratio, Δ, and the silencing, κ, for each of these methods,
finding that indirect correlations are subject to an average of two-fold silencing in the
transition from Gij to Sij (Fig. 3d). Silencing is especially crucial in the presence of the
cascade and co-regulation motifs shown in Figures 3e-f, where most inference methods
indicate a spurious link between X and Y owing to the indirect correlation mediated by node
I. Indeed, the transformation (5) silences these indirect correlations by a factor of three or
more for Pearson and Spearman correlations and by a smaller factor for mutual information,
overcoming one of the most common hurdles of inference methods, which tend to over-
represent triadic motifs19.

The effects of noise and uncertainty
As all experimental data is subject to noise, the global response matrix, Gij, is characterized
by some degree of uncertainty. To test the performance of our methodology in the presence
of noise, we repeated the numerical experiment of Figure 2, this time adding Gaussian noise
to Gij, which allows us to calculate silencing as a function of increasing the signal to noise
ratio θ (Fig. 4). As expected, silencing is unaffected by small values of θ, so that κ features
a plateau below θ ≲ 0.1. For large θ, silencing decays as κ ~ θ–1, demonstrating that the
performance of the method decreases slowly with increasing the signal to noise ratio.
Indeed, as opposed to a rapid exponential decay, the observed slower power-law dependence
indicates that the method is rather tolerant against noise. Silencing is lost only when the
noise reaches the critical level θC ≈ 0.75, when the signal is almost completely overridden
by noise, leading to κ = 1 (Supplementary Note S.V.1).

Hidden nodes offer another source of uncertainty. They represent the fact that in most cases
we are unable to read the states of all nodes in the system29. To illustrate the effect of the
hidden nodes on the performance of the silencing method, we consider the case of a simple
cascade i → k → j, where the intermediate node k is hidden. In this scenario, Eq. (5) will
not be able to silence the indirect i → j link because in the observable system the Gij term
cannot be attributed to any indirect path. Hence, absent any other information about the
system, it is mathematically impossible to infer the indirectness of Gij, as the removal of k
isolated i from j30. This touches upon the fundamental mechanism of silencing: as illustrated
in Figure 1 (and Supplementary Note S.I.2) the silencing transformation (5) exploits the
flow of information through indirect paths. Consequently, if as a result of hidden nodes the
network fragments into several components such that the node pair i and j become isolated
from each other, then all indirect paths between them became hidden and the pertinent Gij
term will not be silenced (Fig. 5a–b). Hence silencing is expected to fail only when the
network breaks into many isolated components so that most node pairs become isolated.
Fortunately, a fundamental property of complex networks is that with average degree 〈k〉 >>
1, one needs to remove a large fraction of the nodes to fragment the underlying giant
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connected component31-34. Therefore we can build on percolation theory, which allows us to
analytically predict how the size of the largest connected component changes with the
random removal of a certain fraction of nodes35,36. The calculation shows that silencing is
maintained as long as the fraction of hidden nodes is smaller than

(7)

where  (Supplementary Note S.V.2). This equation indicates that for
large 〈k〉 the method will be reliable even if a large fraction of the nodes are hidden.

To test this prediction, we revisited the numerically obtained Gij analyzed in Figure 2 and
measured the degree of silencing after randomly removing an increasing fraction of nodes.
In each case we also measured the ratio between isolated and connected node pairs (ρ). We
find that, as predicted, the degree of silencing is driven mainly by ρ, approaching κ ≈ 1 (no
silencing) when ρ ≥ 1, namely when the isolated pairs begin to dominate the network (Fig.
5c). Here as 〈k〉 = 4, Eq. (7) predicts ηC ≈ 0.57, i.e. the method will fail only when almost
60% of the nodes are hidden. Note that for biological networks 〈k〉 is expected to be in the
range of37 〈k〉 ≲ 10, predicting ηC ≲ 0.8. Namely, one needs to lose access to 80% of the
nodes for silencing to lose its effectiveness.

Discussion

With computational complexity , Eq. (5) is scalable and requires no assumptions
about the network topology. By silencing indirect effects, it turns the raw correlation data
into a predictive Sij matrix, dominated by direct interactions. It is especially suited to treat
perturbation data, such as genetic perturbation experiments, in which case Gij describes the
response of all genes (dxi) as a consequence of the perturbation of the source gene (dxj)38. In
practice, however, Gij could be the result of a broader set of experimental realizations where
other measures are used to evaluate the association between nodes, typically statistical
measures such as Pearson or Spearman correlation coefficients. Still, our empirical results
(Fig. 3) clearly show that the transformation (5) successfully applies to these empirically
accessible measures as well. Hence silencing is largely insensitive to the specific process by
which Gij was constructed.

The method's broad applicability is rooted in the fact that it does not depend on the value of
each specific term in Gij, but rather on the global relationships between them. Indeed, the
global structure of Gij reflects the patterns of propagation of the perturbations along the
network. Equation (5) helps uncover these paths from the raw data, disentangling the direct
from the indirect effects. These patterns of information flow are inherent to the underlying
network structure, and should not depend on the specific experimental realization of (1). For
instance, a cascade i → j → k will be characterized by a decreasing correlation propagating
along the arrows, a large correlation between i and j and a weaker one between i and k.
Although the magnitude of these correlations might depend on the size or the form of i's
perturbation as well as on the statistical measure we used to evaluate them, the decay pattern
required to infer the structure of the cascade is an inherent property of the network flow and
can be successfully detected by the silencing method (Supplementary Note S.I.4).

The silencing transformation is derived from fundamental mathematical principles of
dynamical correlations in networks. Hence it is expected to apply under rather general
conditions. However, as Equation (5) indicates it requires that the input matrix, Gij, is
invertible. This imposes some limitations when constructed from statistical correlation
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measures. For instance in the empirical results of Figure 3a we constructed Gij from Pearson
correlations, using the states of 4,511 nodes measured under 805 experimental conditions. In
general, if the number of experimental conditions is smaller than the number of nodes the
resulting Pearson correlation matrix may be singular. In this case additional processing will
be required before (5) could be applied. Here, following the DREAM5 protocol, we only
focused on the correlations between the 141 known transcription factors and the rest of the
nodes, which lead to an invertible Gij (Supplementary Note S.IV). Other means to ensure
Gij's invertibility are discussed in Supplementary Note S.IV.4.

Isolating indirect effects in correlation data, a fundamental challenge of network inference,
is typically approached through local probabilistic tools12,14-18. In contrast, the success of
the silencing method is rooted in its exploitation the global network topology39: it relies on
the fundamental principles of network structure and dynamics to identify and silence the
effects of indirect paths. The ability to extract Sij from Gij could also have implications for
our understanding of network dynamics. Indeed, Gij is a global network measure, as its
magnitude is determined by the numerous indirect paths connecting i and j. Hence, for a
given dynamics, the Gij matrix will take a different form depending on the network
topology, making it a poor predictor of the system's dynamics. By eliminating indirect
effects, Sij measures the effect gene i would have on gene j had they been isolated from the
rest of the network. It thus helps us quantify the dynamical mechanism that governs
individual pairwise interactions, avoiding the convolution of dynamical and topological
effects present in experimental data. For instance, consider a set of perturbation experiments
providing Gij. The structure of Gij reflects the microscopic mechanisms that govern the
pairwise interactions, e.g. genetic regulation and biochemical processes. It is difficult,
however to extract this information from Gij since its terms are a convolution of many
interactions, reflecting the many paths leading from i to j. The transition to Sij , via (5),
allows us to treat each isolated interaction on its own, providing a direct observation into the
microscopic interaction mechanism. Direct application of this fact could be the derivation of
a rate equation that governs the system's dynamics from Gij, as well as predicting the
universality class and the scaling laws governing the system's response to perturbations.
Hence (5) helps translate the ever-growing amount of data on global correlations into
valuable local information.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Silencing indirect links
(a) The experimentally observed global response matrix, Gij, accounts for direct as well as
indirect correlations, with no clear separation between them. The source of Gij could be gene
coexpression data, statistical correlations or genetic perturbation experiments. (b) In the
absence of a clear separation in Gij assigned to direct and indirect correlations, our ability to
infer direct physical links (solid lines) is limited. Simple thresholding, i.e. accepting all links
for which Gij exceeds a predefined threshold, is known to predict spurious links (strong
dashed lines) and overlook true links (light solid lines). (c) While the average Gij terms
associated with direct links (dark blue) are higher than the average terms associated with
indirect links (light blue), as captured by the discrimination ratio, ΔG, the difference is not
sufficient to identify direct and indirect links. (d) Silencing is achieved through Eq. (5),
which exploits the flow of information in the network: the flow from the source (j) to the
target (i) is carried through the indirect effect Gkj (orange) coupled with the direct impact Sik
of the target's nearest neighbor κ (blue). By silencing the indirect contributions, Eq. (5)
provides the local response matrix, Sij , whose non-zero elements correspond to direct links.
(e) – (f) In Sij the terms associated with indirect links are silenced, allowing us the detect
only the direct links of the underlying network. (g) As indirect terms become much smaller
in Sij, we obtain a greater discrimination ratio, ΔS. The degree of silencing, κ, captures the
increase observed in the discrimination ratio by the transition from Gij to Sij (5).
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Figure 2. Network inference in model systems
We numerically simulated Michaelis-Menten dynamics on a scale-free network [40-42],
extracting the correlations Gij between all pairs of nodes (see Sec. S.III for details). (a) Gij
and Sij associated with interacting (green) and non-interacting (orange) node pairs. Sij
silences the correlations associated with indirect interactions, resulting in a clear separation
between direct and indirect interactions, a phenomenon absent from Gij. (b) ROC curve
obtained from Gij (red, area 0.91) and Sij (blue, area 0.997). The Sij network reaches 100%
accuracy with a negligible amount of false positives. (c) Precision obtained for threshold q
for Gij (red) and Sij (blue). The gradual rise of the Gij-based precision indicates that for a
broad range of thresholds only a small fraction of the links will be identified. In contrast, the
steep rise in precision for Sij indicates its enhanced discriminative power between direct and
indirect links: virtually any non-zero Sij corresponds to a directly interacting pair. (d) The
discrimination ratio, Δ, is much higher in Sij (blue) compared to Gij (red). This indicates that
Sij is a much better predictor of direct vs. indirect interactions. The silencing (5), which
captures the increase in the discrimination ratio is κ = 15.0. (e) Silencing increases with the
path length dij between i and j, so that the more indirect is the link the more dramatic is the
silencing. (f) The source of Sij's success is the silencing effect, here illustrated on
correlations measured for a linear cascade. The reconstruction of the cascade from Gij is
confounded by numerous non-vanishing indirect correlations. In Sij the indirect correlations
are silenced, providing a perfect reconstruction.
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Figure 3. Inferring regulatory interactions in E. coli
(a) Starting from gene expression data, we used Pearson correlations in expression patterns
to construct Gij for 4,511 E. coli genes, obtaining Sij via (4). We compared our predictions
to a gold standard of experimentally verified genetic regulatory links [19]. The area under
the ROC curve (AUROC) is increased from 0.59 to 0.64 in the transition from Gij to Sij,
representing a 56% improvement (above the baseline of 0.5 for a random guess). (b) An
improvement of 67% is observed for Spearman rank correlations. (c) A less dramatic
improvement of 6% is shown when Gij is constructed using mutual information. (d) The
discrimination ratio for all three methods compared with that obtained from the pertinent Sij
matrix. The transition to Sij (4) increases the discrimination between direct and indirect
interactions by a factor of two or more, so that indirect interactions have a significantly
lower expression in Sij. (e) - (f) This observation becomes even more dramatic when
focusing on two specific motifs: cascades and co-regulators. In Gij the indirect correlation
between X and Y, which is induced by the intermediate node, I, may lead to the false
prediction of the spurious X – Y link. Thanks to silencing, the discrimination between the
direct and indirect links in these motifs is increased by a factor of three or more for Pearson
and Spearman correlations, and by a factor of about two for mutual information.
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Figure 4. Silencing in a noisy environment
To test the method's performance in the presence of a noisy input we added Gaussian noise
to the numerically obtained Gij, and measured the silencing, κ, vs. the signal to noise ratio θ.
For low noise levels (θ ≲ 0.1) silencing is relatively unharmed. At higher noise level
silencing decreases as κ ~ θ–1, a slow decay that supports the robustness of the method.
Silencing is lost at θC ≈ 0.75, when the signal is almost fully driven by the noise.
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Figure 5. Performance with hidden nodes
(a) A network with N = 8 nodes of which a fraction η = 1/4 are hidden. The observable sub-
network has six nodes, five forming a connected component (with 10 connected node pairs)
and one isolated (6 isolated pairs). The ratio between isolated and connected node pairs here
is ρ = 6/10. Equation (5), applied to the observable network, successfully silences the
indirect Gij terms among the nodes of the connected component. However the correlations
between the isolated node and the rest of the network, lacking an indirect path, are not
silenced. (b) To test the silencing in the presence of hidden nodes we used the numerically
obtained Gij (Fig. 2) from which we eliminated a fraction η of the nodes, obtaining an
observable network with 104 isolated node pairs (ρ ≈ 103). After applying Eq. (5) to the
remaining nodes we find that the silencing of Gij terms associated with connected node pairs
is unaffected (orange bar), while for the isolated node pairs silencing drops to κ = 1, namely
no silencing (purple bar). Hence for the isolated node pairs Sij is not more predictive than
Gij. (c) Increasing the fraction of hidden nodes, η (top horizontal axis), we measured κ vs. ρ.
As expected, silencing is observed as long as most node pairs are connected via finite paths
(ρ < 1). However, when the number of hidden nodes is increased to the point that the
isolated pairs dominate (ρ > 1), silencing is no longer observed (κ = 1). The critical fraction
of hidden nodes, ηC, corresponds to ρ = 1, the point where silencing no longer plays a
significant role. Here we find ηC ≈ 0.57 (blue arrow), in agreement with the prediction of
Eq. (7).
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