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Gene set enrichment analysis (GSEA) associates gene sets and phenotypes, its use is predicated on the choice
of a pre-defined collection of sets. The defacto standard implementation of GSEA provides seven collections
yet there are no guidelines for the choice of collections and the impact of such choice, if any, is unknown.
Here we compare each of the standard gene set collections in the context of a large dataset of drug response in
human cancer cell lines. We define and test a new collection based on gene co-expression in cancer cell lines
to compare the performance of the standard collections to an externally derived cell line based collection.
The results show that GSEA findings vary significantly depending on the collection chosen for analysis.
Henceforth, collections should be carefully selected and reported in studies that leverage GSEA.

W
ith the advent of high-throughput gene expression profiling using microarrays and RNA sequencing,
researchers are now able to quantify the expression of a cell’s genes in response to various environ-
ments, stimuli or other controlled experimental factors1. It has thus become common practice to refer

to a cell’s expression profile, meaning the complete set of its gene expression levels for a specific experimental
condition. Among numerous applications of gene expression profiling, the identification and quantification of
differential gene expression have been shown to be informative and reproducible across different teams and
technology platforms2,36.

Differential expression of individual genes have led to critical discoveries in numerous diseases such as the
genes ESR1, ERBB2 and AURKA used in breast cancer molecular subtyping3. However it is now well established
that it is generally not individual genes but sets of genes (and sets of gene products) that collectively define
phenotypes such as targeted cancer therapy response. This suggests that the association of a set of expression
levels with phenotype may be more robust than biomarkers consisting of individual gene expression levels. To this
end Gene Set Enrichment Analysis (GSEA) has been developed to associate gene sets with sample phenotypes4,5.

In the context of cancer therapy decision-making, it is important to understand the mechanism of action of
anticancer agents and to identify efficient drug response biomarkers. However given the rapid development of
many new compounds, it is neither sustainable nor ethical to test all of them in clinical trials6. Therefore several
research groups investigated the use of large panels of cell lines to effectively screen the therapeutic potential of
numerous compounds7–9. In particular Garnett and colleagues at the Welcome Trust Sanger Institute recently
published the results of a large panel of 727 unique cancer cell lines screened with 138 drugs (the resulting dataset
is referred to hereafter as the Cancer Genome Project’s dataset or CGP).

Developing therapeutic strategies based on such studies is an elusive and attractive target. Much of the difficulty
in establishing reliable predictors lies in the genetic diversity of human cancers and so gene set association is a
natural investigative avenue. Cell line drug response trials offer a vast array of quantifiable phenotypes and so
GSEA can be utilized to find gene sets associated with a particular drug response10,11.

GSEA requires a pre-defined collection of gene sets as input then provides a score to each gene set’s association
with a phenotype. We refer to the distribution of these scores attributed to a particular collection by GSEA as that
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collection’s enrichment profile. In this work we hypothesize that
different gene set collections yield heterogeneous enrichment pro-
files when investigating the biological mechanisms of drug response
in cell lines. We therefore tested the use of various collections within
GSEA and compared their enrichment profiles within the context of
drug response in human cancer cell lines. We analyzed the CGP
pharmacogenomic dataset to compare the associations of gene
expression with drug response over 138 drugs administered to a
panel of 727 cancer cell lines.

Of these standard collections, C2 provides a significant number of
highly enriched gene sets as well as the net highest scoring gene set for
many drugs. C2 is a collection composed of sets extracted mainly
from biomedical literature and biological databases such as the Kyoto

Encyclopedia of Genes and Genomes12 (KEGG) or Reactome13. It is
followed in both these categories by C4: a collection of gene sets
created by data mining cancer-related microarray data. All other
collections perform significantly poorer. We further observe that
there is little overlap between the standard collections and that col-
lection performance is predicted by gene count or shared phenotypic
characteristics with the phenotype under study. Lastly we showed
that a new collection based on co-expressed gene sets extracted from
cancer cell lines experiments supplants C2 as the lead collection of
gene sets when included in the analysis.

Results
To investigate the impact of a particular collection on GSEA’s results,
we conducted gene set analyses for 138 drugs tested on 727 cell lines8.
The collections tested were the seven standard collections made
available through the tool’s distributor, together these seven collec-
tions are refered to as the Molecular Signatures Database (MSigDB).

There exists no de facto consensus among the community as to
which gene set collections are to be used within GSEA. Of the first 32
hits on a PubMed search for GSEA, 9 articles did not specify the
source of their gene sets, 7 articles noted a manual curation and
omitted the methodology, 14 specified specific particular instances
or subsets of the collections within MSigDB and only 1 article spe-
cified that the entire MSigDB was used (supplementary file 1).
Justifications for the choices made were almost uniformly omitted.

The seven collections are generated using different strategies and
thus the number of unique genes accounted for within a collection
varies. Table 3 shows the number of unique genes contained in each
collection.

We compared the number of gene sets in each of the MSigDB
collections (Figure 1A, Table 1). With a total of 8761 unique gene

Table 3 | Number of unique gene sets and unique genes per col-
lection used in gene set enrichment analyses

Gene set collection # unique gene sets # unique genes

HGSK 1335 12153
C1 287 30012
C2 3761 21050
C3 770 14085
C4 799 10062
C5 1046 8278
C6 188 11250
C7 1910 19841

Table 1 | Collections available from the Broad Institute

Label Descriptive title Description

C1 positional gene sets Collection of sets grouped by physical location on chromosome and cytogenetic bands.
C2 curated gene sets Collection of sets collected from heterogenic sources but with a focus on the pathway databases BioCarta

(http://www.biocarta.com), KEGG (http://www.genome.jp/kegg), Pathway interaction database (
http://pid.nci.nih.gov), Reactome (http://www.reactome.org), SigmaAldrich (http://www.
sigmaaldrich.com/life-science.html), Signaling gateway (http://www.signaling-gateway.org),
signal transduction KE (http://stke.sciencemag.org), SuperArray (http://www.superarray.com),
manually curated gene sets from the MYC Target Gene Database (http://www.myccancergene.org/
site/mycTargetDB.asp) It also includes some sets identified by a mammalian microarray study31.

C3 motif gene sets Collection of sets of genes themed around regulatory motifs pulled from an individual study, ie.
thosediscovered by the motif identified by Xie et al.32 from the TRANSFAC database33.

C4 computational gene sets Collection of gene sets created by data mining cancer-related microarray data in three studies14,34,35.
C5 GO gene sets Curated sets derived by gene ontology22.
C6 oncogenic signatures Sets derived from NCBI GEOs using an unspecified methodology and unpublished experiments relating

to perturbation of cancer genes in unspecified ways.
C7 immunologic signatures Manual curation of gene sets originating in unspecified human and mouse immunology studies

generated by the Human Immunology Project (http://www.immuneprofiling.org)

Table 2 | Wilcoxon Rank Sum test of high scoring gene sets (NES .

2.0) by collection accross drugs

Set 1 Set 2
p-value of Wilcoxon Rank Sum
test (double sided hypothesis)

HGSK c1 1.24E-33
HGSK c2 0.21
HGSK c3 2.89E-39
HGSK c4 2.78E-06
HGSK c5 4.61E-29
HGSK c6 5.23E-31
HGSK c7 2.45E-23
c1 c2 1.91E-28
c1 c3 6.67E-05
c1 c4 3.97E-18
c1 c5 0.56
c1 c6 0.38
c1 c7 0.016
c2 c3 8.26E-35
c2 c4 7.8E-04
c2 c5 1.20E-23
c2 c6 1.03E-25
c2 c7 8.06E-19
c3 c4 1.75E-25
c3 c5 6.85E-08
c3 c6 5.29E-06
c3 c7 1.60E-08
c4 c5 2.05E-13
c4 c6 1.60E-15
c4 c7 5.49E-10
c5 c6 0.32
c5 c7 0.48
c6 c7 0.1
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sets, the number of gene sets contained in each of the seven collec-
tions ranges from 188 (C6) to 3761 (C2). To assess the overlap
between these collections we adapted the H index, which is com-
monly used to estimate a researcher’s scientific productivity18, in
order to quantify the overlap between two collections of gene sets
(see Methods). We used this new overlap index, referred to as the g
index, to compute the overlap between each possible pair of gene set
collections. Figure 1B represents the resulting g indices as a heatmap.
These indices range in value between 0.0106 and 0.0223 (mean 5

0.0167, sd 5 0.00352.) All scores are available in supplementary file
2. We observed that the highest degree of overlapping is observed
between C2, a collection of gene sets curated from biological data-
bases and biomedical literature (Table 1) and C4, a collection com-
posed of gene sets created by mining three large microarray studies
(Table 1) with g index of 0.0223, doubling the maximal overlap score
of C1. The C4 and the Gene Ontology set C5 share the next highest
overlapping index (g index of 0.0212). C1, based on gene position in
cytogenetic bands, shows very little overlap with all sets (maximum g
index of 0.0118 with the C2 set.) C1 is the only collection based on
gene proximity while all other collections attempt to group genes
based on phenotypes, pathways or within the classification proposed
by Gene Ontology22.

We refer to the distribution of enrichment scores attributed to a
collection by GSEA as that collection’s enrichment profile. For each
drug we performed a gene set enrichment analysis with each indi-
vidual collection to produce 138 enrichment profiles for each collec-
tion. Under the assumption that highly enriched gene sets are more
indicative of a collection’s value than the overall distribution of its
sets, we compared the distributions of normalized enrichment scores
with absolute values greater than 2 for each collection (Figure 2A).
Within the overall density graph we observed an approximately nor-
mal distribution with a mean absolute normalized enrichment score
(NES) of around 1.0 for all collections. At the high end of the density
curves we note that the C4 collection contains the highest scoring
gene sets overall, followed by C2 and C6 (Figure 2A). We also
counted the number of enriched gene sets for each drug within each
collection (Figure 2B). Overall, GSEA identified significantly more
enriched gene sets in the C2 and C4 collections (Table 2).

In order to understand the relative effectiveness of each collection
in providing highly enriched gene sets in the given context we plotted
the fractional contribution of the top scoring sets for the aggregation

of all drugs. Each drug was polled for its top scoring gene set (highest
absolute NES) and the set’s collection of origin was identified. The
ratio of sets contributed by a collection to the total of these top
scoring sets is that collection’s fractional contribution. The number
of gene sets polled per drug was incremented from one to fifty and the
results are plotted in Figure 3. This procedure permits a competitive
analysis of the gene set collections. We observed that the C2 collec-
tion is the dominant collection followed by C4 and the remaining
collections do remarkably less well with little distinction among
them.

We introduced a new, data-driven collection to the competitive
analysis in order to compare the leading MSigDB collections to an
external collection. We also sought to test whether the standard
collections offered the highest scoring gene sets for the phenotype
under study. This collection was built by computing sets of tightly co-
expressed genes in cancer cell lines produced by GlaxoSmithKline
and published by Greshock et al.20. We performed a hierarchical
clustering analysis to compute the nested structure of co-expression
gene sets (Figure 4, see Methods). We repeated the competitive ana-
lysis described previously with this new collection of co-expressed
gene sets, referred to as HGSK (short for hierarchical
GlaxoSmithKline.) As can be seen in Figure 3B the HGSK collection
dominates the remainder of the collections mostly at the expense of
the C2 collection. However, when a greater number of enriched gene
sets are considered (n . 30), C2 contributed more and more gene
sets and approached HGSK’s contribution. The C4 collection’s con-
tribution remains largely unaffected by the inclusion of HGSK. The
contributions of other collections remain negligible.

Discussion
Despite the widespread use of gene set enrichment analyses in bio-
medical research, the choice of the gene set collection is rarely dis-
cussed and its impact on the overall analysis results remains an open
question. Here we examine the varied expression profiles yielded by
the standard collections when performing gene set enrichment ana-
lyses within the specific context of drug response in cancer cell lines.
We do this by contrasting the performance of the seven standard
collections curated by the Broad Institute. Among these standard
collections there is a remarkable variance in the number and strength
of association shown in the results. Notably C2 and C4 aggregate
significantly more gene sets associated with the phenotypes under

Figure 1 | (A) Number and identity of gene sets identified as highly enriched (absolute normalized enrichment score . 2.0, maximum FDR , 25% across
all drugs). (B) Heatmap of gene collection overlap score (g-index).
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study. This is in part unsurprising as collections built around cancer
studies may enjoy a positive bias as to gene set association to pheno-
type given that the phenotypes under study is drug response in
cancer cell lines. However a collection creation strategy based on
cancer studies is clearly not a predictor of performance on our met-
rics as is demonstrated by the poor performance of the oncogenic
signature collection C6.

To further explore the impact of gene set collection on the GSEA
results, we built our own collection, referred to as HGSK, based on
hierarchical clustering analysis of co-expressed genes in an inde-
pendent dataset of cancer cell lines. We then compared the results
offered by this collection to simulate an unfiltered data-driven
approach to the study of drug response in cancer cell lines.
Unsurprisingly, the HGSK collection outperforms the leader among

Figure 2 | (A) Density plot representing the distribution of normalized enrichement scores for all drugs in each collection individually. (B) Heatmap of the

number of highly enriched gene sets (absolute normalized enrichement score . 2.0, FDR , 25%) for each drug, in each collection. Gene set

collections are listed along the bottom of the figure and drugs along the right. Darker hues of blue indicate a greater number of enriched gene sets for a

particular drug.

Figure 3 | (A) Fractional contribution of each collection to the set of top scoring gene sets with n gene sets per drug. n is plotted along the abscise. The

ordinance shows the fraction of top gene sets contributed by each collection to the set of top scoring gene sets. As n increases, a higher number of gene sets

per drug are assumed to be relevant or significant. Collection C2 is the highest contributor by a large margin, followed by C4, all other collections

contribute to a negligible degree. The fractional contribution of C4 peaks before 10 top gene sets per drug, coinciding with C2’s low. There is a slight trend

downward in C4’s contribution afterwards and a lesser trend upwards in the case of C2. (B) Fractional contribution of all Broad’s collections plus our

data-driven gene set collection, referred to as HGSK.

www.nature.com/scientificreports
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the standard collections. Interestingly, during the competitive ana-
lysis HGSK gains come at the expense of C2 (curated primarily from
pathway databases) and not C4 (which shares an oncological pedi-
gree with HGSK.) This suggests that the signal provided by the
unsupervised clustering algorithm tended towards the identification
of genes co-expressed in pathways and not communalities between
cancer cultures. However despite its better performance, enriched
HGSK gene sets do not lend themselves to immediate biological
interpretation, as they are not labeled using prior knowledge.
Nonetheless this might be alleviated to a certain degree with third
party annotation tools such as the Gene Ontology, which could be
used to annotate most HGSK gene sets although not all of them.

A set of results that illustrates the interpretation and association
tradeoff particularly well is found within the EGFR/ERBB2-target-
ting drugs: Erlotinib, Gefitinib, Lapatinib and BIBW2992. The HGSK
co-expression based gene set HGSK-547 is attributed a NES over 2.0
in three of these four drugs. STRING-DB23 (Search Tool for the
Retrieval of Interacting Genes/Proteins Database) finds the gene
set to be significantly enriched in protein-protein interactions (p ,

1E-16) and to be enriched in the KEGG pathway Tight Junction (p-
value 5 4E-5). However little else is known about this set a priori
with the exception of the co-expression of its members. On the other
hand the standard collections often provide sets that reference lit-
erature relevant to the nature and origin of the gene collection. A C2
set JAEGER_METASTASIS_DN is another highly enriched gene set
for EGFR targeting drugs, its title is suggestive of biological implica-
tions and their source. This second set consists of genes found to be
down-regulated in metastases of melanoma in a study geared towards

identifying differential expression signatures between primary melano-
mas and melanoma metastases24. Note that in this case, the gene set is
not associated by protein or pathway interactions instead they are
revealed by a former study. A second interesting note here is that in
this case the C2 set: JAEGER_METASTASIS_DN held a higher aggreg-
ate score among a family of drugs (EGFR) than the synthetic HGSK set
whereas the co-expression based collection usually provides between
60% to 40% of top scoring gene sets as can be seen from Figure 2.

Results from C2 and HGSK collections concur that chemosensi-
tivity to EGFR/ERBB2 inhibitors is associated with the upregulation
of cellular tight junction proteins among including the Claudin
family of genes (Claudin-3, 4,7). These proteins assist in maintaining
cell polarity and in the recruitment of other signaling proteins and
therefore were hypothesized to be involved in tumoregenesis25.
Recent work has shown that Claudin-7 inhibits cell migration of
human non-small cell lung cancer cells NCI-H1299 via an ERK/
MAPK dependent process26. According to Lu and co-workers, the
overexpression of Claudin-7 diminished the phosphorylation of
ERK1/2 and hence inhibited the aggressiveness of lung cancer
through a MAPK/ERK dependent pathway. EGFR is an upstream
activator of this pathway and thus it may be that the upregulation of
these tight junction protein genes may attenuate cancer invasiveness
in the presence of EGFR inhibitors26. Our results suggest that this
family of proteins would be an interesting target of further research
to elucidate their potential as prognostic biomarkers for patient res-
ponse to EGFR inhibitors. A recent study showed that Claudin-7
sensitizes lung cancer cells to Cisplatin treatment through a caspase
dependent pathway27.

In the CGP study, Garnett et al. identified ERBB2 expression as an
indicator of Lapatinib response8. This is supported by the presence of
the ERBB2 gene symbol in the top scoring gene set for Lapatinib
sensitivity: COLDREN_GEFITINIB_RESISTANCE_DN. This gene
set is constructed based on microarray gene expression profiling of
Gefitinib testing on non-small cell lung cancer cell lines28.

The results of the GSEA analyses for the MEK1/2 inhibitors were
investigated. Selumetinib and PD0325901 are investigational drugs
that inhibit the MEK 1 and 2 dual-specificity kinases that upregulate
the RAS/RAF/MEK/ERK pathway in MEK-overexpressing tumors.
Pathways associated with sensitivity to MEK inhibitors were found to
be enriched in genes involved in the innate immune response. For
example, a pattern of genes from the Toll-like receptors pathway
(TLR2, TLR8, CD86, CD14) is known to activate immune cell res-
ponses. Recently a work by Peroval et al, 2013 emphasized the com-
plex role of MAPK signaling pathways in the transcriptional
regulation of Toll-like receptors29. It is possible that these receptors
would trigger cell death when MEK kinases are degraded.

Thus while GSEA offers interesting results and is valuable in the
generation of hypotheses for further investigation, the utility of the
standard collections, in the context of drug response in cancer cell
lines, varies. In this context, C2 contributes 2 high scoring sets for
each submitted by C4. Of further interest is the particularly poor
performance of the C5 set which is based on the Gene Ontologies
collection and the C6 collection based on oncogenic signatures. The
C6 collection was expected to do well given the nature of the cell lines.
Both of these fare far worse than a collection based on data mining
immunology research. As expected, the HGSK co-expression based
gene set collections scores high. This further demonstrates the sens-
itivity of the GSEA process to the collection used in the analyses. The
HGSK collection also highlights the value offered by the annotation
of the standard, curated collections. It is important to note that
HGSK itself is built from a dataset that closely resembles the dataset
being probed. This is done to model a data-driven approach to gene
set collection creation, no claims are made about it being a useful
collection outside of this context. Our intent here is to show the
variation in the results among the collections currently being used
by the community. Furthermore only the MSigDB gene set collec-

Figure 4 | Creation of the HGSK set collection is done by creating a gene-
gene distance measure based on the reciprocal of a gene-gene
correlation matrix from the expression of tumour cell lines in the GSK
data set. Genes are clustered using traditional hierarchical clustering based

on the distance measure. Depth first recursive tree generation is done,

iterating over the prior sub-trees of cluster. Sets containing less than 15

genes or more than 500 are discarded.
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tions are reviewed and solely in the context of drug response in
tumour cell lines. In addition, despite its popularity, the gene set
analysis method as proposed faces some criticism30.

In conclusion, gene-set association with cancer drug response
done by GSEA are sensitive to the gene-set collection used and two
gene set collections consistently offer results of a higher significance
in the context of drug response in cancer cell lines. Research lever-
aging GSEA should closely evaluate gene set collection selection
criteria. Studies published using the tool should precisely report
the nature of the collection used in the analyses.

Methods
The overall analysis design is represented in Figure 5 and the details of each step are
described here.

Gene set analysis. The gene set enrichment analysis (GSEA) technique developed by
Subramanian and colleagues14 is a widely used method of measuring the association
between a set of genes and a phenotype in gene expression profiling data sets. GSEA
enables detection of gene sets enriched in genes that are significantly associated with a
phenotype of interest. Such enrichment is computed using the Kolmogorov-Smirnov
(KS) statistic15. This statistic compares the anticipated random distribution of a set’s
genes and their actual distribution among a genome-wide list of genes ranked based
on their association with the phenotype. The KS statistic is then normalized for gene
set size and its significance is adjusted to take into account multiple hypotheses

testing. A Java implementation of this method16 is made publicly available by the
authors. GSEA requires an a priori gene set collection to be defined. Therefore,
alongside the tool, the Broad Institute makes available several gene set collections,
referred to as MSigDB17, which is described in the next section.

Gene set collections. Seven collections of gene sets are made available for use with
GSEA by the Broad Institute. (http://www.broadinstitute.org/gsea/msigdb/index.jsp)
These collections, all together, are referred to as MSigDB17. We downloaded the latest
version (4.0) of the collections from the above URL. Table 1 gives a brief description of
each collection, summarizing the information available from the website.

Overlap between gene set collections. In order to measure the overlap between
collections of gene sets each pair of collections was subjected to a pairwise comparison
of gene sets based on the h-index18 and the Jaccard index19 in which the ratio of the
cardinality of the intersection of the sets to the cardinality of the union of the sets is
calculated. This index, referred to as g9, is calculated using the following formula:

g0~ Ci\Cj

�� ��� Ci|Cj

�� ��

For collections C and D that provide sets C1 through Cm and D1 through Dn

respectively, g(C,D) is the largest proportion of the n 3 m pairings where g9 is greater
to or equal to g. We referred to this metric as the gene set overlap index or the g-score.

Co-expression gene set collection based on cancer cell line data. In addition to the
Broad’s collections of gene sets, we created a new collection based on a fully data-
driven analysis of cancer cell lines. This collection of sets was built using gene co-
expression data from an independent dataset of 311 cancer cell lines, referred to as the

Figure 5 | Overall analysis design used in our comparative study. First we calculated the overlap between each pair of gene set collections. Second we used

a large pharmacogenomic dataset (CGP) to rank all the genes with respect to their association to response to each of the 138 drugs. Third we

used these rankings together with the gene set collections to run multiple GSEA. Fourth the results are aggregated to compare the most enriched gene sets

across collections. The results are then interpreted by taking into account the overlap between collections.
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GSK dataset in the literature20. A gene-expression correlation matrix was calculated
and a distance matrix was taken as 1 minus the correlation matrix. We then
used the resulting distance matrix to generate a hierarchical clustering21 of the cancer
cell lines’ genes. The clustering was recursively partitioned into all possible sets
that respected the hierarchy and were composed of at least 15 and no more than 500
genes in size. Figure 4 summarizes the creation of the HGSK collection. The
resulting co-expression gene sets are provided in Supplementary File 4.

Gene ranking based on association with drug response. To compute a genome-wide
ranking of genes based on their associations with drug sensitivity, we used the area
under the dose response curve (AUC) as a measure of drug sensitivity8 and we
assessed the association between gene expression and drug response using a linear
regression model controlled for tissue type. For each gene i we fit two linear models,
M0 and M1:

M0 : Y~b0zbt T

M1 : Y~b00zb0iGizb0tT

where Y denotes the drug sensitivity variable (AUC), G and T denote the expression of
gene i and the tissue type respectively and bs are the regression coefficients, i.e., b90 is
the intercept, b9t is the regression coefficient for the categorical variable T representing
the tissue type and b9i: regression coefficient for the continuous variable G
representing the expression of the gene of interest. The strength of gene-drug
association is quantified by b9i, above and beyond the relationship between drug
sensitivity and tissue type. The variables Y and G are scaled (standard deviation equals
to 1) in order to get standardized coefficients from the linear model. Significance of
the gene-drug association is estimated by computing the F statistic using the analysis
of variance (ANOVA) comparing the two nested models, M0 and M1. All genes are
then ranked with respect to their F statistic, that is the significance of the association
between their expression and drug sensitivity, and the direction of the corresponding
association (negative if expression of gene i is association with drug resistance,
positive otherwise).

Gene set enrichment analysis. To assess the association of a collection of gene sets
with sensitivity to each of the 138 drugs screened in CGP, we used version 2.0.13 of the
GSEA tool developed by the Broad Institute. Pre-ranked GSEA requires two input
files: a gene set collection (the Broad’s collections for instance) and a genome-wide
ranking of genes, as described previously. We ran pre-ranked GSEA on each gene set
collection to compute enrichment scores for each gene set within the collections. The
magnitude of normalized enrichment scores and FDR values were used to evaluate
the effectiveness of each collection in identifying candidate gene sets that influence
drug response in cancer cell lines.
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