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Influenza viruses continue to cause substantial morbidity and mortality worldwide. Fast
gene mutation on surface proteins of influenza virus result in increasing resistance to
current vaccines and available antiviral drugs. Broadly neutralizing antibodies (bnAbs) rep-
resent targets for prophylactic and therapeutic treatments of influenza. We performed a
systematic bioinformatics study of cross-reactivity of neutralizing antibodies (nAbs) against
influenza virus surface glycoprotein hemagglutinin (HA). This study utilized the available
crystal structures of HA complexed with the antibodies for the analysis of tens of thousands
of HA sequences.The detailed description of B-cell epitopes, measurement of epitope area
similarity among different strains, and estimation of antibody neutralizing coverage provide
insights into cross-reactivity status of existing nAbs against influenza virus. We have devel-
oped a method to assess the likely cross-reactivity potential of bnAbs for influenza strains,
either newly emerged or existing. Our method catalogs influenza strains by a new concept
named discontinuous peptide, and then provide assessment of cross-reactivity. Potentially
cross-reactive strains are those that share 100% identity with experimentally verified neu-
tralized strains. By cataloging influenza strains and their B-cell epitopes for known bnAbs,
our method provides guidance for selection of representative strains for further experimen-
tal design. The knowledge of sequences, their B-cell epitopes, and differences between
historical influenza strains, we enhance our preparedness and the ability to respond to the
emerging pandemic threats.

Keywords: influenza virus, neutralizing antibodies, B-cell epitope, cross-reactivity, discontinuous peptide

INTRODUCTION
Influenza epidemics result in substantial morbidity and mortal-
ity (1). The World Health Organization (WHO) Global Influenza
Network provides annual recommendations on antigenic variants
to be included in the influenza vaccine formulations. Influenza
virus has low-fidelity polymerases that result in high mutation
rates (2). As a consequence, seasonal influenza viruses efficiently
escape from acquired immunity in the human population through
antigenic drift increasing the impact of seasonal influenza. The
antigenic shift in influenza A viruses – the reassortment of multiple
viral genomes resulting in new strains with recombined antigens –
leads to occasional worldwide pandemics that result in significant
morbidity and, usually, high mortality. High transmissibility of
influenza combined with rapid mutation rates makes the discovery
of novel influenza therapeutics an imperative (3). The main chal-
lenge in developing antibody-based prophylactics and therapeutic
vaccine against influenza is to understand the variation generated
by the virus and developing means to elicit broadly neutralizing
antibody responses.

The majority of neutralizing antibodies (nAbs) generated dur-
ing a normal immune response target hemagglutinin (HA) and

block viral entry into host cells (4). However, significant sequence
diversity among HA genes limits the protective breadth of these
nAbs (5). This sequence diversity of influenza A virus is high –
there are 17 HA serotypes that belong into two major groups called
group 1 (Grp1: H1, H2, H5, H6, H8, H9, H11, H12, H13, H16,
and H17), and group 2 (Grp2: H3, H4, H7, H10, H14, and H15)
(6). C179, the first neutralizing antibody reported to neutralize
strains from H1 and H2 of influenza A virus, was isolated from
mice immunized with the A/Okuda/57 (H2N2) strain (7). Later
it was found that C179 was able to cross-neutralize H1, H2, H5,
H6, and H9 subtypes (8–11). The next major advance in the field
came about 15 years later (12), a novel class of human antibod-
ies encoded by the VH1–69 gene were discovered. Among these
antibodies, a series of broadly neutralizing antibodies (bnAbs)
have been described, such as CR6261 and F10 (13). Most bnAbs
that neutralize influenza A virus have been reported to neutral-
ize strains from either exclusively Grp1 or Grp2. FI6v3 (14) and
39.29 (5) are the only antibodies reported to neutralize human
influenza isolates from both Grp1 and Grp2. Influenza B viruses
are classified within a single influenza type, with two antigenically
and genetically distinct lineages that co-circulate (15), represented
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

by the prototype viruses B/Victoria/2/1987 (Victoria lineage) and
B/Yamagata/16/1988 (Yamagata lineage) (16). Antibody CR8071
(17) is a bnAb against influenza B viruses, with neutralizing abil-
ity for both Victoria and Yamagata lineages. bnAb CR9114 (17)
binds a conserved epitope on the HA stem and was shown to
neutralize all tested influenza A viruses. However, it did not show
in vitro neutralizing activity against influenza B viruses at the tested
concentrations (17).

Generally, the neutralizing effectiveness of these bnAbs was
evaluated using representative strains from the subtypes of
influenza A virus or lineages of influenza B virus. Because of the
high variability of HA genes, such evaluation might result in a
conclusion that is limited to the tested viral variants. To determine
the landscape of nAbs and better understand their cross-reactivity
properties, we performed a systematic study of B-cell epitopes of a
selection of nAbs against influenza virus. Antibodies recognize dis-
crete sites on the surface of macromolecule called B-cell epitopes
(antigenic determinants). Some 10% of B-cell epitopes are linear
peptides while 90% are formed from discontinuous amino acids
that create surface patches through the three dimensional (3D)
conformation of proteins (18). We defined a novel way of describ-
ing discontinuous motifs, using virtual peptides, to represent
B-cell epitopes and further used this representation to estimate
potential cross-reactivity and neutralizing coverage of these nAbs.

Functional characterization of the increasing number of nAbs
and known crystal structures of these nAbs complexed with HA
proteins enables us to precisely define their B-cell epitopes. A
large number of sequences of influenza variants are available in
public databases (19) enabling systematic bioinformatics analysis
of cross-reactivity of nAbs against influenza virus. Such system-
atic analysis improves our understanding of antibody/antigen
interactions, facilitates mapping of the known universe of tar-
get antigens, and allows the prediction of cross-reactivity. These
methods and tools are useful for the design of broadly protec-
tive vaccines against emerging pathogens. This article describes
a study of influenza HA cross-reactivity, but the method is
applicable to any viral pathogen where information about nAbs
and a collection of variant sequences of the target antigen are
available.

MATERIALS AND METHODS
NEUTRALIZING ANTIBODIES AGAINST HEMAGGLUTININ
The names and specificities of nAb against influenza virus HA
were collected from published papers. Twenty-two nAbs against
influenza virus with crystal structures available in PDB were col-
lected from published articles (Table 1). Fifteen of these nAbs
target at the globular head of HA, and for the other seven, the
binding sites are located on HA stem region.

Table 1 | Summary of well-characterized neutralizing antibodies against influenza virus.

Location Neutralizing antibodies PDB ID Neutralizing breadth Reference

Head 1F1 4GXU H1 (20)

2D1 3LZF H1 (21)

2G1 4HG4 H2 (17)

8F8 4HF5 H2 (17)

8M2 4HFU H2 (17)

BH151 1EO8 A/X-31 (H3N2) (22)

C05 4FQR H1, H2, H3, H9 (23)

CH65 3SM5 H1 (24)

CH67 4HKX H1 (25)

CR8059 4FQK Influenza B virus (17)

CR8071 4FQJ Influenza B virus: Yamagata and Victoria (17)

HC19 2VIR A/X-31 (H3N2) (26)

HC45 1QFU A/X-31 (H3N2) (27)

HC63 1KEN A/X-31 (H3N2) (28)

S139/1 4GMS H1, H2, H3, H13, H16 (8, 29)

Stem 39.29 4KVN H1, H2, H3 (5)

C179 4HLZ Grp1: H1, H2, H5, H6, H9 (30)

CR6261 3GBN/3GBM Grp1: H1, H2, H5, H9 (31, 32)

CR8020 3SDY Grp2: H3, H7, H10 (33)

CR9114 4FQI/4FQV/4FQY Grp1: H1, H2, H5, H6, H8, H9, H12 (17)

Grp2: H3, H4, H7, H10

F10 3FKU Grp1: H1, H2, H5, H6, H8, H9, H11 (13)

FI6v3 3ZTJ/3ZTN H1, H3, H5, H7 (14)

The nAbs in underlined italics are nAbs specific for strain A/X-31 (H3N2). The designation of two groups (Grp1 and Grp2) of influenza A virus subtypes are shown in

Figure 1.
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

FIGURE 1 | Phylogenetic tree of 17 influenza A virus subtypes.
Representative sequences were selected for each subtype (34) and the
phylogenetic tree was made with ClustalX (35) and TreeView (36). H1:
A/California/04/2009(H1N1); H2: A/Singapore/1/1957(H2N2); H3:
A/Aichi/2/1968(H3N2); H4: A/duck/Czechoslovakia/1956(H4N6); H5:
A/VietNam/1203/2004(H5N1); H6: A/chicken/California/431/2000(H6N2);
H7: A/Turkey/Italy/8458/2002(H7N3); H8: A/Turkey/Ontario/6118/
1968(H8N4); H9: A/Swine/Hong Kong/9/98(H9N2); H10: A/chicken/
Germany/N/1949(H10N7); H11: A/duck/England/1/1956(H11N6); H12:
A/duck/Alberta/60/1976(H12N5); H13: A/gull/Maryland/704/1977(H13N6);
H14: A/Mallard/Astrakhan/263/1982(H14N5); H15: A/shearwater/West
Australia/2576/79(H15N9); H16: A/black-headed gull/Sweden/2/99(H16N3);
and H17: A/little yellow-shouldered bat/Guatemala/060/2010 (H17N10).

The majority of these nAbs were observed to bind or neutralize
influenza A virus isolated either from Grp1 or Grp2. Antibod-
ies FI6v3, CR9114, and 39.29 were shown to neutralize influenza
strains within both Grp1 and Grp2 (5, 14, 27). Antibodies CR8059
and CR8071 (17) were the only two nAbs for influenza B virus.
CR8059 is a light chain D95aN variant of CR8071. Since the muta-
tion on CR8059 is not present at the binding interface and does not
affect the binding, only CR8071 was used in the following study
(17). The majority of these nAbs were shown to neutralize more
than one strain, some of them are broadly neutralizing across sub-
types of influenza A virus or lineages of influenza B virus. The Abs
BH151, HC19, HC45, and HC63 were shown to specifically neu-
tralize HA from the A/X-31(H3N2) strain. The available structures
of nAb/HA complexes were downloaded from PDB (37).

VALIDATED INFLUENZA STRAINS BY NEUTRALIZING ANTIBODIES
Binding and neutralization assays were collected from published
materials. Binding and non-binding strains were classified accord-
ing to their affinity measurements. The thresholds used to dis-
criminate binding and non-binding strains were inconsistent in
different studies: the lowest affinity detectable values were set as
10−4 M (17), 10−5 M (33), and ~10−6 M (20). In some reports,
nAbs showed positive binding results but did not display neutral-
ization ability to the same strains [e.g., nAb CR9114 against strain
B/Florida/4/2006 (Yamagata) (17)]. Because of the lack of stan-
dardized thresholds and ambiguous definition of binding, only

FIGURE 2 | B-cell epitope on the structure of neutralizing antibody F10
binding HA protein (PDB ID: 3FKU). (A) Complex of F10-HA
[A/Vietnam/1203/04(H5N1)]. The structure is a HA trimer of three identical
copies (one of them is colored as cyan and green; the other two are in
gray). Each copy contains the HA1 (cyan) and HA2 (green) chain, also the
heavy chain of F10 (red), the neutralized epitope is highlighted in pink;
(B) Close-up view of neutralized epitope identified on the structure
(highlighted as pink surface).

Table 2 | B-cell epitope regions of the 22 neutralizing antibodies.

Binding

site

Influenza A virus Influenza

B virus

Sa

site

Near

RBS

F subdomain Stem

base

Head

base

CROSS-REACTIVE NEUTRALIZING ANTIBODIES

nAbs 2D1 C05 CR6261 CR8020 CR8071

1F1 39.29 CR8059

2G1 C179

8F8 CR9114

8M2 F10

CH65 FI6v3

CH67

S139/1

Binding

site

Head

base

RBS Near RBS

X-31-SPECIFIC NEUTRALIZING ANTIBODIES

nAbs BH151 HC19 HC63

HC45

The nAbs are classified as cross-reactive or X-31-specific. For each binding region,

a representative nAb was selected (shown in bold) and its B-cell epitope was

mapped on the structures shown in Figure 3.

results that indicate non-binding of antibodies were considered as
useful information and were retained for the subsequent analysis
as negatives.
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

FIGURE 3 |The distinct B-cell epitope regions recognized by
representative nAbs. The B-cell epitope regions of (A) represent
cross-reactive nAbs against influenza A virus; (B) represent
strain-specific nAbs against X-31(H3N2); (C) represent broadly nAb
CR8071 against influenza B virus. The epitope regions of nAbs target

influenza A virus were mapped on the monomer (A) or trimer (B) HA
from A/X-31(H3N2) (PDB ID: 1KEN). The structure of B/Brisbane/60/
2008 HA (PDB ID: 4FQM) was used as a template structure for
influenza B virus. Different colors here were used for distinguishing
B-cell epitope regions.

The neutralized and the escape strains were detected using the
microneutralization assay (38) or HA inhibition assay (39). Several
measurements were suggested in these studies:

1. The lowest concentration of nAb that displayed inhibition
of hemagglutination or microneutralizing activity were set as
either 2.5 µg/mL (40) or 5 µg/mL (41).

2. The 50% inhibitory concentration was set to IC50=

50 µg/mL (17).
3. The effective concentration of antibody needed to inhibit at

least 99% of viral infectivity was set as EC99= 100 µg/mL
(24, 25).

The HA sequences of strains that were experimentally validated
for neutralization by studied antibodies (“validated strains”) were
retrieved from the literature. The influenza strains HA sequences
were collected from the literature or, if absent, from the Influenza
Knowledge Base (FLUKB)1. All experimentally validated strains
were grouped into either neutralized strains or escape strains. The
neutralized strains were selected based on reported experimental
evidence. The escape strains included true escape strains as well as
strains that were reported not to bind nAbs. We did not find any
discrepancies in reported neutralizing properties across different
studies used to collect functional data.

HEMAGGLUTININ SEQUENCES
All HA sequences were downloaded from the Influenza Knowl-
edge Base (FLUKB1, dated August 26th, 2013). After removing

1http://research4.dfci.harvard.edu/cvc/flukb

the incomplete sequences (fragments), 45,812 full-length HA
sequences were left in the data set (HA sequence dataset) for
further analysis.

GENERATION OF MULTIPLE SEQUENCE ALIGNMENT OF
HEMAGGLUTININ SEQUENCES
The HA sequences of influenza strains from FLUKB were aligned
using the MAFFT tool (42). The resulting multiple sequence align-
ment (MSA) results provided a consistent numbering scheme for
all the further analyses. MSA were generated for both experimen-
tally validated strains of HA and for all entries from FLUKB. For
each nAb, every HA sequence from the crystal structure and from
the experimentally validated strains were searched individually
within the FLUKB database to find a strain with highest similar-
ity using BLAST (43). This procedure was done to ensure that
residue position mapping in following steps is consistent with the
numbering scheme.

IDENTIFICATION OF B-CELL EPITOPES
B-cell epitope were identified from antigen–antibody structure,
using a formula with the combination of the measurements of
accessible surface area (ASA) and atom distance. For each residue
from HA antigen, the ASA value was calculated using Naccess soft-
ware (44) for both free HA and for HA coupled with an antibody.
Residues ri with ASA loss more than 20% were selected as epitope
residues,

ri ∈
{

epitope residues
}

if
ASAfree − ASAcoupled

ASAfree
> 0.2.
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Table 3 | B-cell epitope overlap for nAbs targeting HA head region.

Sa Near RBS Sa Near RBS

2D1 1F1 2G1 8F8 8M2 C05 CH65 CH67 S139/1 2D1 1F1 2G1 8F8 8M2 C05 CH65 CH67 S139/1

A98 − + − + + + + + + A163 + − − − − − − − −

A125 + − − − − − − − − A165 + − − − − − − − −

A126 + − − − − − − − − A166 + − − − − − − − −

A128 + − + − − − − − − A167 + − − − − − − − −

A130 + − + + + − − + − A169 + − − − − − − − −

A131 − − − − − + − − + A183 − + − − − + + − +

A132 − − + + + − − − − A185 − + − − − − − − −

A133 − + + + + + − − − A186 − + − − + + − − +

A134 − − + + + + + + + A187 − + − + + + + + −

A135 − + − − − + + + + A188 − − − − + − − − −

A136 − − + + + + + + + A189 − + − + + + + + +

A137 − − + + + + + + + A190 − + + + + + + + +

A140 − − − + − − − − − A192 − + − − + + + + +

A143 − − − + − − − − − A193 − + + + + + + + +

A144 − − − + − − − − − A194 − + + + + + + + +

A145 − + + + + − − + A196 − + − − − − + + +

A153 − + + + + + + + + A197 + − − − − − − − −

A155 − + + + + + + + + A219 − + − − − − − + −

A156 − + + + + + + + + A222 − + − − + − + − −

A157 + − + − − − − − + A225 − + − − + + + + +

A158 + − + + + + + + + A226 − + − + + + + + +

A159 + + + + + + + + + A227 − + − − + + + − −

A160 + − − − − − + + + A228 − + − − + + − − +

A161 + − − − − − − − − A246 + − − − − − − − −

A162 + − − − − − − − − A248 + − − − − − − − −

The epitope residue positions of nine nAbs were mapped to the 1EO8 structure chain A. The symbol “+” indicates a contact epitope residue by corresponding nAb,

and the symbol “−” means it is not a epitope position. 2D1, with a different epitope area to other eight nAbs, is labeled in red.

The majority of contacts between two contacting atoms occur
at distance smaller than 5 Å separation (45). Euclidean distance
was calculated between atoms ai and aj using their coordinates
ai(xi, yi, zi) and aj(xj, yj, zj) in PDB structure data,

dij =

√(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2
.

Hemagglutinin residues ri whose minimum atom distance to
the closest nAb atom was within 4 Å were also incorporated in the
epitope. The minimal atom distance was defined as:

dmin= min
{

dij
}

, ai ∈ antigen residue ri , aj ∈ antibody residue rj ,

ri ∈
{

epitope residue
}

if dmin < 4Å.

The residues that satisfy either of these two conditions (ASA
loss or minimum distance) are considered to constitute a B-cell
epitope.

The specific residues on HA that form hydrogen bonds, salt
bridges, disulfide bonds, and covalent bonds between the HA
and nAb were considered to define a B-cell epitope. The anti-
gen/antibody interaction was further analyzed using PISA tool
(46). The analysis of HA structures showed that all the hydrogen

bonds, salt bridges, disulfide bonds, and covalent bonds between
HA and nAb in each studied structure were incorporated in B-cell
epitopes defined in the previous step.

EXTRACTION OF DISCONTINUOUS MOTIFS FROM VALIDATED STRAINS
For each nAb, using the MSA result and the standardized num-
bering, the residue positions of B-cell epitope identified from
the HA/antibody crystal structure were mapped onto all HA
sequence of validated strains. Then discontinuous motifs com-
posed of mapped residues were extracted from these sequences.
These discontinuous motifs were classified as either “neutralized”
or “escape” motifs according to the experimental validation status
of the corresponding strain.

MAPPING OF DISCONTINUOUS MOTIFS TO HA SEQUENCE DATASET
For each nAb, based on the MSA result, the residue positions of B-
cell epitope identified from the HA/antibody crystal structure were
mapped onto the HA sequence dataset. A “discontinuous peptide”
composed of amino acids that form B-cell epitope, in order that
they appear in the sequence, was extracted from each HA sequence.
By comparing the discontinuous peptides to all validated neu-
tralized and escape motifs from experimentally validated strains,
each discontinuous peptide was classified as neutralized (if 100%
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Sun et al. Cross-reactivity of influenza neutralizing antibodies

FIGURE 4 | Neutralized and escape discontinuous motifs from
experimentally validated sequences with nAb F10. The WebLogo shows
global (A) neutralized motifs, and (C) escape motifs and BlockLogo shows
individual (B) neutralized motifs, and (D) escape motifs. The extracted

discontinuous motif extracted from the structure (PDB ID: 3FKU, chain A and
B), corresponds to the positions of reference sequence [FLU0293715, A/Viet
Nam/1203/2004(H5N1)]: 24, 44, 46, 48, 304, 305, 306, 331, 360, 361, 362,
363, 380, 383, 384, 387, 391, 394, 395, and 398.

matching a neutralized epitope motif), escape (if 100% matching
an escape epitope motif), or non-validated (if 100% matching
validation data are missing). The term “discontinuous motif”
indicates positions that define each B-cell epitope extracted from
experimentally validated strains collected from publications, while
term “discontinuous peptide” represents specific B-cell epitopes
extracted from the HA sequence dataset.

RESULTS
B-CELL EPITOPE REGIONS
For each nAb, the B-cell epitope was identified from the crys-
tal structure as described in Section “Materials and Methods.” The
structure of nAb F10-H5 (13) and identified epitope are illustrated
in Figure 2. After B-cell epitopes of all studied nAbs were mapped
to the same template structure, the overlapping of binding sites
were found among different nAbs, particularly at the receptor-
binding site (RBS), which is the necessary structure for binding to
the sialic acid receptors during virus infection.

For cross-reactive nAbs against influenza A virus, four major
binding locations on HA structure are apparent: two of them reside
on the globular head of HA and the other two target the stem
region of HA (Table 2; Figure 3). The RBS is a heavily targeted
area, with overlapping epitopes defined by eight nAbs. The only
nAb that binds HA head but not the RBS is 2D1 (21). The 2D1

recognizes the Sa site of A/South Carolina/1/1918(H1N1). Sa site
is one of the earliest known antigenic sites (47), which is proxi-
mal to the receptor-binding pocket. The detailed comparison of
epitope residue positions between 2D1 and the other HA head-
targeted nAbs are listed in Table 3. In contrast to the Abs that
interact with the HA head, a series of nAbs recognize another
highly conserved helical region in the membrane-proximal HA
stem. The epitopes on F subdomain (CR6261, 39.29, etc.) and stem
base (CR8020) are adjacent to each other, with a small number of
shared residues. The only broadly nAb neutralizing influenza B
virus, CR8071 binds to the lower region of the globular head of
HA – the “head base” (Figure 3C). All the remaining antibodies
analyzed in our study bind specifically the HA on A/X-31(H3N2)
strain. All X-31 specific nAbs complex with the membrane-distal
domain of HA. NAbs BH151 and HC45 (22) recognize a single
epitope located at the base of the eight-stranded antiparallel β-
sheet structure. The HC19 binding site is adjacent to the RBS. The
HC63 epitope shares several residues with HC19, thereby the anti-
body binding site overlaps the membrane-distal domains of two
HA monomers.

EXPERIMENTALLY VALIDATED DISCONTINUOUS MOTIFS
Discontinuous motifs were extracted from the validated sequences
as described in Section “Materials and Methods,” and presented
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by WebLogo (48) and BlockLogo2 [Ref. (49)]. WebLogo figures
consist of stacks of amino acids, while the overall height of the
stack indicates the sequence conservation at that position, and the
height of symbols within the stack indicates the relative frequency
of each amino or nucleic acid at that position. While BlockLogo is a
web-based application for visualization of protein and nucleotide
fragments, continuous protein sequence motifs, and discontin-
uous sequence motifs using calculation of block entropy from
MSAs. The BlockLogo figures present the actual combinations of
amino acids, and the height of each combination represents its rel-
ative frequency. In the nAb F10 as an example, the neutralized and
escape discontinuous motifs are shown in Figures 4A,C (WebLogo
figures), and Figures 4B,D (BlockLogo figures). WebLogos show
a clear overall description of each residue conservation difference
between individual neutralized and escape motifs. For example,
44N, 48T, 304R/D, 380L/Y, 391N, 394E/A/L on F10 epitope region
are likely to contribute to the escape strains. In the BlockLogo
figures, specific neutralized and escape B-cell epitopes of F10 were
listed with their frequencies, which can be used for their direct
comparison.

ANALYSIS OF VARIATION OF DISCONTINUOUS PEPTIDES IN HA
SEQUENCES DATASET
For each nAb, the residue positions of their B-cell epitopes were
mapped on the complete HA sequences dataset collected from the
FLUKB. Amino acid strings representing discontinuous peptides
were extracted from the HA sequence of each strain. The variabil-
ity of discontinuous peptides and validated discontinuous motif
coverage were analyzed for each nAb.

2http://research4.dfci.harvard.edu/cvc/blocklogo

For example, for the nAb F10, 589 different patterns of discon-
tinuous peptides were generated among all 45,812 sequences in
HA sequence dataset, using the F10 B-cell epitope identified from
the crystal structure. In the next step, the discontinuous peptides
were sorted according to their frequencies. The second most fre-
quent peptide in FLUKB is identical an escape motif, while the 6th,
8th, and 19th are each identical to one of the neutralized motifs.
However, the most frequent F10 discontinuous peptide in FLUKB
(see text footnote 1) has not been experimentally tested (Figure 5),
along with other 14 discontinuous peptides. The analysis of differ-
ences between the most frequent discontinuous peptide and neu-
tralized or escape motifs was inconclusive. Therefore future exper-
imental studies should include a representative sequence contain-
ing the discontinuous peptide HHVLSLPTVDGWLTQITVNI that
is present in more than 10,000 entries in the FLUKB. We also
recommend that motifs 1, 4, 5, 7, 9–18, and 20 are considered
for the experimental validation. The remaining sequences are less
common, each having <400 sequences in the data set.

The discontinuous peptides were generated and the variability
was investigated for all cross-reactive nAbs (Table 4). The B-cell
epitope regions on the HA stem are less variable as compared to
the epitopes on the HA head. The specific result generated within
each subtype in HA sequence dataset show similar patterns as
for all subtypes (data not shown). This conclusion is consistent
with our previous knowledge that the globular head of HA1 has a
higher mutation rate than the stem (29), making the stem a more
conserved region for bnAbs targeting.

DISCONTINUOUS MOTIFS COVERAGE IN HA SEQUENCES DATASET
The neutralized and escape discontinuous motifs of nAb F10
have covered 19 and 17% of FLUKB, respectively, while the
discontinuous peptides from 64% of the strains have not been

FIGURE 5 | Frequencies of top 20 discontinuous peptides (B-cell
epitope of nAb F10) from the HA sequence dataset. FLU0243751
(A/Viet Nam/1203/2004) was used as reference HA sequence in the
analysis of F10 B-cell epitopes. The corresponding positions of
discontinuous peptides on FLU0243751 are: 24, 44, 46, 48, 304, 305, 306,

331, 360, 361, 362, 363, 380, 383, 384, 387, 391, 394, 395, and 398.
Discontinuous peptides that were identical to neutralized motifs are
shown in blue, while those identical to escape motifs are shown in red.
The sequences of Top 20 most frequent discontinuous peptides are listed
along with their validation status.
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validated (Figure 6A). Viewed by the subtype, F10 neutralized
coverage of subtypes H5, H8, H9, and H11 are higher (50–90%)
than of H1 and H2 (5–20%), while the coverage of subtype H6 is
negligible (8 in 1708 H6 sequences) (Figure 6B).

The motif coverage analysis within the 45,812 HA sequences
was performed for all nAbs. For the nAbs with available cross-
reactivity data, the motif coverages were different between the
nAbs targeting the HA globular head and those targeting the stem

Table 4 |The number of different discontinuous peptides from B-cell

epitopes of each nAb in the HA sequence dataset.

Neutralizing

type

Neutralizing epitope

regions

Neutralizing

antibodies

Number of

different

discontinuous

peptides

Influenza A virus

Head Sa site 2D1 2,190

Near RBS 1F1 2,887

2G1 2,127

8F8 2,885

8M2 3,290

C05 3,020

CH65 2,727

CH67 2,773

S139/1 3,070

Stem F subdomain 39.29 983

C179 755

CR6261 658

CR9114 663

F10 589

FI6v3 905

Stem base CR8020 620

Influenza B virus

Head

base

CR8071 848

part. The nAbs that bind stem normally have higher neutralized
motif coverage than those that bind the globular head (Figure 7).

The motif coverage is shown as heat map for each subtype and
each nAb (Figure 8). The nAbs (such as CR6261, CR9114, F10,
and FI6v3) that target stem region are more cross-reactive – they
cover more strains, and also more subtypes of influenza.

COMBINING OF NEUTRALIZING ANTIBODIES
For each sequence in the HA sequence dataset, 22 strings (discon-
tinuous peptides) were extracted to represent 22 B-cell epitopes
by all nAbs analyzed in this study. The majority (82.62%) of all
strains in FLUKB have at least one discontinuous peptide that is
identical to the validated neutralized motifs (Table 5). A small
number (2.25%) of sequences can be neutralized by as many as
seven nAbs.

Here, we propose a combination of nAbs, where a small num-
ber of nAbs can cover a large proportion of influenza strains.
The nAbs FI6v3, F10, CR9114, and CR8071 (Figure 9A) were
selected, and the neutralized coverage has increased from 18.91%
(F10), 4.06% (CR8071), 43.89% (CR9114), and 58.44% (FI6v3) to
78.45% (Figure 9B) when these antibodies were combined. These
nAbs also covered most subtypes of influenza A virus and both
lineages in influenza B virus (Figure 9C).

DISCUSSION
This study presents an overview of binding specificities of reported
nAbs, as well as an estimate of their neutralization and escape
coverage (neutralization effectiveness) in more than 45,000 HA
sequences available in FLUKB. The variety and frequency of dis-
continuous peptides within different B-cell epitopes have been
analyzed in the HA data set. The results of the analysis of discontin-
uous peptides provide insights into further experimental design:
strains with peptides that have high frequency among the strain
populations should be given priority for experimental validation
and their neutralizing status for specific nAbs.

Of note, additional sequence changes in HA outside the
nAb epitope may result in either local or quaternary structural
alterations that impacts antibody binding to the epitope per se.

FIGURE 6 | Motif coverage for nAb F10. (A) The coverage of
neutralized and escape discontinuous motifs, and non-validated
discontinuous peptides within 45,812 HA sequences extracted from

the FLUKB; (B) The motif coverage by subtype, the numbers in
brackets indicate the number of sequence within the specific subtype
(among 45,812 HA sequences).
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FIGURE 7 | Discontinuous motif coverage in the HA sequence
dataset for cross-reactive nAbs. Only the coverage data for
cross-reactive nAbs are shown here. The nAbs are grouped based on

their binding locations and influenza types, from left to right: Sa site,
near RBS, F subdomain, stem base on influenza A virus, and head base
on influenza B virus.
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FIGURE 8 |The neutralized and escape motif coverage on each subtype
within FLUKB of neutralizing antibodies. The heat map of (A) neutralized
and (B) escape coverage are shown. Each cell on the grid represents
coverage for a specific antibody (row name) on specific subtype (column
name). The subtypes were sorted from Grp1 and Grp2 in influenza A virus,

and influenza B virus. Different color schemes were used in order to
differentiate neutralizing and escape coverage: from green to red/green to
blue indicate rising neutralizing/escape coverage in HA sequence dataset.
The boxes with symbol “X” indicate that no experimental validation data
were available for this study.

Likewise, modification of glycosylation sites through sequence
change may impact accessibility of antibodies to the neutralization
site, creating discordance between sequence identity of binding
site shown in BlockLogo and neutralization outcome between
two strains of viruses sharing the same epitope sequence. The
frequency of such occurrences will be important to determine.
Neutralization assays of strains with discontinuous epitopes

identical to validated B-cell epitopes will provide a proof of
cross-neutralization. Since the experimental validation is time and
money consuming, the introduction of extended B-cell epitope
(see Supplementary Material) aims to help select representative
sequences that differ in extended B-cell epitopes. For each pro-
posed neutralizing or escape peptide (actual B-cell epitope), a
small number of variants defined by changes in its environment
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(extended B-cell epitopes) constitute the majority of strains with
the proposed peptide.

On the other hand, before more experimental data generated
to fill the existing “non-validated gap,” it will be meaningful to
bring out some reasonable estimation. The assumption and meth-
ods in this paper are based on complete identity to discontinuous
motifs on B-cell epitope (additionally extended B-cell epitope).
To check the validity of this assumption, the similarity between
discontinuous motifs and discontinuous peptides could be used

Table 5 | Distribution of the number of neutralizing antibodies that

share identical neutralized discontinuous motif with sequences

within the HA sequence dataset.

Number of nAbs Coverage in 45,812 HA dataset (%)

0 17.38

1 12.45

2 11.68

3 13.39

4 31.38

5 1.59

6 9.89

7 2.25

For each sequence within the 45,812 HA dataset, the number of nAbs that share

identical neutralized motif was counted.The number of nAbs in our panel for any

given influenza strain can range from 0 to 7.

to estimate and predict neutralization and binding results in
the future. For example, a discontinuous peptide with mutated
residues of similar feature to the neutralized motif would be con-
sidered as “possible neutralized peptide” against specific nAbs.
These estimations could also be validated in experimental assays,
and then be used to further experimental design iteratively.

CONCLUSION
Over the past few years, our understanding of nAbs and their
responses against influenza HA have expanded tremendously.
Besides the well-known HA head region interactions, an increasing
number of characterized nAbs bind and neutralize influenza virus
by targeting the more conserved stem regions. Among these stem-
targeting nAbs, some show broadly neutralizing ability across
subtypes/lineages, even across two groups in influenza A virus
strains. However, the related experimental data for majority of
nAbs are quite limited.

In sum, we have established a library of validated motifs
(extracted from HA sequences in neutralized and escape strains)
for each nAb. For any newly emerging strain, the cross-
neutralization prediction can be made rapidly for existing nAbs
and validation experiments can be designed judiciously. This
study provides a method for investigation of cross-reactivity
of nAbs against influenza viruses, but is directly applicable to
any viral pathogen that has structurally characterized nAbs and
a collection of variant sequences of the target antigen. Exam-
ples of such pathogens include orthomyxoviruses (influenza);
flaviviruses such as dengue or West Nile; arenaviruses such as
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FIGURE 9 | A combination of four neutralizing subtype-diversified and
potent neutralizing antibodies. (A) The heat map of the neutralized
result for four nAbs, the color scheme is same as Figure 8A; (B) the
neutralized coverage of four nAbs individually, and the combination of

nAbs on HA dataset; and (C) the neutralizing result of combination of four
nAbs by subtype. The subtypes were sorted from Grp1 and Grp2 in
influenza A virus and influenza B virus. Only subtypes with neutralizing
data are shown.
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lymphocytic choriomeningitis virus and human immunodefi-
ciency virus, among others. Insights from such bioinformatics
analyses coupled with antibody antigenicity through crystallo-
graphic determinations will facilitate electronic neutralization
profiling that can be tested empirically in subsequent laboratory
neutralization assays.
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