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Alzheimer’s disease (AD) is a progressive
and devastating age-related neurodegen-
erative disorder, involving memory loss
and the extracellular deposition in the
brain of misfolded and aggregated amy-
loid beta (Aβ) peptide (Holtzman et al.,
2011). The molecular mechanism that
triggers AD is not completely understood.
The AD neuropathological process begins
many years before the clinical onset with
general alterations in protein homeostasis
(referred to as proteostasis) among other
effects. Recent evidence suggests that dis-
turbances in the normal function of the
secretory pathway and the occurrence of
endoplasmic reticulum (ER) stress may
represent a common pathological feature
of familial and sporadic AD (Cornejo and
Hetz, 2013). ER stress engages an adaptive
reaction known as the unfolded protein
response (UPR) which modulates many
aspects of ER proteostasis to decrease the
unfolded protein load (Walter and Ron,
2011). Under conditions of irreversible or
chronic ER stress the UPR shifts its signal-
ing toward induction of apoptosis.

Aβ oligomers are known to induce neu-
ronal loss and dysfunction (Mucke and
Selkoe, 2012) and impair synaptic plastic-
ity and memory in animal models of AD
(Cleary et al., 2005; Shankar et al., 2008).
In this line, whether ER stress causes
cognitive impairment remained poorly
studied until very recently. Besides, inter-
esting novel concepts are emerging where
ER stress may actually operates upstream
of the generation of Aβ as part of the eti-
ology of the disease (Yoon et al., 2012).

Could these findings provide insights
about new points for disease interven-
tion? Many recent studies have developed
small molecules and gene therapy strate-
gies to alleviate ER stress in vivo, which
offers interesting future applications for
the development of clinical trials in AD
and other diseases (Hetz et al., 2013).

Medial temporal lobe areas, such as the
hippocampus and entorhinal cortex, are
the first regions affected during the pro-
gression of AD, contributing to the occur-
rence of dementia in affected patients.
Under diverse stress conditions, includ-
ing ER stress, inhibition of protein syn-
thesis operates as a survival pathway that
is mediated by the phosphorylation of
eukaryotic translation initiator factor 2α

(eIF2α), referred to as the “integrated
stress response.” Of note, the process
of memory consolidation and synaptic
plasticity involve active protein synthe-
sis, among other events (Costa-Mattioli
et al., 2009). In fact, several studies have
shown that exacerbated phosphorylation
of eIF2α induces cognitive impairment
(Costa-Mattioli et al., 2005, 2009; Jiang
et al., 2010). In agreement with this find-
ings, an elegant recent study demon-
strated that decreasing the expression of
two of the eIF2α kinases, double-stranded
RNA-activated protein kinase (PKR)-like
endoplasmic reticulum kinase (PERK)
and General control non-derepressible-2
(GCN2), improve cognitive function and
synaptic plasticity in an AD transgenic
mouse model (Ma et al., 2013). In
addition, targeting another eIF2α kinase

termed dsRNA-dependent protein kinase
(PKR), can also improve learning and
memory processes at basal levels (Zhu
et al., 2011), similarly to GCN2 deficient
animals. Consistent with these finding,
another recent report demonstrated that
brain inflammation in AD models engages
PKR to induce synaptic loss and mem-
ory impairment (Lourenco et al., 2013). In
that study the authors also showed that Aβ

oligomers alters insulin signaling leading
to memory deficits through a mechanism
involving the proinflammatory cytokine
tumor necrosis factor (TNF)-α. Of note,
PERK deficiency in the nervous system
did not alter learning and memory-related
processes at basal levels, and only impacted
cognition in the context of AD models
when ER proteostasis is altered (Ma et al.,
2013). Importantly, these results solved
an important question since they indi-
cated that despite of reducing the adaptive
activity of one branch of the UPR on a
model of AD, this genetic manipulation
improved cognitive aspects of AD with-
out affecting the ability of cells to survive
under the stress conditions generated by
the accumulation of amyloid beta. Is the
phosphorylation of eIF2α a key converg-
ing event involved in neuropathology and
cognitive impairment in AD? Is this the
molecular link between protein misfold-
ing and neuroinflammation? These reports
suggest the concept that modulation of
protein synthesis through the eIF2α axis
is directly involved in memory forma-
tion and could be also exploited as a tar-
get to reduce synaptic dysfunction in AD.
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Advances in this line were provided by a
recent study identifying a small molecule
called ISRIB that efficiently reduces the
consequences of eIF2α phosphorylation
and improve learning and memory in
wild-type rats (Sidrauski et al., 2013).
This potent inhibitor showed promis-
ing pharmacokinetic properties, it crossed
the blood-brain barrier with no over-
all adverse effects to the animal. These
findings raise the possibility that com-
pounds that inhibit PERK signaling may
offer interesting future applications for the
development of clinical trials in AD. Fine-
tuning the concentrations the compounds
will be a challenging issue due to the dual
impact of this signaling pathway on cell
fate. In this line, PERK inhibitors have
been recently shown to revert synaptic dys-
function and neurodegeneration in mod-
els of Prion disease (Moreno et al., 2013).

The most conserved signaling pathways
of the UPR network is initiated by the ER
stress sensor IRE1α. Active IRE1α splices
the mRNA encoding the transcription fac-
tor X-box binding protein 1, shifting its
coding reading frame that induces an
active transcription factor termed XBP1s
(Hetz, 2012). Last year, a polymorphism
in the XBP1 promoter was described as
a risk factor to develop AD. Remarkably,
a global study to screen the universe of
XBP1s-target genes revealed that this fac-
tor regulates a cluster of AD-related genes
involved in the control of APP traffick-
ing and processing (Acosta-Alvear et al.,
2007). Together, these studies suggest that
a second UPR signaling branch may also
contribute to AD through a different
mechanism. Although it was shown that
cortical brain areas from post-mortem tis-
sue showed a significant increase in the
splicing of XBP1 mRNA (Lee et al., 2010),
a recent report showed that XBP1 mRNA
did not reach levels of healthy age-matched
controls, suggesting down-regulation of
this factor in AD brains (Reinhardt et al.,
2013). In terms of functional studies, a
neuro-protective activity of XBP1 was pro-
posed on two fly models of AD involv-
ing the expression Aβ or Tau (Loewen
and Feany, 2010; Casas-Tinto et al., 2011).
Ectopic expression of XBP1s suppressed
Aβ neurotoxicity in flies, possibly by mod-
ulating calcium homeostasis.

ER stress in AD also engages another
stress pathways through IRE1α governed

FIGURE 1 | UPR response underling memory consolidation in Alzheimer’s disease. Activation
of ER stress signaling by abnormal protein misfolding activates several stress kinases leading to
phosphorylation of eIF2α, inhibiting protein synthesis. Phosphorylation of eIF2α impairs synaptic
function and cognitive processes. The IRE1α/JKN pathway may feed forward to enhance amyloid
deposition and AD process, whereas XBP1 has neuroprotective effects against Aβ toxicity, and
controls the expression of a cluster of AD-related genes.

by cJun N-terminal kinases (JNK). JNK is
activated in neurons of AD post-mortem
brain tissue, and a recent report proposed
that the occurrence of ER stress in AD
mouse models may positive feedback to
enhance Aβ formation and amyloid depo-
sition through activation of JNK (Yoon
et al., 2012). This study opens the question
of whether ER stress signaling may con-
tributes to diverse aspects of the disease:
APP metabolism, Aβ aggregation, neu-
rodegeneration and cognitive impairment.
These observations are interesting because
they contrast with the results obtained
after manipulation of the UPR in other
disease models, where the pathway has
protective effects against protein aggrega-
tion (Matus et al., 2011; Roussel et al.,
2013). These findings highlight the need
to systematically investigate the actual con-
tribution of XBP1, IRE1, and other UPR
components such as ATF6 to AD to further
validate and define the exact contribution
of this homeostatic pathway to the disease
process. Still, the cause of abnormal ER
stress in AD remains to be determined.

Many important questions are still
open in this emerging and growing field:
(i) Is the IRE1α network, IRE1α/XBP1
and/or IRE1α/JNK pathways, involved in

the consolidation and formation of mem-
ory? (ii) Do the activation of these path-
ways play a functional role in cognitive
decline in AD? and, (iii) How is the UPR
network as a whole related to the pro-
gression and pathogenesis of AD, APP
processing and Aβ oligomers generation?
Is neuroinflammation also converging into
the IRE1a UPR axis? How can we con-
solidate that PERK signaling may have a
dual and opposing activity in AD? All
of the available evidence points to the
fact that ER disturbances and UPR acti-
vation may facilitate and amplify both
memory loss and protein aggregation on a
vicious cycle that may turn initial adaptive
UPR responses into a pro-degenerative
factor (Figure 1). A systematic analysis is
required to assess the exact contribution
of each UPR signaling branches to AD
to then define optimal targets for disease
intervention.
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