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Abstract

The world has become a complex set of geo-social systems interconnected by networks, including transportation networks,
telecommunications, and the internet. Understanding the interactions between spatial and social relationships within such
geo-social systems is a challenge. This research aims to address this challenge through the framework of geovisual analytics.
We present the GeoSocialApp which implements traditional network analysis methods in the context of explicitly spatial
and social representations. We then apply it to an exploration of international trade networks in terms of the complex
interactions between spatial and social relationships. This exploration using the GeoSocialApp helps us develop a two-part
hypothesis: international trade network clusters with structural equivalence are strongly ‘balkanized’ (fragmented)
according to the geography of trading partners, and the geographical distance weighted by population within each
network cluster has a positive relationship with the development level of countries. In addition to demonstrating the
potential of visual analytics to provide insight concerning complex geo-social relationships at a global scale, the research
also addresses the challenge of validating insights derived through interactive geovisual analytics. We develop two
indicators to quantify the observed patterns, and then use a Monte-Carlo approach to support the hypothesis developed
above.
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Introduction

The world has become an increasingly interconnected system

with multi-scale geographically embedded networks (i.e., trans-

portation, internet). Spatial analysis aims to understand such

systems in terms of spatial patterns, relationships, processes, and

change within and among geographical spaces [1]. Social network

analysis has been used to understand how systems emerge through

the interaction of individual agents (i.e., humans, companies). Both

approaches have advantages and limitations as methods through

which to understand the complex geo-social interconnected world.

Many geo-social interconnected systems mainly grow from the

bottom-up, but traditional spatial analysis is a top-down approach

that cannot deal with the evolution of the systems over space and

time [2,3]. Social network analysis, a bottom-up approach, can

link individual-level behaviors and interactions to the emergence

of social phenomena [4], but the approach typically ignores

geographical constraints [5]. An effective integration of both

approaches has the potential to aid understanding of geo-social

systems from a more comprehensive perspective. For example, the

integration of spatial consideration into a social network approach

enables understanding of why and how an air-borne disease

diffuses within an urban area in a manner that can generate

disease hot spots as well as cold spots [6]. The integration of spatial

analysis and social network analysis has the potential to link

individual-level behaviors and interactions (i.e., human, vehicle,

organization) to understand urban sprawl over space and time [4].

Although spatial analysis and social network analysis have the

potential to complement each other, the formal integration of two

approaches remains relatively underdeveloped in the literature [7].

This paper therefore integrates spatial analysis and social

network analysis into a unified framework through a geovisual

analytics approach. Geovisual analytics tools integrate computa-

tional methods with interactive visualization, in order to enable

insights on large and complex geospatial datasets [8,9,10,11].

Specifically, we present and apply a geovisual analytics tool,

GeoSocialApp [12], that consists of three major analytical

‘‘spaces’’ implemented as linked components: a geographic space,

a network space, and an attribute space. Each performs a specific

task and can coordinate with other components to facilitate a

process through which insights are enabled. We illustrate how the

GeoSocialApp facilitates development of hypotheses, with the
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international trade network (ITN) as a case study. The explicit

geographical and network representations in the GeoSocialApp

facilitate and enable insight in terms of different roles that spatial

and social relationships have in the ITN across geographical

regions with network hierarchies at different scales. One major

goal of geovisual analytics is to develop hypotheses on how space

matters based on the patterns identified from geo-spatial data [13];

but the validation of geovisual analytics results is still regarded as a

challenge [14]. Here, we propose a Monte-Carlo approach as a

statistical validation to support the hypothesis developed through

visual-computational exploration of spatial and social interaction

in the ITN.

The paper begins below by reviewing the development of geo-

social visual analytics methods in geography and network domains

(Section 2). We then present an overview of the methods (Section

3) and the international trade network data used in this study

(Section 4). The results obtained through applying the methods to

the data (Section 4) provide insights on the different roles that

spatial and social relationships play in relation to trade across

geographical regions (Section 5). We next introduce the Monte-

Carlo approach as a statistical validation to support the insights

discussed in section 5 (Section 6). Finally, we present conclusions

and an outlook for future research (Section 7).

Literature Review

Current geo-social visual analytics tools can be classified into two

major groups: the first group, rooted in geography, focuses on

geographical analysis with an implicitly network representation; the

second group, rooted in social network science, has an explicitly

network representation with geography as a background to visualize

the results. This section reviews the geo-social visual analytics tools

from geography and social network science domains, and argues for

a more balanced approach that emphasizes spatial relationships and

social networks simultaneously.

Spatial interactions/flows associated with topics such as human

migration and disease transmission are major research domains for

integrating network representation into geovisual analytics. For

example, Andrienko and Andrienko [15] develop a spatial

generalization method to transform trajectories with common

origins and destinations into aggregated flows maintaining

essential characteristics of the movement between areas. In

complementary research, Guo [16] proposes an integrated

interactive visualization framework that is applied to county-to-

county migration data in the U.S. in order to visualize and

discover network structures, multivariate relations, and their

geographic patterns simultaneously. Additional relevant research

can be found in recent papers by Andrienko et al. [17], Demšar

and Virrantaus [18], Guo, Liu and Jin [19], and Wood, Dykes and

Slingsby [20].

All of the above studies consider the geo-social processes from a

primarily geographical perspective. Spatial interactions/flows in

research taking this perspective are typically visualized on maps,

which provide important information on spatial context. The

observed spatial patterns can be related to the spatial context (e.g.,

big cities tend to be hotspots for human interaction). The methods

for geo-social interaction discussed so far assume that geographic

locations define the geo-social process, but new communication

and transportation technologies clearly spread social networks

beyond traditional geographical constraints (i.e., distance) [21].

Therefore, understanding the social meaning behind the geo-social

processes is equally important.

Geo-social visual analytics from a social network science

perspective tends to have an explicit network context with an

implicitly geographical representation. Ahmed et al. [22] intro-

duce new visual analysis methods with dynamic network views

(e.g., wheel layout, radial layout, and hierarchical layout) to

explore the 2006 International Federation of Association Football

(FIFA) World Cup competition in which countries are clustered

based on their geographical locations in the dynamic graph

representation. The visual analysis methods allow users to analyze

and compare each country’s performance within the geo-social

context. The explicit network representation and implicitly

geographical representation require analysts to relate the explicit

network representation to his or her unrepresented geographic

background knowledge in the visually interactive process [8].

Thiemann [23] developed the SPaTo Visual Explorer, which

implements multiple explicitly geographical and network repre-

sentations. Using a case study focused on global air flight networks,

he illustrates how SPaTo can allow users to develop hypotheses

about the interaction between geographical distance and social

network distance. For example, they derive evidence showing that

geographical proximity of cities corresponds with short social

distance among the cities. Beyond the above, four additional

research efforts have focused on specific components of methods to

involve explicitly geographical representations into a traditional

social network approach: 1) spatial point pattern exploration

approach (e.g., kernel density) can be used to understand spatial

impacts on the development of social networks [24]; 2) spatial

autocorrelation coefficient (e.g., Moran’s I) has been applied to

social networks to measure the statistical similarity of individuals

[25]; 3) explicitly spatial representations facilitate practical

implementation of decision-making in certain social network

application domains (e.g., infectious disease control) [26]; and 4)

certain geo-social systems (e.g., human migration, international

trade network) can be better understood or predicted through

mathematical models considering physical and social space

[27,28].

As discussed above, understanding geo-social systems requires

consideration of both geographical relationships and social

network relationships. Therefore, it is necessary to involve

explicitly geographical and social network representations. Andris

[29] lists five benefits to having an explicit network representation

within a geo-spatial framework: 1) the group of connected

geographical regions can be studied as a unit with social closeness

based on a network community detection approach; 2) the social

power of places can be represented by node measures (i.e., degree,

betweenness); 3) the social role of interconnected places over the

whole system can be represented by network system measures (i.e.,

degree distribution, betweenness distribution); 4) the complex

social interaction between places can be understood through

adding multiple social flow layers on Geographical Information

System (GIS); and 5) the geo-social systems in which spatial

closeness and social closeness do not match can be better modeled

with an explicit network representation.

The above discussion illustrates that there is the lack of explicitly

spatial and social network representations in current geovisual

analytics and the importance of such representations to under-

stand geo-social systems [30]. It is also still a challenge to

statistically support the hypotheses developed through visual

exploration [31], particularly the hypotheses directed to geo-social

interaction. To fill the gap, this paper introduces the GeoSocia-

lApp with the 2005 international trade network as a case study to

understand the interaction between spatial and social relation-

ships, and introduces the use of a Monte-Carlo approach to

validate the hypothesis developed in our geo-social visual

exploration.

A Geovisual Analytics in the International Trade

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e88666



Methods

In this paper, we extend and apply the GeoSocialApp, a

geovisual analytics tool initially introduced in preliminary form in

Luo et al. [12]. The GeoSocialApp implements traditional

network analysis methods within the context of an environment

that links explicitly spatial and social representations to understand

the interaction of spatial and social relationships in the ITN. The

GeoSocialApp is an extension of the GeoViz Toolkit (GVT)

developed in the GeoVISTA Center at Penn State [32]. The

research presented here makes use of the existing choropleth

mapping capabilities of GVT to support geographical analysis as

well as the component coordination methods that enable dynamic

linking and brushing across views, and adds a dendrogram

component that supports multiple graph-based views to represent

a varying network hierarchy. Details about other GVT compo-

nents that could be used to extend the analysis presented here can

be found in http://www.geovista.psu.edu/GeoSocialApp/ (The

source code for the GeoSocialApp is open source under the

Library General Public License, version 2 (LGPL 2.0). We plan a

public release of a binary version usable by non-programmers in

the future).

GeoSocialApp Components

As noted above, we use two components in the GeoSocialApp

for this study: a dendrogram view and a choropleth view. The

dendrogram view implements the convergence of the iterated

correlations (CONCOR) algorithm [33,34] to group nodes with

equivalent positions in a single network or multiple social networks

together. Equivalent positions refer to collections of actors that

have similar ties to and from all other actors in the network. The

implication of actors having equivalent positions is that they play

similar social roles in a relational network. We can describe the

relational network by an adjacency matrix A, which can generate

a position similarity matrix R to measure the equivalent positions,

whose element value rij is defined as:

rij~

P
xki{x.ið Þ xkj{x.j

� �
z
P

xik{xi.ð Þ xjk{xj.
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xkizx.ið Þ2z

P
xikzxi.ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xkjzx.j

� �2
z
P

xjkzxj.
� �2

q ð1Þ

where �xxi.(�xxj.)is the mean of the values in row i (j) of the matrix A

and �xx.i(�xx.j)is the mean of the values in column i (j) of the matrix

A. At the initial level of analysis, CONCOR performs the above

equation calculations iteratively on the position similarity matrix R

until all values converge to either 1 or 21, resulting in all nodes

being grouped into one of two categories. Two groups can be too

generalized for some studies, so hierarchical structures can be

achieved by running CONCOR on each subgroup. In this way,

CONCOR can continue to split nodes into successively smaller

groups: two become four, four become eight, and so on. Although

this algorithm was developed originally for application to social

networks of individuals, it has been demonstrated to be an effective

method to empirically locate structural positions in terms of the

ITN [12,35].

Equivalent positions in terms of the ITN refer to collections of

countries that have a similar import and export trade relationships

with all other countries [36]. The implication of countries having

equivalent positions is that they play similar social roles in the

ITN. According to world system theory, the economic develop-

ment of different countries is affected by their structural positions:

core, semi-periphery, and periphery through unequal economic

exchanges among them [37]. Core countries focus on capital-

intensive production, periphery countries provide low-skill labor

and raw materials, and semi-periphery countries are the industri-

alizing countries positioned between the periphery and core

countries. The CONCOR algorithm can classify the ITN into

these three structural equivalence positions [38,39].

A tree layout and a radial layout are implemented in the

dendrogram view to visualize the hierarchical structure of

CONCOR results (Figure 1). The tree layout organizes the graph

in a hierarchical way by placing child nodes under their common

ancestors. An informationally equivalent radial view can be

transformed from the tree by putting child nodes in the enclosing

circle of their common ancestors [40,41]. The dendrogram view in

the GeoSocialApp also provides a slider to control the hierarchical

level of CONCOR results.

The dendrogram view of social space is dynamically linked to a

choropleth map view used for visual exploration in geographical

space. Each node in the dendrogram view corresponds to a

geographical unit (i.e., states, countries) in the choropleth map.

The choropleth map allows users to choose the number of classes,

the classification method (i.e., equal intervals, quantiles), the

variable to display, and the ColorBrewer palette [42] for color

selection. Thus, the linked dendrogram and map views allow

exploration of social positions and social groups and their

corresponding spatial positions and spatial groups simultaneously.

With the hierarchical level control in the dendrogram view, the

linked views further support the explicit exploration of interaction

between social space and geographical space and its impact on

outcomes of interest at different network hierarchy (Figure 2). This

capability will be illustrated in the case study presented below,

after the data used in that case study are first described.

Data

Our analysis of the interaction between spatial and social

relationships in the ITN is based upon import and export data

among 192 countries in 2005. These data were extracted from the

CorrelatesOfWar (COW) Database and include volume of imports

and exports in current U.S. dollars [43]. We convert the 2005 ITN

data into a directed network in which countries are the nodes of

the network and an import/export trading relationship is

represented by a link between two countries. We then organize

the data into a binary matrix form to fit the CONCOR algorithm

with columns as exporting countries and rows as importing

countries. As an illustration, Table 1 is the original import and

export data among sample countries in 2005, and Table 2 is the

binary matrix for the first 10 countries in our data; ‘‘1’’ represents

presence of import/export trade between countries, ‘‘0’’ represents

no trade. A binary matrix is used rather than a weighted matrix for

twofold reasons: one basic idea of the CONCOR algorithm is that

the primary indicator of a relationship is the absence of links

between individuals rather than the occurrence of the links [44];

given this idea, the past research in international trade has

typically used the binary matrix with the CONCOR algorithm to

identify three structural equivalence positions: core, semi-periph-

ery, and periphery [38,39,45].

We use three additional data variables: GDP, population, and

geographical distance, to validate the hypothesis developed

through visual exploration using the GeoSocialApp. We down-

loaded 2005 GDP and population data for each country from the

World Bank website (http://data.worldbank.org/). We calculated

the linear distance between national capitals to measure the

geographical distance between countries with ArcGIS. This

measure of between-country distance is picked over others (e.g.,

distance between country centroids, distance between the nearest

points of country borders, etc.), because gravity models used in

ð1Þ
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Figure 1. Dendrogram View. Two layouts to visualize the hierarchical structure of CONCOR results: the left one is a tree layout and the right one is
a radial layout. Slider bar is used to control the level of CONCOR results.
doi:10.1371/journal.pone.0088666.g001

Figure 2. Dendrogram view and choropleth map view. The choropleth map depicts GDP by country. Data are divided into quintiles (5
categories with an equal number of countries in each category) depicted by 5 sequentially ordered shades of green, from low GDP (very light green)
to high GDP (very dark green). Each node in the dendrogram view corresponds to one country in the choropleth map view (The highlighted nodes in
blue correspond to countries with borders highlighted in blue). The first run of CONCOR process reveals two positions in the 2005 ITN.
doi:10.1371/journal.pone.0088666.g002

A Geovisual Analytics in the International Trade

PLOS ONE | www.plosone.org 4 February 2014 | Volume 9 | Issue 2 | e88666



other international trade network studies use the same distance

measure [46].

Results

Spatial and Social Interaction at the First Level of
CONCOR

We use the dendrogram view in the GeoSocialApp to explore

Table 2 to identify social relationships among all countries, and

the univariate choropleth map to visualize the spatial distribution

of GDP for all countries (Figure 2). Comparing the dendrogram

view and the map view, and using the dynamic linking between

them to explore specific details for individual and groups of

countries, can provide insight about spatial and social interactions

within the ITN.

Initially, we use the dendrogram view to divide the network data

into two groups. After highlighting one group (blue nodes in the

dendrogram view and blue outlines in the map view), we find that

most countries in the highlighted group are economic periphery

countries (i.e., most countries in Central America and Africa) and

most countries in the other group are economically core countries

(i.e., North America and European Union). The univariate

choropleth map depicts GDP for each country. The sequential

colors reinforce this classification: economically less-productive

countries are indicated by light green, whereas other, more

economically productive countries are indicated by dark green.

The two classifications identified by CONCOR imply that

economically core countries tend to have similar international

trade partners, and economic periphery countries tend to have

similar trade partners. This study focuses on the interaction

between spatial and social relationships in the ITN. At the first

level of CONCOR in Figure 2, all countries with close social

relationships tend to exhibit spatial proximity.

Spatial and Social Interaction at the Second Level of
CONCOR

The second application of CONCOR to the ITN subdivides the

first two categories, resulting in a total of four groups as shown by

Figure 3 (A list of countries for each group is in File S1.). The core

countries and the periphery countries are partitioned into four new

geographies, which further indicate a core–periphery arrange-

ment: the mean GDP for each geography is sorted in Table 3.

Figure 3A mainly includes more developed countries in the

economically core group: North America, most countries in

Europe, Australia, South Africa, and economically more-impor-

tant countries in Asia (i.e., China, India), whereas Figure 3B

mainly consists of less developed countries in the economically

core groups: Russia, most countries in South America, and a small

number of countries in Europe. Figure 3C mainly includes more

developed countries in the economic periphery group: Central

America, and a few countries from Eurasia (i.e., Vietnam, Iran),

whereas Figure 3D mainly consists of the less developed countries

in the economic periphery group: countries from Africa and some

countries from Asia (e.g., Mongolia). In terms of spatial and social

interaction identified by the second level of CONCOR, econom-

ically core countries in Figure 3A and Figure 3B (i.e., North

America, Europe), as well as more developed periphery countries

in Figure 3C exhibit regional patterns (i.e., Central America,

Central Asia) that also fall into the same social groups across the

globe. It suggests that international trade partners for those

countries are related to both spatial proximity and similar

economic development level (Figure 3A, 3B, and 3C). Economic

periphery countries in Figure 3D have one major cluster (i.e.,

Table 1. Imports-exports relationship among partial
countries in 2005.

year importer1 importer2 flow1 flow2

2005 United States of
America

Canada 291944 195151

2005 United States of
America

Bahamas 726.3 1945.79

2005 United States of
America

Cuba 0 397.87

2005 United States of
America

Haiti 458.5 756.91

2005 United States of
America

Dominican
Republic

4721.4 5179.24

2005 United States of
America

Jamaica 410.9 1962.2

2005 United States of
America

Trinidad and
Tobago

8342.2 1583.01

2005 United States of
America

Barbados 33.4 595.28

2005 United States of
America

Dominica 3.8 67.43

Flow1 means imports of importer1 from importer2 in current US millions of
dollars, and flow2 means imports of importer2 from importer1 in current US
millions of dollars.
doi:10.1371/journal.pone.0088666.t001

Table 2. International trade relationships among partial countries in a binary matrix for 0% threshold in 2005.

GUATEMALA BOLIVIA PARAGUAY URUGUAY SURINAME GAMBIA MOROCCO MALI LIBERIA

GUATEMALA 0 1 1 1 0 0 1 0 0

BOLIVIA 1 0 1 1 0 0 1 0 0

PARAGUAY 1 1 0 1 0 0 1 0 0

URUGUAY 1 1 1 0 1 0 1 0 0

SURINAME 1 0 0 1 0 0 1 1 1

GAMBIA 0 0 0 0 0 0 1 1 1

MOROCCO 1 0 1 1 1 1 0 1 1

MALI 0 0 0 1 0 1 1 0 0

LIBERIA 0 0 1 1 1 0 1 0 0

doi:10.1371/journal.pone.0088666.t002

A Geovisual Analytics in the International Trade
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Africa). Compared to 3A, 3B, and 3C, Figure 3D suggests that

spatial proximity has a stronger impact on the least developed

countries in terms of international trade partners they have.

Spatial and Social Interaction at the Third Level of
CONCOR

The third run of CONCOR applied to the ITN again

subdivides the previously identified groups into seven different

subgroups (Figure 4) (A list of countries for each group is in File

S1.). At this level the geographies are considerably more complex

but this research highlights three features. First, only seven new

subgroups are identified in this level: CONCOR does not divide

countries depicted in Figure 3A any further, resulting in the same

group of countries in Figure 4A, because economically core

countries in this group have highly similar import and export trade

partners. Second, some groups of countries at this level further

confirm a core-periphery hierarchical structure in terms of the

ITN: the top economically core countries in Figure 4A; a clear

distinction between east African countries (the second least

developing places) in Figure 4F and west African countries (the

least developing regions) in Figure 4G. Third, the role that spatial

and social relationships play in terms of the ITN identified by the

third level of CONCOR becomes more noticeable. Core countries

in Figure 4A, Figure 4B, and Figure 4C have their own distinct

geographical regions (i.e., North America, Europe), but social

relationships to connect different regions are also strong. Figure 4D

and Figure 4E identify two distinct geographical regions (Central

America and Central Asia) compared to Figure 3C that put both

into the same social group. The distinct geographical regions

suggest that spatial constraints are stronger than social connections

between the two regions at this network level. Comparing the two

distinct geographical regions identified in Figure 4D and Figure 4E

to distinct geographical regions (i.e., North America, Europe, and

Austria) in Figure 4A suggests that spatial constraints have less

impact on economically core countries and more impact on

economic periphery countries to determine the international trade

partners they have.

Validation

As outlined above, using an interactive visual approach, we

found that developing countries with structural equivalence tend

to exhibit a pattern of geographical proximity, and developed

countries with structural equivalence tend to exhibit a pattern in

which geographical proximity remains a factor, but one that is

overcome by some connections to distant places. Based on the

patterns, we develop the two-part hypothesis that: international

trade network clusters with structural equivalence are strongly

‘balkanized’ (spatially fragmented) according to geography of

trading partners, and the geographical distance within each

network cluster has a positive relationship with the development

level of countries. However, we wish to verify this visual finding

with a more robust statistical verification. We have two steps to

verify the hypotheses. The first step introduces two indicators

(degree of balkanization and Pearson of correlation) to quantify the

observed patterns, and the second step uses a Monte-Carlo

method to measure the statistical level of the two indicators. It is

also important to note that these two linked parts of the analytic

process (visual hypothesis generation and confirmatory analysis)

provide an iterative means of arriving at stronger conclusions.

Degree of balkanization
The first part of our hypothesis is that the network cluster with

structural equivalence is strongly ‘balkanized’. First, we calculate

the average distances between countries that (i) belong to the same

cluster and (ii) belong to two distinct clusters. The difference

between both distances is a quantification of the degree of

balkanization, denoted as B. That is to say:

B~Di,j{Dm,n i,j[thesamecluster; m,n[differentclusters

Dx,y isthedistancebetweencountryxandcountryy

Distheaveragedistance

Figure 3. The second run of the CONCOR process subdivides each of the first two groups. Figure 3A: One subgroup of economically core
countries; Figure 3B: The other subgroup of economically core countries; Figure 3C: One subgroup of economic periphery countries; Figure 3D: The
other subgroup of economic periphery countries.
doi:10.1371/journal.pone.0088666.g003
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A positive value of B means that countries that belong to the

same trade cluster are geographically grouped: the higher the

positive value, the higher the degree of balkanization. If B is equal

to zero, the countries from the same cluster have no geographic

proximity at all and display a random geographic distribution. A

negative value of B indicates that countries from the same trade

cluster are geographically dispersed. The degree of balkanization

of 2005 international trade data set is denoted as ~BB, with value of

Table 3. CONCOR group level attribute data.

FigureID
Mean GDP(billions of
dollars) FigureID

Mean GDP(billions of
dollars) Mean Distance(km) Weighted Distance

Mean GDP(billions of
dollars)

3A 912.00 4A 912.00 6664 5.55E+19 912.00

3B 4B 384.00 7146 9.76E+18 384.00

3B 250.00 4C 116.00 8086 5.15E+18 116.00

3C 4D 48.10 3403 1.84E+17 48.10

3C 34.90 4E 21.80 5125 4.67E+17 21.80

3D 4F 13.70 8838 1.19E+18 13.70

3D 12.30 4G 10.90 5833 6.37E+17 10.90

*Mean GDP in 2005 for 4 groups identified at the second level of the CONCOR, mean GDP in 2005, mean distance, weighted distance by population for 7 groups at the
third level of the CONCOR.
doi:10.1371/journal.pone.0088666.t003

Figure 4. The third run of the CONCOR process continues to subdivide groups. Figure 4A 4B, and 4C belong to the economically core
countries, whereas Figure 4D, 4E, 4F, and 4G belong to the economic periphery countries.
doi:10.1371/journal.pone.0088666.g004
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2774.008 km. The absolute value indicates little about the degree

of balkanization unless it is compared to some benchmark. The

Monte-Carlo method can provide such a benchmark and produce

a statistical significance measure of the absolute result, which we

will discuss after describing our approach to measuring the

relationship between GDP and distance by network cluster.

Pearson correlation
We use Pearson correlation [47] to measure the positive

relationship between geographical distance within each network

cluster and the development level of countries, which is

determined by GDP in this paper.

PX ,Y ~

1
n

Pn
i~1

Gi{G
� �

Di{D
� �

sGsD

Gi is the average GDP of each cluster. Di is the average within-

cluster distance of each cluster. sG is the standard deviation in

terms of average GDP of each cluster. sD is the standard deviation

in terms of average within-cluster distance of each cluster. P ranges

from 21 to 1. A positive P value implies that there is a positive

relationship between geographical distance within each network

cluster and GDP. A negative P value implies that geographical

distance increases as GDP decreases. If P is around zero, it means

that the geographic factor of each network cluster is independent

from GDP.

When we calculate the average within-cluster distance, we give

more weight to the countries that are more populous by weighting

the distance by the population. The reason for this is explained

below. The Pearson correlation between the average within-cluster

distance without weight and GDP is only 0.13; this does not reflect

the strong relationship that is apparent between the two variables

as observed visually from the GeoSocialApp. We checked the

GeoSocialApp again in order to figure out the reason behind this

initial result. We found that simply calculating the average

distance between any pair of countries may introduce some noise.

For example, island countries in the middle Pacific (Figure 4F) that

are far away from any other countries may raise the average

within-cluster distance. The cluster in Figure 4F includes mainly

developing countries in North Africa and the Mideast, as well as

some island countries (e.g. Solomon Islands, Vanuatu). These

islands only represent 1.5% of the population and 3.8% of the

GDP for the cluster, but increase the within-group distance by

47.71%. Such a dramatic rise of within-group distance makes the

distance-GDP nexus indistinct and brings down the Pearson

correlation. We test the impact of those islands on the Pearson

correlation through removing those islands in Figure 4F, which

raises the correlation to 0.36. Given the similar issue existing in

some of the other clusters (i.e., Figure 4D, 4E), we weight the

distance between all countries proportionally to their population

without removing any island countries (Table 3). Following from

these preliminary results, we refine our hypothesis into: the

geographical distance weighted by population within each network

cluster has a positive relationship with the development level of

countries. The 2005 international trade data set’s Pearson

correlation (~PP) between average GDP per cluster and population

weighted within-cluster distance is determined to be 0.97.

Validation Method
Here, we use a Monte-Carlo method to assess the hypothesis

generated from visual-computational exploration. Monte-Carlo

methods are a set of mathematical tools that use randomly

generated data to evaluate mathematical expressions or to achieve

the distribution of some desired variables [48]. Results that are

generated from the random inputs serve as benchmarks to

determine whether the phenomenon we have observed exhibits

a statistically significant difference from that generated by a

random process, thus whether the phenomenon is unlikely to have

occurred by chance.

To start, we generate 10,000 random international trade

networks. The basic idea of this data simulation process is to

create trade networks with equal numbers of nodes and links, but

to connect the nodes randomly. We keep the number of nodes and

links constant to make clustering results from random trade

networks comparable to results from the actual ITN data. For

each random network, the degree of balkanization B and Pearson

correlation P are calculated after performing the CONCOR

algorithm. The 10,000 results offer a numerical approach to

calculate the statistical significance of the original degree of

balkanization and Pearson correlation by counting the percentage

of random networks that have an equal or larger degree of

balkanization or Pearson correlation. For the 2005 international

trade data set, the degree of balkanization (~BB) and the statistical

significance (p value) of the Pearson correlation (~PP) is calculated as

follows:

p~BB~
Number of random networks with B§~BB

Totalnumberofrandomnetworks

p~PP~
Number of random networks with P§~PP

Total number of random networks

For this analysis, we set the confidence level for p at 0.05.

Figure 5 shows the histogram of the degree of balkanization (B)

based on all of the random trade networks. This figure shows an

imperfect bell-shaped curve, culminating around 0. Its average

mean is 20.54, which is very close to 0. An intuitive explanation is

that the countries that belong to the same cluster have a random

geographic distribution for most random trade networks. The p

value of ~BB is ,0.0001, which means that less than one trade

network within every 10,000 random trade networks has a

clustering structure that equals or exceeds that of the 2005

international trade network. In other words, the observed high

degree of balkanization within the 2005 trade data is unlikely to be

a randomly produced result. Thus, the network cluster with

structural equivalence exhibits statistically significant geographical

clustering.

The Pearson correlation values calculated between the average

GDP and the weighted within-cluster distance for all random trade

networks are displayed in Figure 6. Unlike the previous result in

Figure 5, the distribution of Pearson correlation values is irregular

with one peak around 0.1 and another mini-peak around 0.9. That

the majority of results are associated with the peak around 0.1 can

be interpreted to mean that if trade networks were random, the

relationship between GDP and the weighted within-cluster

distance would be irrelevant or have very weak positive or

negative relationship. The bi-modal distribution could be caused

by a combination of clusters of countries with similar GDPs and

the weighting procedure used. A nearly perfect correspondence

between trade clusters and GDP is possible, but if trade links are

broken, the patterns rapidly decohere into the default slight

positive correlation. Only a small portion of random trade

networks exhibit a strong positive relationship between these two

variables. The p value is 0.0171, which is significant at 0.05
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confidence level. It indicates that less than 2 of every 100 random

trade networks display a stronger correlation between GDP and

weighted within-cluster distance than found in the actual 2005

ITN data. In other words, the observed strong positive relationship

from the visual exploration is unlikely to occur randomly, and the

positive relationship between weighted geographical distance

within each network cluster and the development level of countries

is statistically significant.

Robustness of the validation method
We use two approaches to test the robustness of the validation

results. The first approach is to change the number of runs for

each Monte-Carlo validation. The second approach is to create

random trade networks with different total connection numbers.

For both approaches, we keep the number of nodes constant to

make clustering results from random trade networks comparable

to original results. If two tests exhibit consistent results with minor

fluctuations, such results support that our validation method is

robust against these kinds of changes. Similar test approaches have

been used in other fields, such as meteorology [49].

The first approach examines whether the number of runs in

each Monte-Carlo validation influences the final results. If results

are robust, validation results will converge as the number of runs

increases. Figure 7 displays the results in which the number of runs

(N) is 1,000, 2,000, 5,000 and 10,000. When N is small, such as

1,000, the results display some reasonable fluctuations. As the

number of runs rises, those results are smoothed and finally

converge (as shown by the turquoise line on each plot representing

10,000 runs).

The second approach uses different numbers of connections

among nodes to test the robustness of the validation. We examine

the robustness with 50%, 75%, 100%, 150%, and 200% of the

original connection number and rerun the validation methods.

Figure 8 shows that the distributions of degree of balkanization

and Pearson correlation are largely consistent based on the five

different scenarios.

This section applies Monte-Carlo methods to validate the

hypotheses developed from the GeoSocialApp-based visual-

computational exploration of the 2005 ITN. Monte-Carlo

simulation produces many randomized pseudo-networks, calcu-

lates statistical indicators, and compares the results with those from

the original ITN. The results from the 2005 ITN analysis are

shown to be statistically significant. In other words, the Monte-

Carlo method verifies that the patterns we observe from the

GeoSocialApp are unlikely to have resulted from random

processes. Moreover, we test the robustness of the validation

methods by changing the number of runs and the number of

connections. In both scenarios, the Monte-Carlo method produces

consistent results, which provides evidence that our validation

method is robust.

Conclusion & Contribution

In this paper, we present the GeoSocialApp, a visual analytics

application that supports exploration of the complex interaction

between spatial and social network relationships and demonstrate

its capabilities by investigating the ITN across geographical

regions at different levels of the network hierarchy. The explicit

focus of the GeoSocialApp on both geographical and social

representations enables a process that generates insight related to

the different roles that spatial and social relationships have within

the varying network hierarchy levels. To address the network

relationships, the GeoSocialApp implements the CONCOR

algorithm that has been used in many past studies of the ITN.

Although this algorithm has known limitations [50], our focus here

is on demonstrating the potential of a geovisual analytics approach

that integrates spatial and network analysis methods, not on

developing novel methods to measure structural equivalence in

networks. In addition, the CONCOR algorithm is still frequently

used to measure structural equivalence of the ITN in recent

research [28,45]. Thus, relying on a method with a long history

was appropriate. The first run of CONCOR applied to our ITN

data suggests a complex interaction between spatial and social

relationships for the ITN, but also obscures the separate roles that

each relationship has. The second and third run of CONCOR,

identifying successively more homogeneous clusters, makes it clear

that spatial constraints exist for all groups, but suggests that they

are more influential for groups that include economic periphery

countries.

Developing hypotheses about phenomena through visual-

computational exploration is one major goal of visual analytics;

but recent research recognizes that a weakness of many visual

Figure 5. The degree of balkanization of all random trade
networks.
doi:10.1371/journal.pone.0088666.g005

Figure 6. The Pearson correlation values between GDP and
weighted within-cluster distance of all random trade networks.
doi:10.1371/journal.pone.0088666.g006
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analytics methods developed thus far is that they lack mechanisms

to validate the hypotheses that are generated [14,31]. This

research develops two indicators to quantitatively assess the

patterns identified through visual-computational analysis and then

uses a Monte-Carlo method with robustness tests to support our

hypothesis with statistical evidence. In addition to using this

method to test our hypothesis, we also use the feedback of our first

statistical analysis, as discussed in the validation section, to refine

our hypotheses. We propose that the approach outlined here may

open a new research direction to support iterative hypothesis

development, testing and refinement through combined visual-

computational exploration and statistical validation.

A future goal for the GeoSocialApp specifically is to integrate

this validation method directly within the tools. Monte-Carlo

methods are suitable to validate the statistical significance of

patterns identified through visual analytics for two reasons: a)

patterns revealed through visual analytics tend to be complex and

at the same time knowledge about their statistical distributions is

absent in most situations; and b) one goal of Monte-Carlo methods

is to achieve the distribution of some desired variables with

randomly generated data [48]. To effectively integrate Monte-

Carlo methods into the visual analytics tools, there are two major

challenges: a) how to generate random data to provide baseline

distributions based on different applications; and b) Monte-Carlo

methods are time-consuming processes because they need to

generate a sufficiently large number, e.g., 10,000, of new random

data and then calculate the distribution of the desired variables.

To address the first challenge, one solution is to understand the

process of pattern revelation theoretically and mathematically, and

to design Monte-Carlo methods accordingly. To address the

second challenge, since each Monte-Carlo realization is complete-

ly independent, one solution is to design parallel Monte-Carlo

methods, and apply them within a parallel computing environ-

ment, e.g., cluster computing frameworks [51].

In addition to integrating the validation method within the

application, another future goal for the GeoSocialApp is to convey

more information with novel visual designs to improve the process

of hypothesis generation. For example, in the radial graphical

view, more information (e.g., the distance or GDP distribution

within each cluster) could have been symbolized. For the map

Figure 7. Validation results as a function of number of runs (N).
doi:10.1371/journal.pone.0088666.g007

Figure 8. Validation results as a function of total connection numbers.
doi:10.1371/journal.pone.0088666.g008
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view, one potentially useful addition might be a paired distance

histogram (with 5–7 bins of short to long distance) that summarizes

the distribution of between country distances for any selected

cluster. In this way, more attribute information can be visualized

on the map and network views to understand the interaction

between geographical space and social network space.

Social network approaches have been widely applied to study

the ITN, with a focus on the importance of network positions and

relationships [52,53,54,55]. Fagiolo et al. [56] argue that the role

of geographical proximity in shaping the structure of the ITN has

not been explored, especially across geographical regions. To fill

this gap, recent research integrates two important approaches in

the study of global trade: social network analysis and the gravity

model [28,57]. The researchers add network parameters into

gravity models to represent the impact of the global trade network

on bilateral trade, but those models are still not complex enough to

consider both relationships across different geographical regions at

varying levels. The hypothesis we developed through visual-

computational exploration and then assessed through statistical

validation can be considered as another effort toward future

international trade models that consider more fully the complex

geo-social interactions that occur across different geographical

regions at varying levels. Our next step will extend our analysis to

the temporal domain in order to understand how such geo-social

patterns do change over a longer time period (e.g., from 1989 to

2009).

Given that Pearson correlation is sensitive to the sample size, the

high correlation of 0.97 between geographic proximity weighted

by population and the development level of countries should be

interpreted with caution. However, the goal of this paper is not to

produce the definitive analysis of the ITN but to demonstrate the

value of applying a geovisual analytics approach as a method to

account for both geographic and social network factors in complex

processes. Application of the visual-computational methods was

able to generate hypotheses about the interaction between level of

economic development for countries and relative proximity of

international trading partners and the statistical analysis (of which

the Pearson correlation is a part) was used to provide support for

the hypotheses. The positive relations are further validated

statistically and robustly through application of a Monte-Carlo

method. In future work, we will consider using a Wilcoxon rank

sum test [58] and other similar non-parametric methods to

complement the results from Pearson correlation for three reasons:

Wilcoxon rank sum test works well even if sample size is small;

Wilcoxon rank sum test conducts a formal statistical test and

computes a p-value, which provides quantitative information in

comparison with descriptive methods like Pearson correlation;

non-parametric methods have fewer assumptions and are appli-

cable to more general situations.

The combination of spatial and social network context supports

exploration of the interaction between these components and

consideration of their impact on outcomes of interest [7], but the

combination has not received enough attention generally, not just

with respect to the ITN. The GeoSocialApp provides generic

frameworks to explore any analysis contexts that include spatial

and social relationships among geographical regions (e.g., human

migrants among different states in the U.S., war conflicts among

different countries in the world, vector borne disease propagation,

or the impact of social media on behavior in the world). To our

knowledge, this is the first tool to allow users to explore the

interconnections of spatial and social relationships at a geograph-

ical region level.
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