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Exposure measurement error in PM2.5 health
effects studies: A pooled analysis of eight
personal exposure validation studies
Marianthi-Anna Kioumourtzoglou1*, Donna Spiegelman2,3, Adam A Szpiro4, Lianne Sheppard4,5,
Joel D Kaufman5, Jeff D Yanosky6, Ronald Williams7, Francine Laden1,2, Biling Hong2 and Helen Suh8

Abstract

Background: Exposure measurement error is a concern in long-term PM2.5 health studies using ambient
concentrations as exposures. We assessed error magnitude by estimating calibration coefficients as the association
between personal PM2.5 exposures from validation studies and typically available surrogate exposures.

Methods: Daily personal and ambient PM2.5, and when available sulfate, measurements were compiled from nine
cities, over 2 to 12 days. True exposure was defined as personal exposure to PM2.5 of ambient origin. Since PM2.5 of
ambient origin could only be determined for five cities, personal exposure to total PM2.5 was also considered.
Surrogate exposures were estimated as ambient PM2.5 at the nearest monitor or predicted outside subjects’ homes.
We estimated calibration coefficients by regressing true on surrogate exposures in random effects models.

Results: When monthly-averaged personal PM2.5 of ambient origin was used as the true exposure, calibration
coefficients equaled 0.31 (95% CI:0.14, 0.47) for nearest monitor and 0.54 (95% CI:0.42, 0.65) for outdoor home
predictions. Between-city heterogeneity was not found for outdoor home PM2.5 for either true exposure.
Heterogeneity was significant for nearest monitor PM2.5, for both true exposures, but not after adjusting for
city-average motor vehicle number for total personal PM2.5.

Conclusions: Calibration coefficients were <1, consistent with previously reported chronic health risks using nearest
monitor exposures being under-estimated when ambient concentrations are the exposure of interest. Calibration
coefficients were closer to 1 for outdoor home predictions, likely reflecting less spatial error. Further research is
needed to determine how our findings can be incorporated in future health studies.

Keywords: Exposure measurement error, Fine particles, Fine particles of ambient origin, Monitoring data,
Spatio-temporal models

Background
Exposure measurement error is a limitation of epidemi-
ologic studies of fine particles (PM2.5) [1-3], which gen-
erally assess exposures using ambient concentrations
measured at centrally located monitors. The impact of
error on observed health risks can be substantial, poten-
tially distorting associations and interactions between

*Correspondence: marianthi.anna@mail.harvard.edu
1Department of Environmental Health, Harvard School of Public Health,
Boston, Massachusetts, USA
Full list of author information is available at the end of the article

covariates and outcomes, reducing the power to detect
effects, and leading to invalid inference [3-5].

In time series studies, use of measurements from ambi-
ent monitors, even in absence of any instrumental error,
has been shown to introduce both a Berkson error com-
ponent, a result of using aggregated instead of individual
exposure data, and a classical error component, a result of
the difference between the aggregated exposure data and
the true ambient PM2.5 concentrations [5]. Berkson error
would not bias the health effect estimates, but would lead
to an increased variance, while classical error, conversely,
can lead to bias [5,6]. It has been shown that in presence of
multiple monitoring sites in a city, using across-monitor
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averages, or population-weighted averages, would lead to
less bias in time series studies [6,7]. Furthermore, less
bias is expected when the pollutant of interest is spatially
homogeneous, such as PM2.5 [6,8].

To minimize error, PM2.5 exposures would ideally be
measured using personal monitors, with analytical meth-
ods used to apportion these measurements into PM2.5
constituents and sources. Such methods, however, are
both expensive and intrusive and thus not feasible for
studies conducted over long time periods with many
subjects. Recently, for application to cohort studies,
researchers have used statistical models to predict expo-
sures outside participant residences [9-14], thus account-
ing for spatial variation in ambient concentrations. While
an improvement, such models still do not account for all
sources of exposure variability, such as activity patterns,
which can lead to biased results [15]. It can be argued,
nevertheless, that such “biases” are the result of different
target parameters of interest for the health effects of ambi-
ent concentration vs. personal or ambient source exposure
[16].

Further, spatial smoothing models can contribute a
Berkson-like error component that results from smooth-
ing the exposure surface and a classical-like component
from variability in estimating model parameters [17-19].
The classical-like error can induce bias both towards
and away from the null [18] with increased variability
[18,20,21]. Even in absence of other error sources, nev-
ertheless, health effects estimated using outdoor concen-
trations will be attenuated proportionally to the PM2.5
infiltration factor, the factor describing how much of the
personal PM2.5 was generated outdoors, penetrated the
building envelope and remained airborne [5]; if the expo-
sure of interest is outdoor pollutant concentration rather
than infiltrated personal exposure, however, it has been
argued that this attenuation should not be regarded as a
manifestation of measurement error [19].

Several previous acute effects studies have adjusted for
exposure measurement error, showing that use of surro-
gate exposures tends to bias the health effect estimates
towards the null [22-24]. For long-term PM2.5 effects,
a limitation in understanding the impact of measure-
ment error on estimated health risks is the paucity of
long-term personal exposure data [25-28]. We compiled
exposure data from nine studies to estimate calibration
coefficients for PM2.5 of ambient origin and total personal
PM2.5 for cases when ambient concentrations or spatial
models are used to assess exposures. In light of the com-
plexity of measurement error in air pollution, the time
scale of our validation data, and the uncertainty in our
estimated calibration coefficients, our aim was to esti-
mate and characterize calibration coefficients for PM2.5,
but not to recommend their use to adjust health effect
estimates in epidemiology studies directly. Our group is

currently developing statistical methods to account for
these limitations.

Methods
Personal exposure datasets
We included data from studies of personal PM2.5 expo-
sures based on the following criteria: i) the study had to be
conducted in the United States, ii) during or after 1999, to
ensure availability of PM2.5 concentration measurements
at a EPA monitor located nearby, and iii) we had to be able
to obtain the raw data, vs. the published summary statis-
tics, from the investigators who originally conducted the
study.

Measurements of personal and ambient PM2.5 and,
when available, sulfate (SO2−

4 ), were compiled from nine
cities located throughout the United States (Table 1)
[29-41]. A brief description of the validation studies is
presented in the Additional file 1.

In each study, daily personal PM2.5 exposure data were
collected following panel study sampling designs. The
number of subjects per study ranged between 15–201,
with sampling session durations ranging from 2 to 12
days (median: 7 days). For each subject, we estimated
monthly average personal exposures and used these in our
analyses.

All subjects were non-smokers and were monitored
in multiple seasons. Study subjects included the elderly,
patients with myocardial infarction, children, and adults.
All subjects younger than 18 years were excluded from the
analysis, since long-term air pollution health studies are
often focused on adult mortality.

The current analysis was approved by the Human Sub-
jects Committee of the Harvard School of Public Health.
All participants provided informed consent according to
the protocols of the original studies.

Surrogate exposures
For each subject, we calculated two monthly PM2.5 sur-
rogate exposures. First, we determined monthly ambient
PM2.5 concentrations from the nearest US Environmental
Protection Agency (EPA) Air Quality System monitor
(nearest monitor), restricting the maximum allowed
monitor-residence distance to 30 mi [42]. Monthly con-
centrations were estimated using all available data within
the month, i.e. not only the days used for the monthly
averages of the personal exposures.

Second, we estimated monthly outdoor PM2.5 concen-
trations outside each subject’s residence, at the latitude
and longitude of each subject’s residence (at the zip code
level for RIOPA subjects), using a nationwide expansion
of a geographic information system (GIS)-based spatio-
temporal model [14,43]. This model predicts monthly
PM2.5 concentrations using a generalized additive model
that fits monitoring data from governmental and research
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Table 1 Validation studies used in our analyses

Cities Years # Subjects
Sample session Age

References
duration Mean (S.D.)

Atlanta, GA 1999–2000 31 7 days 65.0 (13.5) [36]

Baltimore, MD 1998–1999 35 12 days 70.8 (7.7)
[30,33,37,38]

Boston, MA 1999–2000 56 7 or 12 days 62.3 (14.1)

Los Angeles, CA 2000–2002 37 7 days 56.3 (13.9) [34,35]

RTP, NC 2000–2001 37 7 days 64.5 (7.8) [40,41]

RIOPA 1999-2001 48 hr [32,39]

Los Angeles, CA 73 46.1 (18.6)

Elizabeth, NJ 57 48.2 (17.8)

Houston, TX 62 48.5 (16.6)

Seattle, WA 2000–2001 89 10 days 76.7 (6.5) [31]

Steubenville, OH 2000 28 48 hr/we for 12 we 71.0 (10.0) [29]

networks together with GIS-based covariates, including
population density, distance to nearest roads, elevation,
urban land use, PM2.5 point-source emissions and weather
variables.

Estimation of personal exposures of ambient origin
We assume the true exposure metric is personal expo-
sures to PM2.5 of ambient origin, which reflect PM2.5 from
sources relevant to epidemiological studies of ambient air
pollution [26,44,45]. This quantity cannot be measured
directly.

To estimate personal PM2.5 of ambient origin, we used
ambient SO2−

4 measurements, which were available for
four cities (Atlanta, Baltimore, Boston and Steubenville).
The majority of SO2−

4 is formed in the atmosphere
through secondary reactions via either gas-phase or
gas/particle phase oxidation [46] and is generally asso-
ciated with coal combustion and coal-fired power plant
emissions [47,48]. Because of negligible indoor sources
and its similar spatial homogeneity as PM2.5, SO2−

4 can
serve as a tracer for PM2.5 of ambient origin in locations
where SO2−

4 comprises a large part of the PM2.5 mass
[49,50], with personal to ambient SO2−

4 ratio approximat-
ing the fraction of ambient PM2.5 that infiltrates indoors
and remains airborne:

PMpers. of ambient origin =
SO2−

4 pers.

SO2−
4 ambient

PMambient

In Seattle, for which personal SO2−
4 data were not avail-

able, personal PM2.5 of ambient origin was estimated as
the weighted average of the indoor PM2.5 of ambient ori-
gin (estimated using the corresponding calculated home
infiltration efficiency) and ambient PM2.5, with the pro-
portion of time each subject spent indoors and outdoors
as weights [51].

Since personal exposures to PM2.5 of ambient origin
could only be estimated in five cities, we also assessed
error using total personal PM2.5 exposure. For this mea-
sure, calibration coefficients will be less accurate, since
total personal PM2.5 exposures also include indoor- and
personally-generated PM2.5, which are independent from
ambient PM2.5 [45].

Calibration coefficients
The calibration coefficients were estimated as the fixed
regression coefficients (γ1) from linear mixed effects
models, of monthly averaged “true” on surrogate expo-
sures, accounting for within-city correlated observations
and repeated measures within subject:

Xijk = (γ0 +g1i +g2ij)+ (γ1 +g3i)Zijk +γ2Seasonijk +εijk ,
(1)

where Xijk are the “true” (either personal PM2.5 of ambi-
ent origin or total personal PM2.5) and Zijk the surro-
gate exposures (either nearest ambient PM2.5 monitor
or spatio-temporal model predictions) for j=1,· · · , Ji
subjects within city i=1, · · · , I, and I=5 or 9, with
k=1,· · · , Kij repeated measures, g1i ∼ N (0, σ 2

city), g2ij ∼
N (0, σ 2

subject), g3i ∼ N (0, σ 2
CF-city) and εijk ∼ N (0, σ 2

W ).
We explored the sensitivity of our results to assumptions

about the covariance structure for repeated measures
within subjects. Results are reported assuming compound
symmetry covariance, with results similar for autoregres-
sive covariance structure or when allowing heteroscedas-
ticity. We also allowed for random seasonal effects by city,
but our results were materially unchanged (results not
shown).

Calibration coefficients equal to 1 suggest no bias, while
coefficients <1 suggest an attenuated effect estimate. The
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p-values (as p-value1) presented with the estimated cal-
ibration coefficients correspond to the hypothesis that
γ1 = 1 and were obtained using (γ̂1−1)2

v̂ar(γ̂1)
∼ χ2

1 .
Potential effect modification by season, with October–

March as winter and April–September as summer, was
assessed, as the association between personal expo-
sures and ambient concentrations differs by season
[29,33,37,38]. Stratified calibration coefficients are pre-
sented when the estimated interaction term for season
was significant. Statistical significance was assessed at the
0.05 level.

Between–city heterogeneity
To assess potential between-city heterogeneity in the
calibration coefficients, we tested the hypothesis H0:
σ 2

CF-city = 0, comparing Model 1 to Model 2, where
Model 2 is the same as Model 1 without the random slope
for cities (g3i):

Xijk = (γ0 + g1i + g2ij)+ γ1Zijk + γ2Seasonijk + εijk (2)

We used a likelihood ratio test (LRT) for this com-
parison, with LRT∼ 50:50 mixture of χ2

0 and χ2
1 and

p-value = 0.5 if σ̂ 2
CF-city = 0 and p-value = 0.5×(1 − χ2

1 ×
(LRT)) otherwise [52].

We used step-wise selection to identify city-specific
variables explaining any observed between-city hetero-
geneity in the calibration coefficients. In presence of
significant heterogeneity, we added to Model 1 candi-
date city-specific variables together with interaction terms
between the candidate variable and the surrogate expo-
sure (Model 3). The candidate variables were kept in the
model if the interaction term was significant.

Xijk = (γ0 + g1i + g2ij) + (γ1 + g3i)Zijk + γ2Seasonijk

+ γγγ 3CityVariablesi + γγγ 4ZijkCityVariablesi + εijk

(3)

Candidate city-specific variables were identified
from previous studies showing their importance to the
personal-ambient relationship, including air condition-
ing use, unemployment, race, public transport [53-55]
and traffic [54] (Additional file 1: Table S4). City-specific
variables were obtained from the U.S. Census Bureau
(Census 2000, www.census.gov), the American Housing
Survey (www.census.gov/programs-surveys/ahs/), the
National Climatic Data Center (www.ncdc.noaa.gov) and
the Bureau of Labor Statistics (www.bls.gov).

Leave-one-out cross-validation techniques were
employed to validate the variable selection process
[56, Chapter 7.10]. By omitting one city at a time (−i), we
re-fit Model 3, using data from the remaining I − 1 cities,
allowing for a different set of variables to be selected
each time. We then predicted the city-specific calibration
coefficient for the omitted city using the estimated model

parameters together with the selected variable(s) of the
omitted city, i.e. γ̂1i− = γ̂1(−i) + γ̂γγ 4(−i)CityVariablesi. We
also estimated city-specific calibration coefficients (γ̂1i)
employing city-specific mixed effects models (Model 4).
Finally, we compared the predicted to the observed
city-specific calibration coefficients obtained from the
city-specific models.

Xijk = (γ0i + g2ij) + γ1iZijk + γ2iSeasonijk + εijk (4)

We assessed the cross-validated results by the correla-
tion between the predicted (γ̂1i−) and observed (γ̂1i) cali-
bration factors, the relative bias γ̂1i−−γ̂1i

γ̂1i
and the absolute

bias | γ̂1i−−γ̂1i
γ̂1i

|, both averaged over all cities.

Sensitivity analyses
To assess the robustness of our results, we assessed poten-
tial effect modification by subpopulation: seniors (subjects
older than 65 years old) and subjects with COPD, myocar-
dial infarction (MI), and coronary heart disease (CHD).

Sensitivity analyses were also performed to assess the
effect of imperfectly matched monthly ambient and per-
sonal exposures. We calculated calibration coefficients
for monthly ambient levels estimated using only those
days for which personal exposure measures were available.
Since the EPA does not collect data daily at all locations,
we allowed subjects to be matched to the nearest monitor
with available data for that day. This sensitivity analysis
could only be performed for the nearest ambient monitor
concentrations, as the outdoor home model predictions
were calculated at the monthly level only.

In addition, we calculated calibration coefficients for
total personal PM2.5 exposures using the identical data
as used to calculate calibration coefficients for personal
PM2.5 of ambient origin.

All statistical analyses were conducted using SAS soft-
ware (Version 9.3, SAS Institute Inc, Cary, NC).

Results
Summary statistics and ambient-personal correlations are
presented in Table 2 and Additional file 1: Table S2,
respectively. By-city summary statistics are presented in
Additional file 1: Table S1, and the relationship between
exposure to PM2.5 of ambient origin and ambient PM2.5
concentrations is presented in Additional file 1: Figure
S1. On average, total personal PM2.5 was higher than
both concentrations at the nearest ambient monitor and
outdoor home predictions. Concentrations at the ambi-
ent monitors were strongly correlated with outdoor home
model predictions (Spearman rs = 0.86). PM2.5 of ambi-
ent origin contributed 62%, on average, to the total per-
sonal PM2.5.

www.census.gov
www.census.gov/programs-surveys/ahs/
www.ncdc.noaa.gov
www.bls.gov
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Table 2 Basic characteristics of exposure variables

# person-months Mean ± SD

(# subjects) (μg/m3)

All Year

Total Personal PM2.5 919 (490) 24.54 ± 18.97

Personal PM2.5 of ambient origin 261 (141) 9.71 ± 4.32

Personal/Ambient SO2−
4 ratioa 241 (131) 0.64 ± 0.25

Model Predicted PM2.5 1029 (502) 15.47 ± 4.77

Monitor PM2.5 1029 (502) 15.86 ± 5.58

Summer

Total Personal PM2.5 429 (312) 23.92 ± 16.92

Personal PM2.5 of ambient origin 130 (90) 10.95 ± 4.12

Personal/Ambient SO2−
4 ratioa 125 (86) 0.70 ± 0.23

Model Predicted PM2.5 493 (327) 15.67 ± 4.84

Monitor PM2.5 493 (327) 15.69 ± 4.79

Winter

Total Personal PM2.5 490 (353) 23.94 ± 19.67

Personal PM2.5 of ambient origin 131 (97) 8.73 ± 4.27

Personal/Ambient SO2−
4 ratioa 116 (87) 0.59 ± 0.24

Model Predicted PM2.5 536 (367) 15.36 ± 4.71

Monitor PM2.5 536 (367) 16.10 ± 6.21

aNot estimated for Seattle, WA.

Calibration coefficients
The results from the linear mixed effects model (Model 1)
for both personal PM2.5 of ambient origin and total per-
sonal PM2.5 are presented in Table 3.

When the nearest ambient monitor was used as the
surrogate exposure, the calibration coefficient for per-
sonal PM2.5 of ambient origin was estimated as 0.31
((95% CI:0.14, 0.47), p-value1 <0.0001), when adjusted for
seasonal effects. We found no significant seasonal effect
modification (p-value = 0.71). The season-adjusted cali-
bration coefficient was higher for outdoor home model
predictions, as compared to nearest monitor PM2.5, equal-
ing 0.54 (95% CI:0.42, 0.65, p-value1 <0.0001). We found
significant effect modification by season for outdoor
home model predictions (p-value = 0.006), with season-
stratified calibration coefficients higher during winter
(0.60 (95% CI:0.36, 0.64)) than summer (0.50 (95% CI:0.42,
0.78)).

Total personal PM2.5 exposure calibration coefficients
were higher than those for personal PM2.5 of ambi-
ent origin (Table 3). For total personal PM2.5 expo-
sures, the season-adjusted calibration coefficient for the
nearest ambient monitor was 0.56 (95% CI:0.24, 0.88,
p-value1 = 0.007). Effect modification by season was sig-
nificant (p-value = 0.041), with higher season-stratified

Table 3 Season-adjusted calibration factors for personal
PM2.5 of ambient origin and total personal PM2.5

Monitor PM2.5 Model predicted PM2.5

Personal PM2.5 of ambient 5 cities (141 subjects)
origin

Estimate (95% CI)a 0.31 (0.14, 0.47)** 0.54 (0.42, 0.65)**

p-value for between-city 0.0034 0.1114
heterogeneity

Rb
I 10.75% 0.96%

Estimate (95% CI)c N/A 0.56 (0.44, 0.68)**

Total Personal PM2.5 9 cities (490 subjects)

Estimate (95% CI)a 0.56 (0.24, 0.88)** 0.81 (0.49, 1.12)

p-value for between-city 0.0084 0.1712
heterogeneity

Rb
I 2.54% 1.28%

Estimate (95% CI)c N/A 0.79 (0.54, 1.04)**

*p-value1 < 0.05, **p-value1 < 0.01 for significant difference from 1.
aResults from Model 1 (including random slopes for cities, g3i).
bRI : the proportion of variance explained by the between-cities heterogeneity.
cResults from Model 2, when no significant between-city heterogeneity was
detected (without the random slopes for cities, g3i).

calibration coefficients during summer (0.78 (95% CI:0.36,
1.19)) than winter (0.48 (95% CI:0.12, 0.83)). The cor-
responding calibration coefficient, using outdoor home
model predicted PM2.5 as the surrogate exposure, was
higher, 0.81 (0.49, 1.12, p-value1 = 0.234). There was no
significant seasonal effect modification.

Between–city heterogeneity
For both personal PM2.5 of ambient origin and total per-
sonal PM2.5 calibration coefficients, we found no statis-
tically significant evidence of heterogeneity across cities
for outdoor home model predictions (p-values = 0.11 and
0.17, respectively) and therefore results from Model 2,
instead of Model 1, can be used. For personal PM2.5 of
ambient origin and total personal PM2.5, calibration coef-
ficients equaled 0.56 (0.44, 0.68) and 0.79 (0.54, 1.04),
respectively. Since no between-city heterogeneity was
detected, no further adjustment to these calibration coef-
ficients was done.

Significant between-city heterogeneity (p-value = 0.003)
was detected in the calibration coefficients for personal
PM2.5 of ambient origin, when the nearest monitor was
used as the surrogate exposure, with estimated city-
specific calibration coefficients ranging between 0.0-0.71
(Figure 1(a)). The observed between-city heterogeneity
was explained by two variables: the city’s average number
of residents in a housing unit and the city’s 30-year average
of annual heating degree days, an indicator of the typical
number of heating days in a year (p-value = 0.50 for the
test for residual heterogeneity). Cross-validation showed,
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Figure 1 Forest plots of the by-city calibration coefficients for (a)
personal PM2.5 of ambient origin and (b) total personal PM2.5

and nearest monitor concentrations. The size of the point used for
the effect estimate is proportional to the precision of that calibration
coefficient.

however, that these variables were not robust predictors
of the between-city variation in the calibration coefficient
(Additional file 1: Figure S2).

Significant between-city heterogeneity in the calibra-
tion coefficient was also detected for total personal
PM2.5 when the nearest monitor was used as the sur-
rogate measure (p-value = 0.008). Using Model 4, esti-
mated city-specific coefficients ranged between 0.0-1.78
(Figure 1(b)). Step-wise selection found that some of the
observed between-city heterogeneity was explained by
the average number of vehicles per housing unit in each
city (p-value = 0.221 for the test for residual heterogene-
ity). The effect of the city average vehicles per housing
unit on the relationship between total personal PM2.5
and nearest ambient monitor PM2.5 concentrations was
-2.53 (SE: 0.82), implying that as the average number of
vehicles per housing unit increases, the calibration coeffi-
cient decreases for cities with larger numbers of vehicles
per housing unit. For instance, if the average number of
vehicles per housing unit in a city increased by 0.1, then
the calibration coefficient for that city would decrease by
0.25. The selection of this variable was confirmed in the
cross-validation, as it was consistently selected when cities
were omitted one by one (Additional file 1: Figure S2).
The correlation between the predicted calibration coeffi-
cients from each city and the observed by-city coefficients
was 0.62 (p-value = 0.05), the mean percent relative bias
was estimated -0.76% and the mean percent absolute bias
149%.

Sensitivity analyses
Results from our sensitivity analyses are presented in
the Additional file 1. Briefly, we observed no significant
effect modification by subpopulation. We found signif-
icant effect modification by age, with subjects younger
than 65 years of age having lower calibration coeffi-
cients than their older counterparts (Additional file 1:
Table S3).

Further, we found that estimated calibration coefficients
were similar irrespective of the method used to calculate
monthly ambient concentrations at the nearest monitor.
When all days within the month were used in the cal-
culation, the calibration coefficient for personal PM2.5
of ambient origin was 0.31 (95% CI:0.14, 0.47), vs. 0.35
(95% CI:0.26, 0.43) when monthly ambient concentra-
tions were calculated using only those days with personal
monitoring.

Discussion
We estimated calibration coefficients for studies of the
association of long-term PM2.5 health effects with ambi-
ent air pollution exposures, considering both estimated
personal exposures to PM2.5 of ambient origin as the
exposure metric and personal exposures to total PM2.5
as a second, albeit imperfect, exposure metric. Our goal
was to assess and quantify error resulting from use
of surrogate exposures and characterize the impact of
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different surrogate exposures on error. As discussed in the
introduction, nevertheless, the estimated error could be
from a variety of sources, and it has been argued that not
all of these are properly characterized as measurement
error [19].

Using estimated monthly personal PM2.5 of ambient
origin from five cities as the true exposure measure, we
estimated a calibration coefficient of 0.54 (95% CI:0.42,
0.65) when outdoor home model predictions were used
as the surrogate exposure, with no city-specific hetero-
geneity. This calibration coefficient suggests that when
the parameter of interest is the health effect of ambi-
ent source pollution, the observed effect could be half
the true estimate when outdoor home model predictions
are used as the exposure metric in a linear health model,
in absence of other potential bias sources. The lack of
observed between-city variability likely reflects the use of
the spatio-temporal model, which incorporates variables
that may explain much of the between-city variability,
such as population density, urban land use and distance to
nearest road.

The estimated calibration coefficient for nearest ambi-
ent monitor concentrations as the exposure metric
was lower (0.31 (95% CI:0.14, 0.47) compared to 0.54
(95% CI:0.42, 0.65) for outdoor model concentrations),
reflecting the fact that nearest monitor concentrations
do not account for as much spatial variability in ambient
concentrations as the outdoor home model predictions.
We also detected statistically significant between-city het-
erogeneity. Factors explaining between-city variability in
the calibration coefficient, nevertheless, could not be reli-
ably identified. This inability to explain the city-specific
heterogeneity likely reflects the small number of cities
included in our analysis.

When total PM2.5 was used as the true exposure mea-
sure, calibration coefficients of 0.56 (95% CI:0.24, 0.88)
and 0.81 (95% CI:0.49, 1.12) were found for nearest ambi-
ent monitor PM2.5 and outdoor home model predic-
tions, respectively. These results are consistent with those
reported in Setton et al. (2011) [15], who reported an
attenuation ranging between 0.70 to 0.84 for scenarios
when mobility was not considered and only PM2.5 pre-
dictions at the subjects’ residences were included in the
health model. As noted above, however, these calibration
coefficients were calculated using total personal PM2.5, an
imperfect measure of true exposure to ambient-generated
pollutants.

As was the case with personal PM2.5 of ambient ori-
gin, we detected significant between-city heterogeneity
in total PM2.5 calibration coefficients only when near-
est monitor concentrations were used as the surro-
gate exposure. For nearest monitor PM2.5, between-city
heterogeneity was explained with the city average num-
ber of vehicles per housing unit. Results showed that

error increases with vehicles per housing unit. A possible
explanation for this association is provided by the strong
negative correlation between the number of average vehi-
cles per housing unit and population density (r = −0.86)
and the strong positive correlation with the percentage of
the detached homes in a study area (r = 0.88) as shown
in Additional file 1: Figure S3. These correlations suggest
that in less dense cities, residents need to travel longer dis-
tances, possibly increasing the impact of pollutant spatial
variability. These results are also in agreement with Setton
et al. (2011) [15], who found increasing bias with increas-
ing distance spent away from home. Selection of number
of vehicles per housing unit to explain between-city het-
erogeneity could also reflect varying PM2.5 composition,
with local sources, such as traffic, likely comprising a
larger portion of PM2.5 mass in cities with more vehi-
cles per housing unit, than regional sources. PM2.5 of
local sources is more spatially heterogeneous and more
error is, therefore, expected when it comprises a large
fraction of the total ambient PM2.5. The fact, however,
that our estimated city-specific calibration coefficients
ranged between 0.0-1.9 complicates our interpretation of
the overall estimate of 0.56 (95% CI:0.24, 0.88) and of
the observed association with housing and transporta-
tion characteristics, suggesting that one average calibra-
tion coefficient may not adequately describe error from
use of ambient monitor measurements across the United
States.

Environmental tobacco smoke (ETS) may also con-
tribute, at least partially, to the observed between-city
heterogeneity. In all studies in our analyses, subjects were
selected as non-smokers, living in non-smoking homes.
Although this inclusion criterion would minimize poten-
tial exposure to ETS, it is possible that participants living
in cities with more ETS would also have higher per-
sonal PM2.5 exposures, thereby potentially contributing to
between-city heterogeneity in the calibration coefficients.
We, however, were not able incorporate ETS exposures in
our analysis, as some studies did not report ETS exposure
information.

Our findings are consistent with two studies by Avery
et al. (2010) [57], who found a median correlation coeffi-
cient of 0.54 between total personal PM2.5 exposures and
concentrations at a centrally located monitor, and strong
between-city heterogeneity (p-value<0.0001). Although
their reported median correlation coefficient between
total personal PM2.5 exposures and outdoor home con-
centrations was similar, between-city heterogeneity in
this association was lower (p-value = 0.05). The weaker
evidence of heterogeneity for outdoor home PM2.5
concentrations is consistent with our suggestion that
between-city heterogeneity in calibration coefficients is
explained by variables included in outdoor home model
predictions; this is one explanation for why we found
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heterogeneity only for nearest monitor but not outdoor
home exposures.

Our study is limited by several factors. First, the data
available to validate the exposure metrics of interest were
limited to a small number of cities and participants, espe-
cially for personal PM2.5 of ambient origin. Also, only a
small number of days in a month were available in some
cities to estimate monthly averages. These small numbers
contributed to uncertainty in our data and estimates, and
potentially prohibited detection of any potential between-
city heterogeneity for outdoor home predictions and the
identification of factors explaining observed between-city
heterogeneity in calibration coefficients when the nearest
monitor PM2.5 concentrations were the exposure surro-
gate. Further, the cities included in our analyses may
not be representative of all US cities, and thus our esti-
mated calibration coefficients might not be generalizable
to other cities. Moreover, the association between per-
sonal exposures and ambient concentrations might vary
over years. Since our studies were conducted over a one
to two year time span (Table 1), we were not able to assess
the contribution of longer term personal-ambient trends
to total error.

In addition, personal PM2.5 of ambient origin was esti-
mated rather than measured. As a result, estimated expo-
sures did not take into account the uncertainty related to
their prediction when estimating the calibration coeffi-
cients. Moreover, given data availability, we were not able
to estimate the contribution of instrumental to total error.
Both personal and ambient measurements are prone to
instrumental error, presence of which is likely to intro-
duce classical error [5]. In our setting, however, personal
exposures are the outcome variable in the regression and
therefore random error in these exposures is not expected
to introduce error in the estimated calibration coeffi-
cients. Furthermore, personal exposures are on average
measured with high precision and accuracy [29,30].

To estimate personal PM2.5 of ambient origin we used
the SO2−

4 tracer method. In cities where SO2−
4 com-

prises a large fraction of the total ambient PM2.5 mass,
as in the northeastern US [58], the SO2−

4 tracer method
has been shown to perform well [49]. In places, how-
ever, where ambient PM2.5 mass is strongly influenced
by local sources, such as traffic, ambient SO2−

4 would
not act as good tracer, given that the spatial and size
distributions of SO2−

4 may differ from those of PM2.5.
Since PM2.5 from local sources is more spatially hetero-
geneous, larger spatial misalignment would be expected
in these cities and, hence, more measurement error. For
these cities, we would expect the calibration coefficients
for personal PM2.5 of ambient origin, which was esti-
mated using the SO2−

4 ratio, to be overestimated and the
error to be underestimated, a factor likely contributing to
the observed between-city heterogeneity. In our study, we

only had SO2−
4 data in four cities, three of which are in

the northeastern US (Baltimore, Boston and Steubenville).
The fourth city was Atlanta, which has been shown, on
average, to have lower SO2−

4 concentrations [58]. Even
there, however, secondary sulfate was found to comprise
38% of the total PM2.5 mass [59] and in our data, the
ratio of ambient SO2−

4 over PM2.5 in Atlanta was, on aver-
age, similar to the ratios in the three northeastern cities
(Additional file 1: Table S1).

In addition, we estimated the outdoor home predictions
using a specific spatio-temporal model. This model has
been validated and shown to perform very well [14,43].
We would therefore expect that our findings for outdoor
home predictions could be extended to similarly perform-
ing spatio-temporal models and could be qualitatively
used for predicted concentrations obtained from other
spatio-temporal models.

Moreover, we were not able to disentangle how spe-
cific error types would impact the health effect estimates
obtained using either of the surrogate exposures. We did
not assume models addressing specific error structures
and our approach assesses overall error from use of sur-
rogate exposures, combining the multiple error types that
are likely present [5,18].

Furthermore, our study is not able to determine how
much of the estimated calibration coefficient reflects infil-
tration of particles from outdoor to indoor environments,
as compared to other sources of the difference between
personal exposure and outdoor concentration metrics
[5,19]. Infiltration, however, does not appear to explain all
of the observed error found in our analysis, since the aver-
age estimated calibration coefficients for personal PM2.5
of ambient origin were <0.64 (the approximated pene-
tration efficiency using the SO2−

4 ratio), consistent with
additional contributing error sources.

Additionally, personal exposures were measured for
each participant for periods less than one month. We
would expect this temporal mismatch to introduce both
Berkson, through the errors in the true exposures that
were randomly selected within a month, and classical,
through the errors in the temporal misalignment of the
surrogate exposures, error components. Through sen-
sitivity analyses, comparing PM2.5 concentrations mea-
sured at the nearest monitor using all data within a month
with that measured on days when personal data were
also available, we showed the point estimates to be very
similar, but the confidence intervals for the calibration
coefficients estimated using the temporally mismatched
data were wider. Since outdoor home model predictions
were only available at the monthly level, we were unable to
quantitatively assess the effect of this temporal mismatch
on the estimation of the calibration coefficients. Monthly
concentrations at the nearest ambient monitor, however,
were very strongly correlated with outdoor home model
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predictions (r = 0.86). In any event, randomly temporally
mismatched data relating personal exposures to outdoor
home predictions may also lead to increased uncertainty,
but likely no bias, in the calibration coefficients.

Finally, our goal was to assess exposure measurement
error in long-term PM2.5 exposures. As described earlier,
personal exposure studies are infeasible for long periods
and, given current data availability, we were only able
to conduct our analyses using monthly averages. Many
long-term PM2.5 studies use exposure metrics based on
functions of monthly averages (e.g. 12-month moving
average [11] or cumulatively-updated monthly average
[60]), and we therefore believe that our findings provide
useful information in the interpretation of chronic health
effect estimates.

We compiled data from 9 cities across the United States
for our analyses and calculated calibration coefficients
that may be informative for interpreting risk estimates
in nationwide studies of long-term PM2.5 health effects.
For instance, differential measurement error could be par-
tially responsible for the higher effects reported by Puett
et al. (2009) [11], who used PM2.5 predictions outside the
participant’s homes, as compared to the effects found by
Krewski et al. (2005) [61], who used metropolitan area
means of PM2.5 concentrations at ambient monitors.

To our knowledge, this is the first study to assess error
due to two different, widely used, surrogate exposures,
using personal exposure data from multiple US cities. Fur-
ther, we identified variables explaining the heterogeneity
in the calibration coefficients across cities, with the vari-
ances of the reported calibration coefficients potentially
reflecting this heterogeneity.

At this time, we do not recommend using the calibration
coefficients reported here to directly adjust health effect
estimates in epidemiology studies. Given the observed
between-city heterogeneity, the complex, time-varying
nature of the exposures and the lack of information on
individual characteristics, which would be included as
confounders in health models, standard error correction
methods such as ordinary regression calibration could
still yield biased estimates [62,63]. Our group is currently
developing methods to account for the above limita-
tions in order to correctly adjust health effect estimates
obtained using surrogate exposures. Furthermore, future
research on PM2.5-related measurement error should
characterize measurement error for regional and local
PM2.5 by focusing on PM2.5 composition, which changes
both over space and time, suggesting that calibration coef-
ficients will also change over space and time [6,8,48].

Conclusions
With our study we were able to assess the ability of
two widely used surrogate exposures to reflect personal
exposures: ambient concentrations measured at centrally

located monitors, as well as outdoor home predictions.
Our estimated calibration coefficients are consistent with
previously reported chronic health risks using nearest
monitor exposures being under-estimated when ambient
concentrations were the exposure of interest. For outdoor
home predictions, our results suggest less error.

Additional file

Additional file 1: Supplemental material.
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