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Abstract

The retinoblastoma protein (pRb) is required for cell-cycle exit of embryonic mammalian hair cells but is not required for hair
cell fate determination and early differentiation, and this provides a strategy for hair cell regeneration by manipulating the
pRb pathway. To reveal the mechanism of pRb functional modification in the inner ear, we compared the effects of
attenuated pRb phosphorylation by an inhibitor of the Mitogen-Activated Protein (MAP) kinase pathway and an inhibitor of
the Rb–Raf-1 interaction on cultured chicken otocysts. We demonstrated that the activity of pRb is correlated with its
phosphorylation state, which is regulated by a newly established cell cycle-independent pathway mediated by the physical
interaction between Raf-1 and pRb. The phosphorylation of pRb plays an important role during the early stage of inner ear
development, and attenuated phosphorylation in progenitor cells leads to cell cycle arrest and increased apoptosis along
with a global down-regulation of the genes involved in cell cycle progression. Our study provides novel routes to modulate
pRb function for hair cell regeneration.
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Introduction

In vertebrates the inner ear mediates multiple sensory inputs,

including sound, balance, and acceleration. This complex sensory

organ begins its development as a bilateral thickening of the

surface ectoderm, regarded as the otic placode, which develops

lateral to the developing hindbrain. The developing placode

descend beneath the surface ectoderm to form the otocyst [1].

Since carrying the genetic information required for the develop-

ment of most cell types and structures of inner ear [2–4], chicken

otocysts can be explanted from the developing embryo and this

provides special opportunities for the in vitro analysis of the

molecular mechanisms behind cellular proliferation and differen-

tiation in the inner ear.

It has been shown that retinoblastoma protein (pRb), encoded

by the retinoblastoma gene Rb1, is required for proper cell cycle

exit in the developing mouse inner ear, and its deletion in the

embryo leads to proliferation of the sensory progenitor cells that

differentiate into hair cells and supporting cells [5]. However, the

role of pRb in proliferative progenitor cells during early

development of the inner ear has not been established. In addition

to its essential role in cell cycle exit, pRb also plays a crucial role in

hair cell survival [5–7]. Therefore, modulation of pRb function

instead of permanent Rb1 gene deletion is an attractive route

through which cell proliferation and survival might be achieved for

hair cell regeneration [8].

The function of pRb is correlated with its phosphorylation state,

and a cell cycle-dependent pathway mediated by the Mitogen-

Activated Protein (MAP) kinase cascade plays a role in maintain-

ing the phosphorylation state of pRb. The activation of this

cascade leads to up-regulation of cyclin E/cdk2 or cyclin D/cdk4

kinase activity that, in turn, induces pRb phosphorylation.

Sufficient pRb phosphorylation inactivates its transcriptional

repressor function, and this allows for the expression of E2F

target genes [9]. The mechanisms of pRb inactivation and

subsequent effects are species, tissue, and cell-type specific, but

the general role of MAP kinase on pRb phosphorylation during

the early development of the inner ear is still unclear. In addition

to the MAP kinase cascade, it has recently been shown that Raf-1

physically interacts with pRb to regulate its function early in the
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G1 phase and this interaction serves as a link between mitogenic

signaling and cell cycle regulation [10,11]. Disruption of the pRb–

Raf-1 interaction induces apoptosis in malignant tumor cells and

inhibits cell proliferation [11–14]. Whether the pRb–Raf-1

interaction is involved in the regulation of pRb during early inner

ear development has yet to be determined.

We used cultured chicken otocysts to investigate the prolifer-

ation, apoptosis, and differentiation of progenitor cells in response

to pharmacological modulation of pRb function. Inhibitors that

target different pathways that regulate pRb phosphorylation were

used to reveal the molecular mechanisms behind this regulation.

This study provides new opportunities for hair cell regeneration by

modulating pRb function.

Materials and Methods

Chicken Embryos
Fertilized eggs from a breeding chicken farm (Guixing,

Shanghai) were incubated in a humidified incubator maintained

at 38uC until they reached the desired stages according to the

criteria of Hamburger and Hamilton [15]. The Animal Care and

Use Committee of Fudan University approved all animal

procedures.

Otocyst Culture and Treatment
Embryos at stage HH16–18 were exposed by breaking the air

cell of eggs, then immersed in 0.02% Tricaine (Sigma, St. Louis,

MO) until the whole embryo is still and without any movement.

The otocysts were dissected in phosphate-buffered saline (PBS,

pH 7.2) from the surrounding mesenchymal tissue with delicate

ophthalmic forceps under a dissection microscope. The dissected

otocysts were treated with trypsin (0.125% in PBS) at room

temperature for 30 s to remove any residual periotic mesenchyme

and rapidly transferred into 5 mL serum-free culture medium in a

petri dish for floating culture at 37uC in a humidified atmosphere

containing 5% CO2. The culture medium was composed of equal

parts high-glucose Dulbecco’s modified Eagle’s medium (DMEM)

and F12 medium supplemented with N2 and B27 (media and

supplements were from Invitrogen/GIBCO/BRL, Carlsbad, CA)

and 50 IU/mL penicillin [16,17].

The explanted otocysts were treated with various concentrations

of the Rb–Raf-1 inhibitor RRD-251 (Sigma, St. Louis, MO), and

the MEK inhibitor U0126 (Sigma) for 24 h. Otocysts cultured in

medium with 0.1% DMSO were used as vehicle-only controls,

and the DMSO had no observable effects on cell survival or

proliferation. For immunostaining, cultured otocysts were har-

vested and fixed for 0.5 h in 4% (w/v) paraformaldehyde (PFA) at

4uC. For western blot analysis and quantitative RT-PCR, the

otocysts were flash-frozen in liquid nitrogen and kept at280uC for

the following experiments.

Quantitative RT-PCR
RNA was obtained from pooled otic vesicles either from chicken

embryos at developmental stages HH18 (n= 40), HH20 (n = 25),

HH24 (n= 20), and HH27 (n= 10) or from cultured otocyst pools

from control and U0126- and RRD-251-treated groups with the

AllPrep DNA/RNA/Protein Mini kit (Qiagen, Valencia, CA)

following the manufacturer’s protocol. Purified mRNA was

reverse-transcribed with the PrimeScript RT-RCR kit (TaKaRa

Co., Dalian, China), and real time PCR was performed using the

Sybr Green Premix Ex Taq kit (TaKaRa Co.). Each quantitative

real-time PCR (qRT-PCR) run used cDNA generated from 20 ng

of RNA. Primers were designed to have comparable melting

temperatures of around 60uC and, when possible, to span exon-

exon junctions. b-actin was used for calibration. The PCR

reaction for each gene was set up in triplicate. The data presented

here are the averages of at least two independent experiments, and

the fold change in expression levels was determined using the

DMSO-treated samples as the control. The estimated level of gene

expression was calculated as 22DDCt and statistical significance was

analyzed using one-way ANOVA. Primer sequences were listed in

Table 1.

Western Blotting
Protein lysates were obtained from pooled otic vesicles from

HH18, HH20, HH24, and HH27 chicken embryos or from

cultured otocysts from control and U0126- and RRD-251-treated

groups with the AllPrep DNA/RNA/Protein Mini kit (Qiagen).

The relative amounts of total protein and the differences in

concentration among the samples were determined with a BCA

protein assay kit (Thermo Fisher Scientific, Rockford, IL). Proteins

were separated on SDS-polyacrylamide gels and transferred to

nitrocellulose membranes. The membranes were incubated with a

blocking solution (5% non-fat milk in TRIS-buffered saline with

0.1% Tween-20 (TBS-T)) for 1 h at room temperature and then

blotted overnight with primary antibodies at 4uC. The antibodies

were diluted in blocking solution to analyze the levels of Raf-1

kinases (1:500, BD Transduction Laboratories, Franklin Lakes,

NJ), pERK/ERK (1:500, Bioworld Technology, Louis Park, MN),

pRb (1:1000, Cell Signaling Technology, Danvers, MA), cleaved

Caspase-3 (1:500, Cell Signaling Technology, Danvers, MA), and

b-actin (1:5000, Sigma, St. Louis, MO). All the antibodies involved

in our study were produced against highly conserved proteins from

chick to mammal and the majority have been confirmed by other

chicken studies [2,16]. Unbound primary antibodies were

removed by four washes of 15 min each in TBS-T at room

temperature. Bound primary antibodies were detected with

horseradish peroxidase-conjugated antibody against rabbit or

mouse IgG (Amersham Pharmacia Biotech) at a dilution of

1:10000 in TBS-T. Antibody binding was visualized by chemilu-

minescence substrate (Thermo Fisher Scientific) and exposed to X-

ray film. The films were scanned and analyzed with ImageJ

software (Wayne Rasband, National Institutes of Health, USA).

Table 1. Primers used in the study.

Gene
Name Forward Primer Reverse Primer

Ccnb2 59-gcatcaaaccaccagtaaagg-39 59-ggagcaacacatcagagaagg-39)

Ccnb3 59-atcaccaacgctcacaagaac-39 59-ctcaggctccacaggaacat-39

Ccnd3 59-atgccccttactgtggagaag-39 59-gatggagaatgtgagccaaga-39

Ccne1 59-tgggcaaacagagatgatgta-39 59-cacaaacctccattagccagt-39

Ccne2 59-ctgaagaaggagaaccgatacg-39 59-ggaggcaatgaagagtgaggta-39

Cdc2 59-tctgctctgtattccactcctg-39 59-attgttgggtgtccctaaagc-39

Myb 59-tacccctactaccacattgctg-39 59-gccctttcagttcattctcagt-39

Myc 59-ctgaagcgaacgagtctgaat-39 59-agcgtagttgtgttggtggat-39

Raf-1 59-gaaaataggagactttggtctagc-39 59-atctgactgaaaactgaacgga-39

Rb1 59-ggacagggatgtgctgagattg-39 59-tgccataggtagccatgacaat-39

b-actin 59-gatggactctggtgatggtgttac-39 59-ttgatgtcacgcacaatttctctc-39

doi:10.1371/journal.pone.0083726.t001
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Cell Proliferation Assay
In order to label proliferating cells, 10 mM 5-ethynyl-29-

deoxyuridine (EdU) was added to the culture medium for

30 min prior to the fixation. The EdU signals were detected with

the Click-iT EdU cell proliferation kit (Invitrogen, Grand Island,

NY) followed by antibody labeling according to the immunoflu-

orescent staining protocol described below.

Immunofluorescent Staining
The fixed otocysts were rinsed three times for 5 min at room

temperature in PBS and blocked for 30 min with 5% heat-

inactivated goat serum and 0.1% Triton-100 in PBS (PBS-T). The

samples were incubated with primary antibodies at 37uC for 1 h

and then at 4uC overnight. The primary antibodies were

monoclonal anti-neuron-specific b-III tubulin (Tuj1) (Covance,

Princeton, NJ) and anti-cleaved Caspase-3 (Cell Signaling

Technology) diluted 1:1000 and 1:200, respectively, in PBS-T

[2,16]. After three washes with PBS-T, TRITC-conjugated goat

anti-rabbit or goat anti-mouse secondary antibodies (Invitrogen)

were added at a dilution of 1:400 in PBS at 37uC for 1 h.

Counterstaining with 49, 6-diamidino-2-phenylindole, dihydro-

chloride (DAPI) allowed visualization of cell nuclei. The cover-

slipped slides were analyzed by confocal microscopy (Leica TCS

SP5, Wetzlar, Germany). For quantitative studies, ImageJ software

was used to calculate the areas of otic vesicle (OV) region and

acoustic-vestibular ganglia (AVG) regions, as well as the EdU-

positive and cleaved Caspase-3–positive cells. Prism4 software

(GraphPad Software Inc., La Jolla, CA) was used for statistic

analysis. At least six otocysts were assayed per condition from at

least three independent experiments, and all of the data are

presented as the mean 6 SEM. P-values ,0.05 were considered

significant.

Results

Rb1 and Raf-1 are Expressed during Early Inner Ear
Development
Phosphorylation of pRb plays a role in the G1/S phase of cell

cycle. We investigated G1/S specific cyclins during the develop-

ment of inner ear, which served as good candidates to study their

functional modification by pRb. We identified the expressions of

G1/S specific genes Ccnd3, Ccne1 and Ccne2 were relatively higher

during the stage HH18, while, Ccne1 and Ccne2 accordantly

decreased during the further development (Fig. 1A).

The expression of chicken Rb1 and Raf-1 mRNA at specific

stages was measured by qRT-PCR, and protein levels were

measured by western blot. The expression of Raf-1 mRNA was

comparable at stages HH18, HH20, and HH24 but was

downregulated at HH27 (Fig. 1B1). The presence of Raf-1 in

the inner ear was confirmed by western blot at different

development stages, and these protein levels had a similar

expression pattern as Raf-1 mRNA (Fig. 1C1 and C2).

The Rb1 mRNA levels were highest at HH18 and then dropped

off and were expressed at the same level in stages HH20–27

(Fig. 1B2). pRb protein was also detected at different stages. Based

on the higher molecular weight and lower electrophoretic velocity,

there was a significant amount of phosphorylated pRb present

during early inner ear development (Fig. 1C1 and C3).

The Phosphorylation of pRb is Required for the
Proliferation of Developing Otocyst Cells through Two
Independent Pathways
It has been reported that the Raf-1 kinase can bind and

phosphorylate pRb early in the G1 phase, and this interaction has

been investigated as a target for anticancer therapy [10,13]. RRD-

251 is a small molecule disruptor of the Rb–Raf-1 interaction that

significantly inhibits angiogenesis and tumor growth both in vitro

and in vivo in a pRb-dependent manner [12,14]. We cultured

otocysts in vitro in the presence of RRD-251 to further understand

the role of Rb–Raf-1 interaction on pRb phosphorylation during

early inner ear development. Further insight into the action of

RRD-251 was obtained by studying its effects on cell proliferation

in organotypic cultures of explanted otocysts. The morphological

changes that occur in culture mimic the normal development of

the inner ear, and the expression of the Tuj1 protein serves as a

marker of neural processes. The cultured otocysts were divided

into the OV (Tuj1-negative) and AVG (Tuj1-positive) areas that

would develop into the sensory epithelium and the spiral ganglion,

respectively.

When cultured otocysts were exposed to 10 mM, 20 mM or

40 mM RRD-251, the areas of the AVG and the OV were

significantly decreased (Fig. 2A–D) with a dose-dependent

reduction in the OV area to 80%, 68% and 36% (Fig. 2I) and a

reduction in the AVG area to 59%, 35% and 25% (Fig. 2J) that of

the DMSO-treated control otocysts. Furthermore, we assessed

EdU incorporation in cultured otocysts to measure the rate of

proliferation. The reduced proliferation caused by RRD-251 was

confirmed by counting the number of EdU-positive cells per

636High Power Field (HPF) at the center of the cultured otocysts

(Fig. 2K).

The MAP kinase cascade is a well-established pathway that is

involved in mitogen-induced cell proliferation and regulates pRb

phosphorylation [18]. U0126 is a commonly used inhibitor of the

MAP kinase pathway and specifically blocks ERK phosphoryla-

tion [19]. When cultured otocysts were treated with U0126, both

the OV areas and AVG areas were significantly reduced in a dose-

dependent manner (Fig. 2E–G). Increasing the concentration of

U0126 from 30 mM to 50 mM led to a reduction in the OV area to

75% and 43% (Fig. 2I), respectively, and to a reduction in the

AVG area to 67% and 56% (Fig. 2J), respectively, compared to the

areas in the DMSO-treated control otocysts. Furthermore, the

number of EdU-positive cells decreased along with the reduced

OV and AVG areas at the center of the cultured otocysts (Fig. 2K).

Culturing the otocysts simultaneously with both U0126 (30 mM)

and RRD-251 (20 mM) reduced the OV and AVG areas and the

number of EdU-positive cells compared to 30 mM U0126 alone

(Fig. 2H–K). This suggests a synergistic effect of the two inhibitors.

The Ratios of the AVG and OV Areas Distinguish between
the Two Pathways that Alter pRb Phosphorylation
Despite the fact that the AVG and OV most likely share a

common origin, these cells experience distinct reactions to the

abolishment of pRb phosphorylation through the two different

pathways. Treatment with U0126 reduced the OV area to a

greater extent than the AVG area, and the ratio of the OV and

AVG areas was 2 compared to 3.5 in control otocysts treated with

DMSO. Treatment with RRD-251, however, resulted in signif-

icantly reduced AVG area and correspondingly undifferentiated

round-shaped otocysts, and the ratio of the OV and AVG areas

increased dramatically to 4 (Fig. 2L). At a relatively high

magnification, we found that there were EdU-positive cells in

both the AVG and OV regions in control otocysts treated with

Role of pRb in Inner Ear Development
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DMSO (Fig. 3A). We observed fewer EdU-positive cells in the OV

region in the U0126-treated group (Fig. 3B) and fewer EdU-

positive cells in the AVG region in the RRD-251–treated group

(Fig. 3C).

The effects on pRb phosphorylation by the two inhibitors were

confirmed by western blot. U0126 significantly reduced ERK

phosphorylation and pRb phosphorylation compared to controls,

and the addition of RRD-251 to the otocyst culture significantly

reduced the phosphorylation of pRb without affecting the

phosphorylation of ERK (Fig. 3D1). The apoptosis of cultured

otocysts was measured by the level of cleaved Caspase-3. Our data

showed that when the cultured otocysts were exposed to U0126 or

RRD-251 the levels of cleaved Caspase-3 were significantly

increased (Fig. 3D1, D2).

Disrupting the pRb-Raf-1 Interaction Leads to Increased
Apoptosis during Early Otocyst Development
The early development of the inner ear requires a dynamic

balance between the mechanisms regulating cell division, differ-

entiation, and death [1]. Based on the signals from EdU, cleaved

Caspase-3, and DAPI (to show the nuclei), we divided the cells in

the cultured otocysts into three groups as a reflection of the

balance among proliferation (EdU-positive and DAPI-positive),

apoptosis (cleaved Caspase-3-positive and DAPI-positive), and

quiescence (EdU-negative, cleaved Caspase-3-negative, and

DAPI-positive). When the cultured otocysts were exposed to

U0126, the number of cleaved Caspase-3–positive cells increased

compared to the otocysts treated with DMSO alone (data not

shown). This result confirms the data presented by Magarinos et al

[2].

RRD-251 was developed as an antineoplastic drug that

abolishes the phosphorylation of pRb by specifically disrupting

the physical interaction between Raf-1 and pRb, and this has been

shown to increase the apoptosis of tumor cells both in vitro and

in vivo [20]. In our experiment, the addition of increasing

concentrations of RRD-251 (20 mM and 40 mM) significantly

increased the number of cleaved Caspase-3–positive cells. This

was evident by areas of apoptotic cell death in which condensed

nuclei were surrounded by cytoplasm containing active Caspase-3.

Thus, the balance between proliferation, apoptosis, and quies-

cence during the early development of otocysts was shifted upon

treatment with RRD-251, and the number of Caspase-3–positive

Figure 1. The expression of G1/S specific cyclins, Rb1 and Raf-1 during the development of otocyst. The expression of G1/S specific
cyclins (A1-3), Raf-1 and Rb1 (B1-2) mRNA was analyzed by qRT-PCR at different embryonic development stages. Gene expression was normalized to
the levels at stage HH18. (C1–C3) The protein lysates at different stages of inner ear development were analyzed by western blots to determine the
levels of Raf-1 and pRb. b-actin was used as the loading control. At least three different experiments were evaluated, and statistical significance was
estimated using one-way ANOVA. * = P,0.05 compared to HH 18, #= P,0.05 compared to HH 20.
doi:10.1371/journal.pone.0083726.g001

Role of pRb in Inner Ear Development
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cells was increased while the number of EdU-positive cells was

reduced. The number of EdU and cleaved Caspase-3 double

negative cells was increased with a lower dose of RRD-251, but

this number was reduced when treated with a higher dose of

RRD-251 (Fig. 4).

Interfering with the Phosphorylation of pRb Affects
Genes Involved in Cell Proliferation
In order to understand the mechanism behind the attenuated

proliferation that results from abolishing the phosphorylation of

pRb, we investigated the activity of cell cycle checkpoint genes.

We found that the proliferation genes were downregulated to

different extents. Among all of the genes tested, the expression of

Ccnb2, Ccnb3, Ccne2, Cdc2,Myb, andMyc were significantly reduced

when the otocysts were treated with RRD251, and the expression

of Ccnb3, Ccne2, Cdc2, andMyc were significantly reduced when the

otocysts were treated with U0126. Furthermore, we found that the

expression of Raf-1 was reduced in otocysts treated with RRD-251

but no change was seen in Rb1 mRNA expression. We observed

no difference in the expression of these two genes in otocysts

treated with U0126 (Fig. 5).

Figure 2. Cell proliferation was attenuated by selectively inhibiting the MAP kinase cascade and the Rb–Raf-1 interaction during
the early development of the inner ear. Otocysts were explanted at HH16–18 and kept in culture medium with DMSO (A1–A4, E1–E4), RRD-251
10 mM (B1–B4), RRD-251 20 mM (C1–C4), RRD-251 40 mM (D1–D4), U0126 30 mM (F1–F4), U0126 50 mM (G1–G4), or a combination of RRD-251 20 mM
and U0126 30 mM (H1–H4) for 24 h and then exposed to 10 mM EdU for 30 min. Cell proliferation is indicated by EdU (green) staining and the nuclei
are counterstained with DAPI (blue). Based on the morphological changes that occur in culture that mimic the normal development of the inner ear
and the expression of Tuj1 (red) that serves as a marker of neural processes, the cultured otocysts were divided into the otic vesicle area (OV, Tuj1-
negative) and the acoustic-vestibular ganglia area (AVG, Tuj1-positive), which would develop into sensory epithelium and the spiral ganglion,
respectively. The OV and AVG areas were measured with the ImageJ software, and the data are presented as means 6 SEM relative to control values
(I, J). High magnification pictures were taken from the center of the otocysts (A4–H4), and the EdU-positive cells in each 636high power field (HPF)
were counted under the different conditions (K). * = P,0.05 compared to control, #= P,0.05 compared to RRD-251 10 mM, $= P,0.05 compared to
RRD-251 20 mM, and &= P,0.05 compared to U0126 30 mM (I–K). The changes in the ratios between the OV area and AVG area after treatment with
U0126 and RRD-251 are shown in (L). * = P,0.05 and #= P,0.01 compared with controls (L). At least six otic vesicles per condition from three
different experiments were evaluated, and statistical significance was estimated using one-way ANOVA. Scale bar = 50 mm.
doi:10.1371/journal.pone.0083726.g002
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Figure 3. Sensory epithelium treated with U0126 or RRD-251. (A–C) Neuroblasts and progenitor cells of the sensory epithelium had distinct
responses to the inhibition of the two independent pathways of pRb phosphorylation. (D1–D2) The explanted otic vesicles were cultured with DMSO,
RRD-251 40 mM, or U0126 50 mM for 24 hours and then lysed to detect the level of phosphorylated and unphosphorylated ERK, pRb, and activated
Caspase-3. b-actin was used as the loading control. Green arrows indicate the EdU-positive cells, red arrows indicate the Tuj1-positive cells, and the
white arrows indicate the Tuj1 and EdU double-positive cells. At least three different experiments were evaluated, and the statistical significance was
estimated using one-way ANOVA. * = P,0.05 and #= P,0.01 compared to controls. Scale bar = 50 mm.
doi:10.1371/journal.pone.0083726.g003
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Discussion

Many lines of investigation have demonstrated pivotal roles for

pRb in maintaining the postmitotic states of hair cells and

supporting cells in the inner ear as well as promoting the survival

of differentiated hair cells [5–7,21]. We found that Rb1 mRNA

and pRb protein were expressed during the relatively early stages

of inner ear development, and this suggests that the function of

pRb goes beyond cell proliferation control and that the protein

plays important roles during developmental processes in the inner

ear. Furthermore, there was a significant amount of phosphory-

lated pRb, the inactive form of pRb, in the inner ear and this is

consistent with the robust cell proliferation during early inner ear

development. The highly expression of G1/S specific genes at

HH18, which stage we were dealing with, suggested that there

were more cells undergoing S Phase entry and DNA replication

and provided a period to investigate the effects on proliferation by

interfering the pRb phosphorylation.

Phosphorylation of pRb progressively attenuates pRb activity as

a function of cell cycle progression, which is precisely regulated

through a series of phosphorylation events [22,23]. When the

balance between the inactive pRb and active pRb forms during

early inner ear development was shifted by exposure to U0126 and

RRD-251, the progenitor cells with proliferative potential tended

to withdraw from the cell cycle, stop growing, and undergo

apoptosis. We demonstrated that the phosphorylation of pRb

during the early stage of inner ear development could be regulated

through two independent pathways, a MAP kinase cascade-

mediated pRb phosphorylation and a Raf-1–induced pRb

phosphorylation. According to the dose-dependent effect and the

cumulative effect of a combination of U0126 and RRD-251, we

concluded that both the mitosis signaling cascade and Raf-1

directly inducing pRb phosphorylation play vital roles in cell

proliferation and cell survival in the inner ear. Furthermore, the

fact that RRD-251 directly attenuated the phosphorylation of pRb

and had no effect on the phosphorylation of ERK suggested that

Figure 4. RRD-251 promoted apoptosis during the early development of otic vesicles. After treatment with DMSO (A1–A4), RRD-251
20 mM (B1–B4), or RRD-251 40 mM (C1–C4), the balance between proliferation, apoptosis, and quiescence during otic development was shifted. In the
DMSO control group, nearly half of the cells incorporated EdU (48.78%), only 7.32% of the cells were Caspase-3–positive, and 43.9% of the cells in the
otic vesicles were double negative (A4). After treatment with RRD-251, the portion of EdU-positive cells was reduced to 29.85% and 20.84% for doses
of 20 mM (B4) and 40 mM (C4), respectively, and the portion of cleaved Caspase-3–positive cells was increased to 7.46% and 47.22%, respectively.
Furthermore, compared with controls, the portion of double-negative cells was increased at the lower dose of RRD-251 (B4) to 62.69% and was
reduced with the higher dose (C4) to 31.94%. Green arrows indicate the EdU-positive cells, red arrows indicate the cleaved Caspase-3–positive cells,
and the white arrows indicate the double-negative cells. The differences between the three separate cell populations within each group were
estimated using the x2 test (P,0.001). Scale bar = 10 mm.
doi:10.1371/journal.pone.0083726.g004
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the binding of Raf-1 to pRb is independent of the MAP cascade

pathway for the inactivation of pRb. The difference between the

exposure to 20 mM and 40 mM RRD-251 was most likely due to a

matter of the sequence of events leading to quiescence and then

death.

RRD-251 has been shown to be effective at inhibiting the

proliferation of cells harboring a wide variety of mutations in

signaling cascades that inactivate pRb, but it does not affect cells

carrying mutated Rb1 or cells in which Rb1 has been deleted. In

addition, the specificity of this agent is demonstrated by the

observation that the growth arrest caused by RRD-251 can be

rescued by knockdown of the Rb1 gene with a short hairpin RNA

or by the overexpression of E2F1 [12].

pRb is required for cell-cycle exit of embryonic mammalian hair

cells but is not required for hair cell fate determination and early

differentiation. This specificity of the role of pRb provides a

strategy of hair cell regeneration by manipulating pRb pathway.

Because Rb1 knockout cells are inviable, reversible manipulation

of pRb activity might provide a new strategy for the regeneration

of hair cells in the inner ear. It has been reported that Sonic

hedgehog initiates cochlear hair cell regeneration through

downregulation of pRb in postnatal rats [8]. Furthermore,

supporting cells can be driven to re-enter the cell cycle by over-

expressing cyclin D1 (a key component of the MAP cascade) in

adult utricles [24]. Our results suggest a novel approach to

regulating the function of pRb by enhancing the interaction of

Raf-1 and pRb in the context of proliferation and hair cell

differentiation. In addition, we found that Rb1 mRNA was

expressed in chicken otocysts at a relatively high level at the early

HH18 stage, but pRb protein was detected at a low level at this

stage. This discrepancy might be due to a delay in translation or to

post-translational modification and regulation. The latter deserves

to be investigated further as another approach for modifying the

function of the Rb1 gene.

In spite of a significant amount of data showing that the

progenitors of sensory epithelium and spiral ganglion neurons

originate from the same population of progenitor cells in the inner

ear [25,26], these cells still reacted differently to the abolishment of

pRb phosphorylation through the two distinct pathways. Future

lineage tracing experiments using transgenic animals or cell type

specific interference by molecular techniques could address this

question unequivocally.

It has been reported that pRb controls the G1 to S transition by

repressing the transcriptional activity of the E2F protein family

that is required for the expression of genes necessary for DNA

synthesis and cell cycle progression [27,28]. By inhibiting the

phosphorylation of pRb, we found that both pathways that

regulate pRb phosphorylation ultimately converge on cell-cycle

gene regulation. In particular, the transcription of Ccne2, Cdc2 and

c-Myc was significantly reduced upon attenuation of pRb

phosphorylation by inhibiting the two independent pathways.

This result provides a greater understanding of the genetic

networks and the key factors that regulate proliferation in the

inner ear.

We conclude that phosphorylation of pRb is crucial for inner

ear progenitor cell proliferation and survival during avian inner

ear development. The interaction of Rb–Raf-1 plays an important

role in the functional modification of pRb during the development

of the inner ear, and this strengthens and extends the importance

of the Rb–Raf-1 interaction that was previously shown to be

important during hair cell regeneration in the neuromasts of

zebrafish [29]. Our findings suggest a new strategy for modifying

pRb by enhancing the interaction of Rb–Raf-1 in the context of

proliferation and hair cell differentiation.
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et al. (2010) RAF kinase activity regulates neuroepithelial cell proliferation and

neuronal progenitor cell differentiation during early inner ear development.

PLoS ONE 5: e14435.

3. Swanson GJ, Howard M, Lewis J (1990) Epithelial autonomy in the

development of the inner ear of a bird embryo. Dev Biol 137: 243–257.

Figure 5. Expression of genes involved in cell cycle progression after the attenuation of pRb phosphorylation by inhibiting the two
different pathways. The estimated gene expression was calculated as 22DDCt and statistical significance was estimated using one-way ANOVA.
* = P,0.05, ** = P,0.01, and *** = P,0.001 compared to controls.
doi:10.1371/journal.pone.0083726.g005

Role of pRb in Inner Ear Development

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e83726



4. Lang H, Bever MM, Fekete DM (2000) Cell proliferation and cell death in the

developing chick inner ear: spatial and temporal patterns. J Comp Neurol 417:

205–220.

5. Sage C, Huang M, Karimi K, Gutierrez G, Vollrath MA, et al. (2005)

Proliferation of functional hair cells in vivo in the absence of the retinoblastoma

protein. Science 307: 1114–1118.

6. Sage C, Huang M, Vollrath MA, Brown MC, Hinds PW, et al. (2006) Essential

role of retinoblastoma protein in mammalian hair cell development and hearing.

Proc Natl Acad Sci USA 103: 7345–7350.

7. Yu Y, Weber T, Yamashita T, Liu Z, Valentine MB, et al. (2010) In vivo

proliferation of postmitotic cochlear supporting cells by acute ablation of the

retinoblastoma protein in neonatal mice. J Neurosci 30: 5927–5936.

8. Lu N, Chen Y, Wang Z, Chen G, Lin Q, et al. (2013) Sonic hedgehog initiates

cochlear hair cell regeneration through downregulation of retinoblastoma

protein. Biochem Biophys Res Commun 430: 700–705.

9. Knudsen ES, Knudsen KE (2006) Retinoblastoma tumor suppressor: where

cancer meets the cell cycle. Exp Biol Med (Maywood) 231: 1271–1281.

10. Wang S, Ghosh RN, Chellappan SP (1998) Raf-1 physically interacts with Rb

and regulates its function: a link between mitogenic signaling and cell cycle

regulation. Mol Cell Biol 18: 7487–7498.

11. Di Fiore R, D’Anneo A, Tesoriere G, Vento R (2013) RB1 in cancer: different

mechanisms of RB1 inactivation and alterations of pRb pathway in

tumorigenesis. J Cell Physiol 228: 1676–1687.

12. Kinkade R, Dasgupta P, Carie A, Pernazza D, Carless M, et al. (2008) A small

molecule disruptor of Rb/Raf-1 interaction inhibits cell proliferation, angio-

genesis, and growth of human tumor xenografts in nude mice. Cancer Res 68:

3810–3818.

13. Davis RK, Chellappan S (2008) Disrupting the Rb-Raf-1 interaction: a potential

therapeutic target for cancer. Drug News Perspect 21: 331–335.

14. Singh S, Davis R, Alamanda V, Pireddu R, Pernazza D, et al. (2010) Rb-Raf-1

interaction disruptor RRD-251 induces apoptosis in metastatic melanoma cells

and synergizes with dacarbazine. Mol Cancer Ther 9: 3330–3341.

15. Hamburger V, Hamilton HL (1992) A series of normal stages in the

development of the chick embryo. 1951. 42 pp.

16. Li H, Corrales CE, Wang Z, Zhao Y, Wang Y, et al. (2005) BMP4 signaling is

involved in the generation of inner ear sensory epithelia. BMC Dev Biol 5: 16.

17. Li H, Liu H, Corrales CE, Mutai H, Heller S (2004) Correlation of Pax-2

expression with cell proliferation in the developing chicken inner ear. J Neurobiol
60: 61–70.

18. Shukla S, Gupta S (2007) Apigenin-induced cell cycle arrest is mediated by

modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblas-
toma dephosphorylation in human prostate cancer cells. Cell Cycle 6: 1102–

1114.
19. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, et al. (1998)

Identification of a novel inhibitor of mitogen-activated protein kinase kinase.

J Biol Chem 273: 18623–18632.
20. Dasgupta P, Sun J, Wang S, Fusaro G, Betts V, et al. (2004) Disruption of the

Rb–Raf-1 interaction inhibits tumor growth and angiogenesis. Mol Cell Biol 24:
9527–9541.

21. Weber T, Corbett MK, Chow LML, Valentine MB, Baker SJ, et al. (2008)
Rapid cell-cycle reentry and cell death after acute inactivation of the

retinoblastoma gene product in postnatal cochlear hair cells. Proc Natl Acad

Sci USA 105: 781–785.
22. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81:

323–330.
23. Buchkovich K, Duffy LA, Harlow E (1989) The retinoblastoma protein is

phosphorylated during specific phases of the cell cycle. Cell 58: 1097–1105.

24. Loponen H, Ylikoski J, Albrecht JH, Pirvola U (2011) Restrictions in cell cycle
progression of adult vestibular supporting cells in response to ectopic cyclin D1

expression. PLoS ONE 6: e27360.
25. Li H, Liu H, Heller S (2003) Pluripotent stem cells from the adult mouse inner

ear. Nat Med 9: 1293–1299.
26. Martinez-Monedero R, Yi E, Oshima K, Glowatzki E, Edge ASB (2008)

Differentiation of inner ear stem cells to functional sensory neurons. Devel

Neurobio 68: 669–684.
27. Cobrinik D (2005) Pocket proteins and cell cycle control. Oncogene 24: 2796–

2809.
28. Stengel KR, Thangavel C, Solomon DA, Angus SP, Zheng Y, et al. (2009)

Retinoblastoma/p107/p130 pocket proteins: protein dynamics and interactions

with target gene promoters. 284: 19265–19271.
29. Lin Q, Li W, Chen Y, Sun S, Li H (2013) Disrupting Rb-Raf-1 interaction

inhibits hair cell regeneration in zebrafish lateral line neuromasts. Neuroreport
24: 190–195.

Role of pRb in Inner Ear Development

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e83726


