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The regulatory cytokine tumor necrosis factor (TNF) exerts its effects through two recep-
tors:TNFR1 andTNFR2. Defects inTNFR2 signaling are evident in a variety of autoimmune
diseases. One new treatment strategy for autoimmune disease is selective destruction of
autoreactive T cells by administration of TNF, TNF inducers, or TNFR2 agonism. A related
strategy is to rely onTNFR2 agonism to induceT-regulatory cells (Tregs) that suppress cyto-
toxic T cells. Targeting TNFR2 as a treatment strategy is likely superior to TNFR1 because
of its more limited cellular distribution on T cells, subsets of neurons, and a few other cell
types, whereas TNFR1 is expressed throughout the body. This review focuses on TNFR2
expression, structure, and signaling; TNFR2 signaling in autoimmune disease; treatment
strategies targeting TNFR2 in autoimmunity; and the potential for TNFR2 to facilitate end
organ regeneration.
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INTRODUCTION
Tumor necrosis factor (TNF) is a pleiotropic cytokine involved in
regulating diverse bodily functions including cell growth modula-
tion, inflammation, tumorigenesis, viral replication, septic shock,
and autoimmunity (1). These functions hinge upon TNF’s binding
to two distinct membrane receptors on target cells: TNFR1 (also
known as p55 and TNFRSF1A) and TNFR2 (also known as p75
and TNFRSF1B). TNFR1 is ubiquitously expressed on the lym-
phoid system and nearly all cells of the body, which likely accounts
for TNF’s wide-ranging functions. TNFR2 is expressed in a more
limited manner on certain populations of lymphocytes, including
T-regulatory cells (Tregs) (2, 3), endothelial cells, microglia, neu-
ron subtypes (4, 5), oligodendrocytes (6, 7), cardiac myocytes (8),
thymocytes (9, 10), islets of Langerhans (personal communica-
tion, Faustman Lab), and human mesenchymal stem cells (11). Its
more restricted cellular expression makes TNFR2 more attractive
than TNFR1 as a molecular target for drug development. Acti-
vation of TNFR1 alone by exogenous TNF is systemically toxic
(12, 13).

As a general rule, TNF depends on TNFR1 for apoptosis and
TNFR2 for any function related to cell survival, although there is
some degree of overlapping function depending upon the activa-
tion state of the cell and a variety of other factors (14). Likewise,
TNFR1 and TNFR2 have distinct intracellular signaling pathways,
although there is some overlap and crosstalk (15). TNF binding to
TNFR1 triggers apoptosis through two pathways, by activation of
the adaptor proteins TNFR1-associated death domain (TRADD)
and Fas-associated death domain (FADD). In contrast, TNFR2
signaling relies on TRAF2 and activation and nuclear entry of the
pro-survival transcription factor nuclear factor-kB (NFkB) (16–
18). TNFR2 expression on Tregs is induced upon T-cell receptor
activation (19).

While the etiologies of autoimmune disorders vary, there is
some degree of overlap in their genetic, post-translational, and
environmental origins. One overlapping feature is that various
defects in TNF signaling pathways, acting through the TNF recep-
tors and NFkB in autoreactive T cells, occur in both human
and mouse models of various autoimmune disorders, including
Crohn’s disease, Sjogren’s syndrome, multiple sclerosis, ankylosing
spondylitis, and type I diabetes (20–39). The defects range from
defects in the proteasome in both the non-obese diabetic (NOD)
mouse model and humans with Sjogren’s syndrome, to specific
polymorphisms in the TNFR1 or TNFR2 receptors themselves, to
punitive interruptions in genes that control the ubiquitination of
the NFkB pathway.

TNFR EXPRESSION, STRUCTURE, AND SIGNALING
As noted above, TNFR1 and TNFR2 possess different patterns of
expression. TNFR1 is found on nearly all bodily cells, whereas
TNFR2 is largely found on certain immune cells (CD4+ and
CD9+ lymphocytes), certain CNS cells, and endothelial cells,
among others. Neither receptor is located on erythrocytes. Typ-
ically, cells that express TNFR2 also express TNFR1, with the ratio
of expression varying according to cell type and functional role.
Because TNFR1 typically signals cell death, while TNFR2 typically
signals cell survival, the ratio of their co-expression will shift the
balance between cellular survival and apoptosis.

TNFR1 and TNFR2 have extracellular, transmembrane, and
cytoplasmic components. The extracellular component of both
receptors is rich in cysteine, which is characteristic of the TNF
superfamily. TNFR1 contains 434 amino acids. Its intracellu-
lar region of 221 amino acids contains a death domain that
binds TRADD or FADD. In T cells, activation of TRADD or
FADD activates the caspases, resulting in apoptosis (Figure 1).
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Faustman and Davis TNFR2, autoimmunity and regenerative medicine

FIGURE 1 |TNF Signals through TNFR1 and TNFR2 receptors (A) but abnormalities in this signaling pathway in autoimmunity (B) can favor a
pathway of selective apoptosis due to a variety of protein signaling defects.

A second apoptotic pathway relies on TRADD’s activation of
RIP (receptor interacting protein) (Figure 1A). In contrast to
TNFR1, TNFR2 does not have a cytoplasmic death domain. The
receptor consists of 439 amino acids. Its extracellular domain
is formed by the first 235 amino acids, its transmembrane
domain is formed by 30 amino acids, while its cytoplasmic
domain is formed by 174 amino acids. TNFR2’s cytoplasmic
domain has a TRAF2 binding site. TRAF2, in turn, binds TRAF1,
TRAF3, cIAP1, and cIAP2 (17, 18). These signaling proteins
activate several other signaling proteins, yielding cell survival
(Figure 1A). Cell survival is ensured when the transcription
factor NFkB is liberated from its inhibitor protein IkBα in the
cytoplasm and translocates to the nucleus where it activates
pro-survival target genes (40). Both TNFR1 and TNFR2 can
bind monomeric TNF or trimeric soluble TNF although solu-
ble TNF induces no or weak signaling for TNFR2. This may be
related to altered association or dissociation kinetics or more opti-
mal kinetics with pre-formed transmembrane TNF (41). TNFR2
also preferentially binds transmembrane TNF (42). Transmem-
brane TNF is a trimer on the cell surface and transmits sig-
nals to the cell where it is contained, i.e., reverse signaling. It is
thought that TNFR2 preferentially binds transmembrane bound
TNF (43). Solution of the crystal structure of the TNF-TNFR2

complexes demonstrated that these interactions also result in the
formation of aggregates on the cell surface and this likely promotes
signaling (44).

Transgenic mice have been produced to try to understand bet-
ter the function of TNFR2 (45). TNFR2−/− mice homozygous for
TNFR2−/− are viable and fertile. They also show normal T-cell
development and activity and are resistant to TNF-induced death.
The T-cell proliferation responses are diminished and they also
show abnormal central nervous system regeneration (JAX Mice
Database – 00260).

TNF IN DEVELOPMENT AND AUTOIMMUNITY
Tumor necrosis factor, and its signaling through the two receptors,
plays several crucial roles during normal development. It shapes
the efficacy of the immune system and protects against infec-
tious disease, cancer, and autoimmune disease (46). Upon release,
TNF proceeds throughout the lifecycle to exert regulatory roles
over immune cells by triggering transcription of genes responsi-
ble for inflammation, proliferation, differentiation, and apoptosis.
To counter a pathological infection, TNF facilitates proliferation
of immune cell clones. To continue to fight against the infection,
TNF stimulates differentiation and recruitment of naïve immune
cells. Subsequently, TNF orchestrates destruction of superfluous
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immune cell clones to reduce inflammation and tissue damage
once the infection is resolved.

In the process of developing autoimmunity, abnormal progen-
itors to T cells and other immune cell types proliferate and begin
to mature in the thymus. T-cell education occurs through two par-
allel pathways for CD4 and CD8 T cells through either HLA class
II or HLA class I cell surface structures. For almost all autoim-
mune disease there is strong genetic linkage to the HLA class II
region. This genetic region is rich in immune response genes and
contains not only the class II genes themselves but also the HLA
class I assembly genes such as the tap transporters (Tap1/Tap2) and
proteasome genes (that control self peptide presentation) such as
LMP2 (PSMB9), LMP7 (PSMB8), and LMP10 (PSMB10) (47).
During T-cell education, the vast majority of immature immune
cells die by apoptosis, which serves to remove defective progen-
itors. The process is not foolproof, however. Failures in T-cell
education in humans perhaps driven by defective antigen pre-
sentation allow autoreactive but still immature T cells defined
as CD45RA+ (2H4) and lesser numbers of CD45RO+ (4B4) to
enter the circulation (36, 48, 49). In humans and autoimmune ani-
mal models diverse mutations and polymorphisms drive altered
proteasome function with varying phenotypes of autoimmunity
(50–55). Once in the circulation, the cells differentiate into mature
autoreactive T cells when they encounter specific self-antigens
(56). The failure of T-cell education of autoreactive CD8 T cells,
due to HLA class I interruption, yields self-reactive T cells directed
at specific self-antigens. This failure underlies various immune dis-
eases, including type I diabetes, Crohn’s disease, multiple sclerosis,
and Sjogren’s syndrome (50).

TNFR2 SIGNALING AND BENEFITS TO HEALTH
TNFR2 signaling pathways appear to offer protective roles in
several disorders, including autoimmune disease, heart disease,
demyelinating and neurodegenerative disorders, and infectious
disease. According to in vitro and in vivo studies, TNF or TNFR2
agonism is associated with pancreatic regeneration (57–59), car-
dioprotection (60, 61), remyelination (5, 6), survival of some
neuron subtypes (5, 62, 63), and stem cell proliferation (11, 64–66).

Knockout of the tnfr2 gene in a mouse model produces a higher
rate of heart failure and reduced survival after myocardial infarc-
tion (60). TNFR1 signaling is deleterious and TNFR2 signaling is
protective in regeneration and repair processes following infarcted
myocardium in female mice (61).

An agonist for TNFR2 selectively destroys autoreactive T cells
but not healthy T cells in blood samples from type I diabetes
patients, as well as multiple sclerosis, Graves, Sjogren’s autoreac-
tive T cells (57). Animal models of type I diabetes exhibit massive
regeneration of the pancreas after elimination of autoreactive T
cells with low-dose TNF (58, 59). TNFR2 is crucial for TNF-
induced regeneration of oligodendrocyte precursors that make up
myelin (6), a finding that may be important in the treatment of
multiple sclerosis and other demyelinating disorders, regardless of
whether they have an autoimmune etiology. In viral encephalitis-
infected knockout mice, the TNFR2 pathway is relied upon to
repair the brain’s hippocampus, and TNFR1 is relied upon to
repair the brain’s striatum (63). Oligodendrocyte regeneration
appears to occur as a result of TNFR2 activation on astrocytes,

which promotes oligodendrocyte proliferation through the induc-
tion of chemokine CXCL12 in an animal model of demyelination
(67). Lastly, TNFR1 promotes neurodegeneration while TNFR2
promotes neuroprotection in an animal model of retinal ischemia
in knockout mice (68).

TNF RECEPTOR AND AUTOIMMUNE DISEASE
A variety of defects in TNFR2 and downstream NFKB signaling are
found in various autoimmune diseases. The defects include poly-
morphisms in the TNFR2 gene, upregulated expression of TNFR2,
and TNFR2 receptor shedding. A recently published study impli-
cates a new decoy splice variant of the TNFR1 receptor in multiple
sclerosis. This causes a relative deficiency in TNF with inadequate
TNFR2 signaling for autoreactive T-cell selection and induction of
beneficial Tregs (39). Polymorphisms in TNFR2 have been identi-
fied in some patients with familial rheumatoid arthritis (69–71),
Crohn’s disease (72), ankylosing spondylitis (38), ulcerative coli-
tis (73), and immune-related conditions such as graft versus host
disease associated with scleroderma risk (74). Common to sev-
eral autoimmune diseases, with the notable exception of type I
diabetes, is a polymorphism in which the amino acid methionine
is substituted for arginine at position 196 in exon 6 of chromo-
some 1p36 (16). This polymorphism may alter the binding kinetics
between TNF and TNFR2, the result of which may reduce signaling
through NFkB.

Upregulated expression of TNFR2 is also found in several
immune diseases (16, 75). Higher systemic levels of soluble TNFR1
(sTNFR1) and soluble TNFR2 (sTNFR2) are produced by admin-
istration of TNF to patients, likely by shedding of receptors into
the extracellular space (76, 77). The greater the TNF stimula-
tion, the greater is the increase in sTNFR1 and sTNFR2. Higher
levels of sTNFR2 but not sTNFR1 are found in serum and bod-
ily fluids of patients with familial rheumatoid arthritis (78) and
systemic lupus erythematosus, both of which are marked by poly-
morphisms in TNFR2. TNFR2, but not TNFR1, is upregulated
in the lamina propria of mice with Crohn’s disease, and it causes
in vivo experimental colitis (79). Decreasing the concentration
of TNFR2, via receptor shedding or other means, is a possible
compensatory mechanism to lower inflammation. The extracel-
lular component of TNFR2 is proteolytically cleaved to produce
sTNFR2. This component binds to TNF in the extracellular space,
yielding lower concentrations of TNF available for binding to
functional T cells (80, 81). The development of the first anti-TNF
medications, including soluble TNFR2 fusion proteins like Enbrel,
were therapeutic for some patients with rheumatoid arthritis but
consistently worsened or induced new autoimmune diseases like
type 1 diabetes, lupus, or multiple sclerosis. The human data are
consistent with past mouse data where overexpression of TNFR2
triggered multi-organ inflammation especially in the presence of
TNF.

To achieve cell survival, the final steps in the TNFR2 pathway
rely on NFkB mobilization and translocation to the nucleus. This
can only occur with an intact proteasome, which is responsible for
cleaving the bond between NFkB and its inhibitor protein IKBA.
A defect that inhibits proteasomal-driven cleavage of NFkB is seen
in the type I diabetes-prone and Sjogren’s syndrome-prone NOD
mouse (33). A protein subunit of the proteasome,LMP2, is lowered
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in all patients with Sjogren’s syndrome (36, 52, 82). The LMP2 sub-
unit of the proteasome is necessary for intracellular activation of
NFkB in highly activated T cells (33).

TNF AS TREATMENT FOR AUTOIMMUNE DISEASE
Given the commonality of TNFR signaling abnormalities in
autoimmune diseases, the administration of TNF has emerged
as a common treatment strategy. Low-dose TNF exposure, act-
ing through its receptors, selectively destroys autoreactive, but not
healthy, CD8+ T cells in blood samples from patients with type I
diabetes (57). Low-dose TNF also kills autoreactive T cells in an
animal model of Sjogren’s syndrome (83). A similar result with
TNF exposure is achieved in blood samples from patients with
scleroderma (84). A sustained effect need not require continuous
dosing, unlike treatment with anti-cytokines or immunosuppres-
sive drugs: TNF can be effective when administered intermittently
(33). However, the administration of TNF is not feasible in humans
because it is systemically toxic when given to cancer patients who
already have high TNF levels due to an intrinsic defense system (12,
13, 85). The toxicity of TNF likely stems from the ubiquitous cellu-
lar expression of TNFR1. Because TNFR2 is more restricted in its
cellular expression, TNFR2 agonism may offer a safer therapeutic
approach than administration of TNF. The possibility of inter-
mittent exposure would also enhance the safety profile. As noted
earlier, upregulated expression of TNFR2 in the target tissue is
observed in several autoimmune disorders on the target; this tar-
get tissue expression may be responsible for the growth-promoting
and regenerative properties of TNF agonism. In a baboon study,
TNFR2 agonism was generally safe but exhibited adverse effects in
the form of thymocyte proliferation, a febrile reaction, and a small,
transient inflammation caused by mononuclear cell infiltration
(86). Not all TNFR2 antibodies are the same, however, as some
can bind to the receptor without eliciting an immune response. It
may well be the case that tissue-specific or cell-specific therapies
afford a better safety profile. Many factors have profound effects
on the nature of TNFR signaling with antibody agonists. Their
safety and efficacy are affected by changes in the ligand, recep-
tor, adapter proteins, or other members of the signaling pathway.
Findings may also vary depending on culture conditions, origin of
cells, and activation state.

The rationale for TNFR2 agonism as therapy for autoimmune
disease was first shown in type I diabetes. TNFR2 agonism or
induction of TNF is an effective means of selectively killing autore-
active CD8+ T cells in animal models, in human cells in vitro (33,
58, 83, 87, 88) and in blood samples taken from patients with type
I diabetes (57). In the latter study, there was a dose-response rela-
tionship between TNFR2 agonism and CD8+ T-cell toxicity. The
CD8+ T cells were autoreactive to insulin, a major autoantigen in
type I diabetes.

How is TNF effective at killing autoreactive T cells? A variety
of TNFR2 signaling defects prevent liberation of NFkB from IkB,
precluding transcription of pro-survival genes. This in turn biases
autoreactive T cells to shift to the TRADD/FADD cell death sig-
naling pathway which leads to apoptosis (Figure 1B). In other
words, NFkB dysregulation makes autoreactive T cells selectively
vulnerable to TNF-induced apoptosis (20). T cells, unlike B cells
and other immune cells, do not constitutively express the active

form of NFkB. Only this active form can translocate to the nucleus
in order to transcribe pro-survival genes.

THERAPEUTIC STRATEGIES FOR AUTOIMMUNE DISEASE
SMALL-MOLECULE AGONISTS
Medicinal chemists have found it challenging to create receptor-
specific agonists for the TNF superfamily. Developing an antag-
onist is generally accomplished more readily than developing an
agonist. That said, peptides, antibodies, and small molecules have
been developed as TNFR2 agonists (89, 90). Of these types, anti-
body agonists have been more effective at engaging a specific
signaling pathway (57). In a labor-intensive process, TNFR2 ago-
nists have been developed by point mutations in the TNF protein
by site-directed mutagenesis (90). Our laboratory has recently gen-
erated a TNFR2 agonist that activates TNF signaling pathways and
suppresses CD8 T cells (91). The advantage of this agonist is that
it also induced proliferation of Treg cells that exert an immuno-
suppressive function. TNFR2 agonists,while less toxic than TNFR1
agonists, still may have toxicities, especially to cells within the CNS
(16). For that reason it may be desirable to develop agonists that
do not succeed at crossing the blood-brain barrier.

TNF INDUCERS
The foremost inducer of TNF is the mycobacterium bovis bacil-
lus Calmette–Guerin (BCG), which has been on the market for
decades as a vaccine for tuberculosis and as a treatment for bladder
cancer. Its chemical equivalent that does not meet FDA’s standards
for purity is complete Freund’s adjuvant (CFA). In an early double
blinded placebo-controlled Phase I clinical trial, BCG adminis-
tration produced a transient increase in TNF in the circulation
(92). BCG or CFA have been successfully used in animal mod-
els of type I diabetes to either prevent onset of diabetes or kill
autoreactive T cells, leading to the restoration of pancreatic islet
cell function and normoglycemia (58, 59, 93–95). Furthermore,
in a proof-of-concept randomized, controlled clinical trial, BCG
killed the insulin-autoreactive T cells in the circulation of patients
with type I diabetes (92). With the removal of insulin-autoreactive
T cells, pancreatic islets managed to regenerate to the extent that
there was a transient rise in C-peptide, a marker for insulin pro-
duction. The transient rise in C-peptide was striking, considering
that patients in the trial averaged 15 years of disease. This clini-
cal trial data repudiated the presumption that loss of pancreatic
function is irreversible. Although BCG and CFA release TNF and
therefore are not specific for TNFR2, they have low toxicity and
thereby may be safe for treating autoimmune disease by virtue of
inducing low levels of TNF.

NFKB PATHWAY MODULATION
Nuclear factor-kB is thwarted from entering the nucleus to tran-
scribe pro-survival genes in autoimmune diseases featuring defects
in TNF signaling (33, 34). Instead of being cleaved, NFkB remains
bound in the cytoplasm to its inhibitory chaperone protein IkBa.
A genetic defect in type I diabetes-prone and Sjogren’s syndrome-
prone NOD mouse blocks the proteasome from cleaving NFKB
from IkBa (34). Patients with Sjogren’s syndrome also exhibit
this defect (52). Consequently, inhibiting NFkB’s translocation to
the nucleus offers another therapeutic approach to autoimmune
disease if it could be done in the select cells that are disease causing.
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TNFR1 ANTAGONISM
Tumor necrosis factor binds to TNFR1 and TNR2. Another way
to make TNF selective for TNFR2 signaling, an effect that could
promote tissue regeneration and remove autoimmunity, is to cre-
ate a TNFR1 antagonist. This strategy would bias TNF to act solely
through the TNFR2 receptor. This strategy also appears promising
for hepatitis or autoimmunity in murine models (96). A human-
ized TNFR1-specific antagonistic antibody for selective inhibition
of TNF action has been tested with promising results (96–98).

EXPANSION OF T-REGULATORY CELLS VIA TNFR2
T-regulatory cells are a type of immunosuppressive cell that
displays diverse clinical applications in transplantation, allergy,
infectious disease, GVHD, autoimmunity, and cancer (99). Tregs

co-express CD4+ and the interleukin-2 receptor alpha chain
CD25 hi and feature inducible levels of intracellular transcrip-
tion factor forkhead box P3 (FOXP3). Naturally occurring Tregs

appear to express TNFR2 at a higher density than TNFR1 (3,
100, 101). There is evidence from animal models that TNF sig-
naling through TNFR2 promotes Treg activity: TNFR2 activates
and induces proliferation of Tregs (100) and TNFR2 expression
indicates maximally suppressive Tregs (102).

T-regulatory cells have been proposed to prevent or treat
autoimmune disease, but the rate-limiting problem has been
obtaining sufficient quantities, whether by generating them ex
vivo or stimulating their production in vivo. In vivo stimulation
turns out to be too toxic with standard expansion agents IL-2,
anti-CD3, and anti-CD28. These expansion agents can be used to
generate large quantities of Tregs ex vivo, but the problem is that
they produce heterogeneous progeny consisting of mixed CD4+
populations. Heterogeneous progeny carry risk: they are capable
of releasing pro-inflammatory cytokines and consist of cell pop-
ulations with antagonistic properties. Some new approaches are
being attempted, including expansion of Tregs in vivo with TL1A-
Ig, a naturally occurring TNF receptor superfamily agonist (103).
Additionally, our laboratory has developed a method of ex vivo
expansion using a newly synthesized TNFR2 monoclonal anti-
body agonist that produces homogeneous progeny expressing a
uniform phenotype of 14 cell surface markers (91). The TNFR2-
agonist expanded Tregs are capable of suppressing CD8+ T cells.
In healthy humans, the TNF inducer BCG causes transient expan-
sion of Tregs (91). In a clinical trial, BCG triggers Treg production
in patients with type I diabetes (92), which appears to contribute
to the suppression of disease and temporary restoration of islet
cell function.

USE OF TNFR2 FOR TISSUE REGENERATION
When type 1 diabetes was first reversed in end-stage diabetic mice
with boosting of TNF, the research showed an unexpected outcome
(59). The pancreas of the treated diabetic mice had regenerated
their islets and the original islet transplants that were performed
to restore blood sugars were not needed (59). The histologic shape
of the reappearing insulin secreting islets was also remarkable.
The newly regenerated islets were larger in size than unaffected,
untreated NOD mouse cohorts, and contrasted greatly from islets
of NOD mice that had received immunosuppressive drug strate-
gies, such as anti-lymphocyte serum or anti-CD4 or anti-CD3

antibodies, to avert diabetes (104, 105). Past autoimmune treat-
ments of diabetic NOD mice worked almost only in pre-diabetic
mice or early new-onset diabetic mice (106). Also the rescued islets
of NOD mice, commonly treated with anti-CD3 immunosuppres-
sive antibodies, were small in size, and demonstrated no or limited
regeneration. The immunosuppressive drug was best administered
to pre-diabetic mice or to mice with recent onset hyperglycemia.
In total, this data strongly suggested that administration of TNF
directly or boosting TNF indirectly with BCG or the heat-killed
equivalent, CFA, had a dual mechanism of action – a direct killing
of the autoreactive T cells and also a TNF effect directly on the
target organ to promote healing and regeneration. Also the TNF
effect on the target tissue indicated that even late stage diabetes
could be reversed in large part due to the regenerative effect in
contrast to a pure rescue effect, survival of existing islets without
expansion, of standard immunosuppressive strategies.

The effect of TNF on the pancreas was not the only tissue
showing possible regeneration with TNF stimulation. In the field
of neuroregeneration, the Ting laboratory showed TNF simi-
larly promoted proliferation of oligodendrocytes progenitors and
remyelination (6). Gradually the broader literature reported the
regenerative effect of TNF and TNFR2 agonism on heart regener-
ation, bone marrow stem cells, and even neuron regeneration in
the setting of Parkinson’s disease model in mice (11, 60, 66, 107).

CONCLUSION
An overlapping feature across autoimmune disorders is various
defects in TNF signaling through its two receptors. TNFR2 is a
more attractive molecular target than TNFR1 because of its lim-
ited cellular expression. A variety of strategies utilizing TNFR2
agonism can be pursued for treatment of autoimmune disease and
also used for regenerative medicine therapies. TNFR2 agonism has
been associated with selective death of autoreactive T cells in type
1 diabetes and with induction of Tregs. It holds promise for treat-
ing other autoimmune disorders featuring dysregulation of NFkB,
which is a key component of the TNFR2 signaling pathway.
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