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Abstract

Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits.
Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique
ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies
examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are
often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify
genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional
methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often
variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in
increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying
environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in
gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-
environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be
interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for
discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in
aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many
of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-
environment interactions. An additional advantage of our meta-analysis approach is that our combined study has
significantly higher power and improved resolution compared to any single study thus explaining the large number of loci
discovered in the combined study.
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Introduction

Identifying environmentally specific genetic effects is a key

challenge in understanding the structure of complex traits. In

humans, gene-by-environment (GxE) interactions have been widely

discussed [1–12] yet only a few have been replicated. One reason for

this discrepancy is the inability to accurately control for environ-

mental conditions in humans as well as the inability to observe the

same individuals in multiple distinct environments. Model organ-

isms do not share such difficulties and for this reason can play a

crucial role in the identification of gene-by-environment interac-

tions. For example, in many mouse genetic studies the same traits

are examined under different environmental conditions. Specifical-

ly, knock-out or diet-controlled mice are often utilized in the study of

cholesterol levels. The availability of these studies presents a unique

opportunity to identify genomic loci involved in gene-by-environ-

ment interactions as well as those loci involved in the trait

independent of the environment.

In order to utilize genetic studies in model organisms to identify

gene-by-environment interactions, one needs to directly compare

the effects of genetic variations in studies conducted under different

conditions. This practice is complicated for a number of reasons,

when combining more than two studies. First, environmental

conditions are often variable across studies and do not fit to the

standard univariate model for interactions. For example, in one

study, cholesterol may be examined under different diet conditions

PLOS Genetics | www.plosgenetics.org 1 January 2014 | Volume 10 | Issue 1 | e1004022



(eg. low fat and high fat) and then in another study cholesterol is

examined using gene knockouts. In this case, it is not straightfor-

ward to analyze these studies in aggregate using a single variable to

represent the environmental condition. Applying a multivariate

model, one in which the environment is represented using multiple

environmental variables, results in increased degrees of freedom and

low statistical power. Second, model organisms such as the mouse

exhibit a large degree of population structure. Population structure

is well-known for causing false positives and spurious associations

[13,14] in association analysis and can be expected to complicate

the ability to combine separate studies.

In this paper, we propose a random-effects based meta-analytic

approach to combine multiple studies conducted under varying

environmental conditions and show that this approach can be used

to identify both genomic loci involved in gene-by-environment

interactions as well as those loci involved in the trait independent

of the environment. By making the connection between gene-by-

environment interactions and random effects model meta-analysis,

we show that interactions can be interpreted as heterogeneity and

detected without requiring uni- or multi-variate models. We also

define an approach for correcting population structure in the

random effects model meta-analysis, extending the methods

developed for fixed effects model meta-analysis [15]. We show

that this method enables the analyses of large scale meta-analyses

with dozens of heterogeneous studies and leads to dramatic

increases in power. We demonstrate that insights regarding gene-

by-environment interactions are obtained by examining the

differences in effect sizes among studies facilitated by the recently

developed m-value statistic [16], which allows us to distinguish

between studies having an effect and studies not having an effect at

a given locus.

We applied our approach, which we refer to as Meta-GxE,

to combine 17 mouse High-density lipoprotein (HDL) studies

containing 4,965 distinct animals. To our knowledge, this is the

largest mouse genome-wide association study conducted to date.

The environmental factors of the 17 studies vary greatly and include

various diet conditions, knock-outs, different ages and mutant

animals. By applying our method, we have identified 26 significant

loci. Consistent with the experience of meta-analysis in human

studies, our combined study finds many loci which were not

discovered in any of the individual studies. Among the 26, 24 loci

have been previously implicated in having an effect on HDL

cholesterol or closely related lipid levels in the blood, while 2 loci are

novel findings. In addition, our study provides insights into genetic

effects on several disease loci and their relationship between

environment and sex. For example, we identified 3 loci (Chr10:

21399819, Chr19:3319089, ChrX:151384614), where female mice

show a more significant effect on HDL phenotypes than male mice.

We also identified 7 loci (Chr1:171199523, Chr8:46903188, Chr8:

64150094, Chr8:84073148, Chr10:90146088, Chr11:69906552,

Chr15:21194226) where male mice show a more significant effect

on HDL than female mice. In addition, many of the loci show

strong gene-by-environment interactions. Using additional infor-

mation describing the studies and our predictions of which studies

do and do not contain an effect, we gain insights into the interaction.

For example, locus on chromosome 8 (Chr8:84073148) shows a

strong sex by mutation-driven LDL level interaction, which affects

HDL cholesterol levels.

Part of the reason for our success in identifying a large number

of loci is that our study combined multiple mouse genetic studies

many of which use very different mapping strategies. Over the past

few years, many new strategies have been proposed beyond the

traditional F2 cross [17] which include the hybrid mouse diversity

panel (HMDP) [18,19], heterogeneous outbred stocks [20], com-

mercially available outbred mice [21], and the collaborative cross

[22]. In our current study, we are combining several HMDP

studies with several F2 cross studies and benefit from the statistical

power and resolution advantages of this combination [15]. The

methodology presented here can serve as a roadmap for both

performing and planning large scale meta-analysis combining the

advantages of many different mapping strategies. Meta-GxE is

publicly available at http://genetics.cs.ucla.edu/metagxe/.

Results

Discovering environmentally-specific loci using meta-
analysis

The Meta-GxE strategy uses a meta-analytic approach to identify

gene-by-environment interactions by combining studies that collect

the same phenotype under different conditions. Our method

consists of four steps. First, we apply a random effects model

meta-analysis (RE) to identify loci associated with a trait considering

all of the studies together. The RE method explicitly models the fact

that loci may have different effects in different studies due to gene-

by-environment interactions. Second, we apply a heterogeneity test

to identify loci with significant gene-by-environment interactions.

Third, we compute the m-value of each study to identify in which

studies a given variant has an effect and in which it does not. Forth,

we visualize the result through a forest plot and PM-plot to

understand the underlying nature of gene-by-environment interac-

tions.

We illustrate our methodology by examining a well-known

region on mouse chromosome 1 harboring the Apoa2 gene, which

is known to be strongly associated with HDL cholesterol [23].

Figure 1 shows the results of applying our method to this locus. We

first compute the effect size and its standard deviation for each of

the 17 studies. These results are shown as a forest plot in Figure 1

Author Summary

Identifying gene-by-environment interactions is important
for understand the architecture of a complex trait. Discov-
ering gene-by-environment interaction requires the obser-
vation of the same phenotype in individuals under different
environments. Model organism studies are often conducted
under different environments. These studies provide an
unprecedented opportunity for researchers to identify the
gene-by-environment interactions. A difference in the effect
size of a genetic variant between two studies conducted in
different environments may suggest the presence of a
gene-by-environment interaction. In this paper, we propose
to employ a random-effect-based meta-analysis approach
to identify gene-by-environment interaction, which as-
sumes different or heterogeneous effect sizes between
studies. Our approach is motivated by the observation that
methods for discovering gene-by-environment interactions
are closely related to random effects models for meta-
analysis. We show that interactions can be interpreted as
heterogeneity and can be detected without utilizing the
traditional approaches for discovery of gene-by-environ-
ment interactions, which treats the gene-by-environment
interactions as covariates in the analysis. We provide a
intuitive way to visualize the results of the meta-analysis at a
locus which allows us to obtain the biological insights of
gene-by-environment interactions. We demonstrate our
method by searching for gene-by-environment interactions
by combining 17 mouse genetic studies totaling 4,965
distinct animals.

Meta-Analysis Identifies GxE Interactions
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(a). Second we compute the P-value for each individual study also

shown in Figure 1 (a). If we were to follow traditional methodology

and evaluate each study separately, we would declare an effect

present in a study if the P-value exceeds a predefined genome-wide

significance threshold (P v1:0|10{6). In this case, we would only

identify the locus as associated in a single study, HMDP-chow(M)

(P = 6:84|10{9). On the other hand, in our approach, we

combine all studies to compute a single P-value for each locus

taking into account heterogeneity between studies. This approach

leads to increased power over the simple approach considering

each study separately. The combined meta P-value for the Apoa2

locus is very significant (4:41|10{22), which is consistent with the

fact that the largest individual study only has 749 animals

compared to 4,965 in our combined study.

In order to evaluate how significantly different the effect sizes of

the locus are between studies, we apply a heterogeneity test. The

statistical test is based on Cochran’s Q test [24,25], which is a non-

parametric test for testing if studies have the same effect or not. In

this locus, the effect sizes are clearly different and not surprisingly

the P-value of the heterogeneity test is significant (5:80|10{5).

This provides strong statistical evidence of a gene-by-environment

interaction at the locus. Below we more formally describe how

heterogeneity in effect size at a given locus can be interpreted as

gene-by-environment interaction.

If a variant is significant in the meta-analytic testing procedure,

then this implies that the variant has an effect on the phenotype in

one or more studies. Examining in which subset of the studies an

effect is present and comparing to the environmental conditions of

the studies can provide clues to the nature of gene-by-environment

interactions at the locus. However, the presence of the effect may

not be reflected in the study-specific P-value due to a lack of

statistical power. Therefore, it is difficult to distinguish only by a P-

value if an effect is absent in a particular study due to a gene-by-

environment interaction at the locus or a lack of power. In order to

identify which studies have effects, we utilize a statistic called the

m-value [16], which estimates the posterior probability of an effect

being present in a study given the observations from all other

studies. We visualize the results through a PM-plot, in which P-

values are simultaneously visualized with the m-values at each

tested locus. These plots allow us to identify in which studies a

given variant has an effect and in which it does not. M-values for a

given variant have the following interpretation: a study with a

Figure 1. Application of Meta-GxE to Apoa2 locus. The forest plot (A) shows heterogeneity in the effect sizes across different studies. The PM-
plot (B) predicts that 7 studies have an effect at this locus, even though only 1 study (HMDP-chow(M)) is genome-wide significant with P-value.
doi:10.1371/journal.pgen.1004022.g001

Meta-Analysis Identifies GxE Interactions
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small m-value(ƒ0:1) is predicted not to be affected by the variant,

while a study with a large m-value(§0:9) is predicted to be

affected by the variant.

The PM-plot for the Apoa2 locus is shown in Figure 1 (b). If we

only look at the separate study P-values (y-axis), we can conclude

that this locus only has an effect in HMDP-chow(M). However, if we

look at m-value (x-axis), then we find 8 studies (HMDPxB-ath(M),

HMDPxB-ath(F), HMDP-chow(M), HMDP-fat(M), HMDP-fat(F),

BxD-db-5(M), BxH-apoe(M), BxH-apoe(F)), where we predict that

the variation has an effect, while in 3 studies (BxD-db-12(F), BxD-

db-5(F), BxH-wt(M)) we predict there is no effect. The predictions

for the remaining 6 studies are ambiguous.

From Figure 1, we observe that differences in effect sizes among

the studies are remarkably consistent when considering the

environmental factors of each study as described in Table 1. For

example, when comparing study 1–4, the effect size of the locus

decreases in both the male and female HMDPxB studies in the

chow diet (chow study) relative to the fat diet (ath study). Thus we

can see that when the mice have Leiden/CETP transgene, which

cause high total cholesterol level and high LDL cholesterol level,

effect size of this locus on HDL cholesterol level in blood is affected

by the fat level of diet. Similarly, when comparing study 12–15,

the knockout of the Apoe gene affects the effect sizes for both male

and female BxH crosses. However, in the BxD cross (study 8–11),

where each animal is homozygous for a mutation causing a

deficiency of the leptin receptor, the effect of the locus is very

strong in the young male animals, while as animals get older and

become fatter, the effect becomes weaker. However in the case of

female mice, the effect of the locus is nearly absent at both 5 and

12 weeks of age. Thus we can see that sex plays an important role

in affecting HDL when the leptin receptor activity is deficient. We

note that there are many genes in this locus and the genetic

mechanism of interactions may involve genes other than Apoa2.

Despite this caveat, the results of Meta-GxE at this locus provides

insights into the nature of GxE and can provide a starting point for

further investigation.

We note that an alternate explanation for differences in effect

sizes between studies is the presence of gene-by-gene interactions

and differences in the genetic backgrounds of the studies. While this

is a possible explanation for differences in effect sizes between the

different crosses and the HMDP studies, in Figure 1, we see many

differences in effect sizes among studies with the same genetic

background. Thus gene-by-gene interactions can only partially

explain the differences in observed effect sizes.

The connection between random effects meta-analysis
and gene-by-environment interactions

Gene-by-environment interactions, random effects meta-analy-

sis and heterogeneity testing are closely related. Suppose we have k
studies each conducted under different environmental conditions.

We define the following linear model, where yi is the observed

phenotype for study i, ai is the phenotype mean for study i, di is

the genetic effect on the phenotype for study i, X is the genotype,

and e is the residual error.

yi~aizdiXze ð1Þ

Since each environment is different, the effect size di is partially

determined by environmentally-specific factors and partially

determined by factors common to all studies. Given that we can

Table 1. 17 HDL studies for meta analysis.

Study ID Strains Conditions Age Sex # Strains # Samples # Sig Loci Ref

HMDPxB-chow(M) (HMDP6BL/6) F1 Leiden/CETP TG,chow diet 8 weeks M 97 516 1 U

HMDPxB-chow(F) (HMDP6BL/6) F1 Leiden/CETP TG, chow diet 8 weeks F 95 468 0 U

HMDPxB-ath(M) (HMDP6BL/6) F1 Leiden/CETP TG, highfat diet 24 weeks M 97 408 0 U

HMDPxB-ath(F) (HMDP6BL/6) F1 Leiden/CETP TG, highfat diet 24 weeks F 93 457 3 U

HMDP-chow(M) HMDP chow diet 12 weeks M 111 749 6 [18]

HMDP-fat(M) HMDP highfat diet 16 weeks M 106 586 0 [14]

HMDP-fat(F) HMDP highfat diet 16 weeks F 92 475 0 [44]

BxD-db-12(M) (DBA6BL/6) F2 BXD db/db, chow diet 12 weeks M 125 125 0 [45]

BxD-db-12(F) (DBA6BL/6) F2 BXD db/db, chow diet 12 weeks F 122 122 0 [45]

BxD-db-5(M) (DBA6BL/6) F2 BXD db/db, chow diet 5 weeks M 109 109 1 [45]

BxD-db-5(F) (DBA6BL/6) F2 BXD db/db, chow diet 5 weeks F 139 139 0 [45]

BxH-apoe(M) (C3H6BL/6) F2 BXH Apoe -/- 24 weeks M 161 161 0 [46]

BxH-apoe(F) (C3H6BL/6) F2 BXH Apoe -/- 24 weeks F 174 174 0 [46]

BxH-wt(M) (C3H6BL/6) F2 BXH wildtype, highfat diet 20 weeks M 164 164 0 [47]

BxH-wt(F) (C3H6BL/6) F2 BXH wildtype, highfat diet 20 weeks F 144 144 0 [47]

CxB-ldlr(M) (BALB/cJ6BL/6) F2 CXB LDLR -/-, highfat diet 12 weeks M 124 124 0 U

CxB-ldlr(F) (BALB/cJ6BL/6) F2 CXB LDLR -/-, highfat diet 12 weeks F 64 64 0 U

Seventeen HDL studies are combined in the meta analysis. U in the Ref column represents a data set that is not yet published. Mice for the HMDPxB panel were created
by breeding females of the various HMDP inbred strains to males carrying transgenes for both Apoe Leiden and for human Cholesterol Ester Transfer Protein (CETP) on a
C57BL/6 genetic background. The Leiden/CETP transgenes [48,49] cause high total cholesterol level and high LDL cholesterol level in the circulation, along with reduced
HDL cholesterol. BxD db/db denotes a population of F2 mice from a cross between C57BL/6 DBA/2 with homozygous deficiency in leptin receptor (db/db), which
results in obese mice. BxH Apoe -/- denotes denotes a population of F2 mice from a cross between C57BL/6 and C3H also carrying a deficiency in apolipoprotein E. CxB
LDLR -/- denotes a population of F2 mice from a cross between C57BL/6 and BALB/cBy also carrying a deficiency in LDL receptor, which results in high LDL cholesterol
level in the circulation BXH wildtype denotes a population of F2 mice from a cross between C57BL/6 and C3H.
doi:10.1371/journal.pgen.1004022.t001

Meta-Analysis Identifies GxE Interactions
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decompose the effect di into environment-independent and

environment-dependent factors. Then we define the following

linear model, where b is the environment-independent genetic

effect and ci is the environment-dependent genetic effect for study

i.

yi~aizbXzciXze ð2Þ

In order to test for the presence of an effect shared across

environments, we test the null hypothesis b~0 and to test for the

presence of a gene-by-environment interaction, we test the

hypothesis that ci~0.

In the random effects meta-analysis, we assume that the effect

size di is sampled from a normal distribution with mean m and

variance t2, denoted di*N(m,t2). Under this assumption, we test

the null hypothesis m~0 and t2~0, in order to obtain a study-

wide P-value. Additionally, we perform a heterogeneity test to test

the null hypothesis d1~ . . . ~dk versus the alternative hypothesis

NOT(d1~ . . . ~dk). We posit that by conducting hypotheses tests

in the meta-analysis framework, we are simultaneously testing for

the presence of environmentally-independent and environmental-

ly-specific effects and that by applying heterogeneity testing we are

testing for only environmentally-specific effects.

Consider that in the meta-analysis framework m is analogous to

b and the variation (t2) around m is analogous to variation among

cis. In the random effects meta analysis testing framework we are

testing if m~0 and t2~0. This is equivalent to testing both

environmentally-independent (b~0) and environmentally-depen-

dent (ci~0) effects simultaneously. In heterogeneity testing, we test

the null hypothesis d1~ . . . ~dk versus the alternative hypothesis

NOT(d1~ . . . ~dk). When the environmentally-dependent effect

(ci) is 0 it means that t2~0 and thus d1~ . . . ~dk. When t2
=0,

we expect that di will vary around m, so that we do not expect that

di~dj . Since the variation (t2) of di around m is analogous to the

variable ci, heterogeneity testing in the meta-analysis framework is

approximately equivalent to testing for environmentally-specific

effects.

Gene-by-environment interactions are prevalent in
mouse association studies

The presence of heterogeneity in the effect size at causal genetic

loci due to gene-by-environment interactions is naturally expected

in mouse genetic studies when combining studies with varying

environmental conditions. One extreme example comes from a

knock-out experiment. If the knocked-out gene is causal for a

particular trait, then we can expect that the gene would have no

effect on a knock-out mouse, while the gene would have an effect

on the wild type mouse. This is a binary form of heterogeneity. In

a less extreme form of heterogeneity, the effect of a given gene may

be affected by an environmental factor which varies in different

mice – ranging from small effects to large effects.

To see the relationship between significance of the association

and gene-by-environment interactions, we compute and compare

this P-value for each SNP from the 17 studies using the random

effects meta-analysis to a measure of heterogeneity. Heterogeneity

can be assessed by I2 statistic, which describes the percentage of

variation across studies that is due to heterogeneity rather than

chance [26].

Figure 2 compares I2 statistic with the meta-analysis P-value for

each SNP. In this figure, we see that I2 is uniformly distributed for

the non-significant SNPs (blue dots), while it is right skewed for

significant SNPs (red dots), indicating that more significant SNPs

have a greater potential for exhibiting heterogeneity in effect. Since

heterogeneity in this case can be interpreted as representing gene-

by-environment interactions, as heterogeneity is induced by

differences in the environment, we see that the presence of a

GxE interaction confers higher power to detect an association.

Power of meta-analysis for detecting gene-by-
environment interactions

The power to identify both gene-by-environment and main

effects in a meta-analysis of mouse studies depends on both the

main effect size and the amount of heterogeneity. We performed

simulations using the genotypes of the 17 mouse studies analyzed

in this paper. We simulated a range of main effect (mean effect)

sizes and a range of gene-by-environment effects. We are simu-

lating the realistic scenario in which we do not know exactly the set

of covariates which are responsible for the gene-by-environment

effects. We simulated gene-by-environment effects by drawing the

effect in each study from a distribution with a mean given by the

main effect size and a variance controlling the magnitude of gene-

by-environment interactions. If this variance is small, then all of

the studies have close to the same effect size and there are few

gene-by-environment effects. If the variance is high, then there are

strong gene-by-environment effects. Figure 3 shows the results of

our simulations. 1000 simulated phenotypes were generated for

each mean and variance pair. Statistical power is estimated by

computing the proportion of the datasets in which a simulated

effect is detected. We observe that the power is high for a wide

range of main effect sizes and gene-by-environment effect sizes

which is explained by the large sample size of the study. We also

observe that even for small main effects, if there are strong gene-

by-environment effects, we can still identify the locus. This is

because in this case a subset of the studies will have strong effect

sizes due to gene-by-environment effects.

Our approach is not the only way to analyze a meta-analysis

study. We compare the power to two other meta-analytic

approaches. The first is the traditional meta-analysis strategy

which uses a fixed effects model (FE) in which all of the effect sizes

across studies are assumed to be the same. We utilize an extension

of the fixed effects model which corrects for population structure

[15]. A second alternate strategy is to simply apply the hete-

rogeneity test (HE), which in our framework is only applied to loci

first identified using random effects meta-analysis. The HE test

follows the intuition that loci with high heterogeneity will harbor

gene-by-environment interactions. For the purposes of the

comparison we refer to Meta-GxE as the random effects (RE)

model.

The level of gene-by-environment interactions can be simulated

by changing both the environment-dependent and environment-

independent effect simultaneously, when simulating the pheno-

type. Figure 4 (a)–(c) shows the power of the three approaches (RE,

FE, HE) respectively when we vary the mean and variance of the

effect size distribution we sampled from. In this simulation study,

mean effect represents shared effect and variance of the effect size

represents interaction effect. As expected, RE has high power in

cases where the shared effect or the interaction effect is large. FE

has high power when the shared effect is large and the HE test has

high power when the interaction effect is large. Figure 4 (d) shows

the heatmap which is colored with the color of highest powered

approach. FE is most powerful at the top-left region, HE is most

powerful at the bottom-right region, while RE is most powerful for

a majority of the simulations. In the Text S1, we show through

simulations that our methodology outperforms the alternative

fixed effects and heterogeneity testing approaches when the effect

is present in a subset of the studies, which is another possible
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interaction model we can assume. We also show in the Text S1

that our approach is more powerful than the traditional uni- or

multi-variate gene-by-environment association approach which

assumes knowledge of the covariates involved in gene-by-

environment interactions. For the traditional uni- or multi-variate

approach, required knowledge includes kinds of variable (e.g. sex,

age, gene knockouts) and encoding of the variables (e.g. binary

values, continuous values). In the Text S1, we also show the our

proposed approach controls the false positive rate.?

Application to 17 mouse HDL studies
We applied Meta-GxE to 17 mouse genetic studies conducted

under various environmental conditions where each study mea-

sured HDL cholesterol. Table 1 summarizes each study. More

details are provided in the Materials and Methods section and in

Text S1. We analyzed all 17 studies together and we also analyzed

the 9 male and 8 female studies separately. Some significant

associations are shared and some associations are specific to males

and females.

The Manhattan plots in Figure 5 show the meta-GxE result

when applied to the 17 studies, 9 male only studies and 8

female only studies. Table 2 summarizes 26 significant peaks

(Pv1:0|10{6) showing the P-values obtained by applying meta-

GxE to the male only studies (9 studies), the female only studies (8

studies) and the male+female studies (17 studies). For each

significant locus, we computed m-values, interpreted as the

posterior probability of having an effect on the phenotype and

report the number of studies with an effect (E), the number of

studies with ambiguous effect size (A) and the number of studies

without an effect (N). We also report the number of individual

studies where the locus was significant (Pv1:0|10{6). As seen in

the table, many of the loci were not significant in any of the

individual studies and would not have been discovered without

combining the studies. We note that we use a more stringent

genome wide threshold of Pv1:0|10{6 than was used in the

Figure 2. The prevalence of heterogeneity in effect size of significant loci. Each dot represents association between SNPs and HDL
phenotype from applying random effects based meta-analysis approach. Dots with larger I2 value represents the existence of more heterogeneity at
the locus between studies. The distribution of the heterogeneity statistic for significant SNPs (red dots) in the meta analysis is skewed toward higher
heterogeneity while the non-significant SNPs are much less skewed.
doi:10.1371/journal.pgen.1004022.g002
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original studies. The Genes in Region and Gene Refs columns

contain the gene names near the locus previously known to affect

HDL cholesterol level or closely related lipid level in the blood and

associated literature citations.

Among the 26 loci that we identified by applying Meta-GxE, 24

loci are near the genes (mostly genes are located within 1MB of the

peak) known to affect HDL or closely related lipid level in the

blood, while 3 loci are novel.

For example, we identified 3 loci (Chr10:21399819, Chr19:

3319089, ChrX:151384614) female mice show a more significant

effect on HDL phenotypes than male mice. We also identified 7

loci (Chr1:171199523, Chr8:46903188, Chr8:64150094, Chr8:

84073148, Chr10:90146088, Chr11:69906552, Chr15:21194226)

where male mice show a more significant effect on HDL than

female mice.

Interestingly, we observed that in 3 loci (Chr10:21399819,

Chr19:3319089, ChrX:151384614), female mice are more highly

affected, while in 7 loci (Chr1:171199523, Chr8:46903188, Chr8:

64150094, Chr8:84073148, Chr10:90146088, Chr11:69906552,

Chr15:21194226) male mice are more highly affected. Among 26

loci, many show a significant heterogeneity in effect sizes be-

tween the 17 studies, which we interpret as gene-by-environment

interactions.

One interesting example showing strong gene-by-environment

interaction is a locus in Chr8:84073148. This locus is located

near the gene Prkaca, which is known to affect the abnormal

lipid levels in blood [27]. Figure 6 shows the forest plot and PM-

plot for this locus. If we look at the forest plot of the locus in

Figure 6, we can easily see that there are two groups: 12 studies

with an effect (red dots) and 5 studies with an ambiguous

prediction of the existence of an effect (green dots). Interestingly,

the log odds ratios of effect size for the 12 studies with an effect is

about the same (around 0.2). The common characteristic in 4

of the 5 studies (HMDPxB-chow(F), HMDPxB-ath(F), BXH-

apoe(F), CXB-ldlr(F)) is that they are female mice with high LDL

levels in the blood. In addition, in all 4 cases, these high LDL

levels are caused by mutant genes. Mice in HMDPxB-chow and

HMDPxB-ath studies have transgenes for both Apoe Leiden and

for human Cholesterol Ester Transfer Protein (CETP), while

mice in the BXH-apoe and CXB-ldlr studies carried knockouts of

the genes for Apoe and LDL receptor, respectively. This is a

strong evidence that there is an interaction between sex6muta-

Figure 3. Power of mouse meta-analysis to identify gene-by-environment interactions in 4,965 animals from 17 studies under
varying mean effect sizes and the per study variance of the effect size which corresponds to gene-by-environment effects.
doi:10.1371/journal.pgen.1004022.g003
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tion-driven LDL levels through this locus (Chr8:84073148) when

affecting HDL levels in mice.

Figures S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S16,

S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29,

S30 show the forest plots and PM-plots for each locus, which show

information such as effect sizes, the direction of the effect, which

study has an effect and which study does not have an effect for

each of 17 studies at the given locus.

Discussion

In this paper, we present a new meta-analysis approach for

discovering gene-by-environment interactions that can be applied

to a large number of heterogeneous studies each conducted in

different environments and with animals from different genetic

backgrounds. We show the practical utility of the proposed

method by applying it to 17 mouse HDL studies containing 4,965

mice, and we successfully identify many known loci involved in

HDL. Consistent with the results of meta-analysis in human

studies, our combined study finds many loci which were not

discovered in any of the individual studies.

A point of emphasis is that in our study design, in each of the

combined studies, all of the individuals in the study are subject to

only a single environment. This is distinct from other approaches

for discovery of gene-by-environment interactions using meta-

analysis such as those described in [28]. In these approaches, in

each of the combined studies, the individuals in the study are

subject to multiple environments and information on each

individual’s environment is collected. Gene-by-environment sta-

tistics are then computed in each study and then combined in the

meta-analysis. In our study design, we compute main effect sizes

for each SNP and then look for variants where the effect sizes are

different suggesting the presence of a gene-by-environment

interaction.

Figure 4. Power of (a) random-effect, (b) fixed-effect meta-analysis and (c) heterogeneity meta-analysis methods as a function of
the effect size and the strength of the interaction effect (heterogeneity). (d) shows a comparison of the three methods with the
color corresponding to the method with the highest power.
doi:10.1371/journal.pgen.1004022.g004
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In our meta-analysis approach, we assume that we do not have

any prior knowledge of the effect size in any particular study.

However one might incorporate prior knowledge of the specific

environmental effects. In some cases, one might know that some of

the studies have similar effect sizes as compared to others. Or the

prior knowledge might suggest that one specific study needs to be

eliminated in the meta analysis. If we utilize such prior knowledge,

we may be able to achieve even higher statistical power.

In this paper we have addressed how to perform meta-analysis

when the studies have different genetic structures, building off the

results of our previous study [15]. While in this paper we combine

7 HMDP studies with 10 genetic crosses, the approach in principle

can be used to combine any variety of study types. Recently,

several strategies for mouse genome-wide association mapping

have been proposed [29] [17]. These include HMDP [18],

collaborative cross [30] and outbredstock [21] [17]. The approach

presented here can be utilized to combine these different kinds of

studies and is a roadmap for integrating the results of different

strategies for mouse GWAS.

Although we have focused on explaining heterogeneity by gene-

by-environment interaction, it is possible that the differences in

effect sizes can be caused by gene-by-gene interactions on different

genetic backgrounds, where the interacting variants differ in

frequency in the different studies. While gene-by-gene interactions

certainly contribute to locus heterogeneity, we predict that, in

combining studies with similar genetic structures, locus heteroge-

Figure 5. Manhattan plots showing the results of Meta-GxE applied to (a) 17 HDL studies, (b) 9 HDL studies consisting only of male
animals and (c) 8 studies consisting only of female animals.
doi:10.1371/journal.pgen.1004022.g005
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Table 2. 26 significant loci identified by applying Meta-GxE analysis.

SNP Meta GxE P Meta GxE P Meta GxE P # of Studies w/ HE Meta P # Studies Genes Gene

Location (Male) (Female) (Male+Female) Significant P (Male+Female) E/A/N in Region Refs

Chr1:64752822
(rs31078051)

1.1261026 2.3761023 9.8261028 0 3.8261023 2/14/1 Pikfyve [50]

Chr1:107271282
(rs32203839)

6.6961024 2.6661024 7.6761027 0 7.5561022 6/0/11 Bcl2 [51]

Chr1:171199523
(rs32075748)

3.45610216 1.3961027 4.41610222 1 5.8061025 8/6/3 Apoa2 [52]

Chr2:77837584
(rs6273567)

1.5561024 7.1761024 5.7461027 0 2.2561022 3/14/0 Agps [53]

Chr2:134421733
(rs27238693)

7.6961026 1.6661023 1.0961027 0 1.6361022 5/12/0 Jag1 [54]

Chr3:32944259
(rs29869794)

2.9761026 2.4961022 3.6861027 0 2.3661025 3/8/6 Prkci [55]

Chr3:76066632
(rs31487078)

5.8961023 2.2961025 5.0361027 0 6.5661022 4/13/0 Novel -

Chr3:107430396
(rs30013147)

9.5961026 3.8461025 1.5661029 0 7.7461022 7/10/0 Csf1 [56]

Chr3:143466942
(rs30206761)

1.8261023 3.9761025 3.3461027 0 8.6061022 7/10/0 Hs2st1 [57]

Chr4:131925523
(rs32595861)

1.7261024 2.8461024 1.4261027 0 8.6561024 6/8/3 Fabp3 [58]

Chr5:119034507
(rs33131194)

1.2361024 2.5961023 9.0061027 0 3.9461021 9/8/0 Nos1 [59,60]

Chr8:46903188
(rs33272858)

1.4761027 6.5261021 1.6661026 1 1.6261024 2/11/4 Acsl1 [61]

Chr8:64150094
(rs31750594)

1.9661027 1.8961024 1.33610210 0 8.3461021 11/6/0 Cpe [62]

Chr8:84073148
(rs33435859)

1.9561028 4.5361024 4.94610211 0 8.3361021 12/5/0 Prkaca [27]

Chr9:101972687
(rs6333310)

1.2261024 1.2261025 4.0561029 0 1.9861028 2/1/14 Pik3cb [63]

Chr10:21399819
(rs29363941)

9.0761024 3.6461027 3.3661029 0 1.1861022 3/12/2 Ifngr1 [64]

Chr10:90146088
(rs29370592)

1.9361027 0.756 1.0261025 1 8.9461024 2/14/1 Nr1h4 [65]

Chr11:69906552
(rs29477071)

5.7761028 1.3561025 3.17610212 0 2.3761029 6/9/2 Plscr3 [66]

Chr11:114083173
(rs29416888)

1.1061024 7.8361025 1.7161027 0 5.2861025 3/13/1 Acox1 [67]

Chr14:33632464
(rs31061259)

1.9661024 1.6561023 8.9061027 0 2.0261025 3/10/4 Ppyr1 [68]

Chr15:21194226
(rs31670969)

1.9661028 1.2961022 8.97610210 1 5.6561027 3/2/12 Novel -

Chr15:59860191
(rs3718217)

5.6461026 1.4561025 5.31610210 0 9.9261025 5/10/2 Trib1, Sqle [69,70]

Chr17:46530712
(rs33259313)

1.0961025 4.9061023 3.2661027 0 3.5361025 5/10/2 Gnmt [71]

Chr18:82240606
(rs13483466)

2.0561024 2.2361024 1.3261027 0 9.0561021 5/12/0 Mbp [72]

Chr19:3319089
(rs31004232)

5.5861022 8.5361027 4.5661027 0 1.0861021 3/14/0 Lrp5 [73]

ChrX:151384614
(rs31202008)

2.5961024 4.7261026 8.0961029 0 1.1261021 5/5/0 Htr2c [74]

Twentysix significant loci identified by applying Meta-GxE analysis of both random effects meta-analysis and heterogeneity testing to 17 mouse HDL studies under
different environments containing 4,965 total animals. # studies E denotes the number of studies with an effect on HDL phenotype. # studies N denotes the number of
studies with no effect on HDL phenotype. # studies A denotes the number of studies with an ambiguous effect size. Genes in region denotes candidate genes for each
locus based on close proximity to the peak SNP and previously suggested role in lipid or apolipoprotein metabolism: Pikfyve (phosphoinositide kinase), Bcl2 (B cell
leukemia/lymphoma 2), Apoa2 (apolipoprotein A-II), Agps (alkylglycerone phosphate synthase), Jag1 (jagged 1), Prkci (protein kinase C), Prkci (colony stimulating
factor 1 (macrophage)), Hs2st1 (heparan sulfate 2-O-sulfotransferase 1), Fabp3 (fatty acid binding protein 3), Nos1 (nitric oxide synthase 1), Acsl1 (acyl-CoA
synthetase long-chain family member 1), Cpe (carboxypeptidase E), Prkaca (protein kinase, cAMP dependent, catalytic, alpha), Acox1 (peroxisomal acyl-coenzyme A
oxidase 1), Ppyr1 (pancreatic polypeptide receptor 1), Trib1(tribbles homolog 1), Sqle (squalene epoxidase), Gnmt (glycine N-methyltransferase), Mbp(myelin basic
protein), Lrp5 (low density lipoprotein receptor-related protein 5), Htr2c (5-hydroxytryptamine (serotonin) receptor 2C).
doi:10.1371/journal.pgen.1004022.t002
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neity more likely arises from gene-by-environment interactions. In

any case, determining whether or not these heterogeneous loci are

environment-driven or interaction-driven is an important and

interesting direction for future study.

Materials and Methods

Standard study design for testing gene-by-environment
interactions

In the model organism studies for which we can control the

environment, the standard study design for testing gene-by-

environment interactions is to combine multiple cohorts whose

environments are known. The environmental value that we vary is

typically a quantitative measure that we can model with a single

random variable. Thus, the standard univariate linear model can

be applied

y~mzaDzbXzcX :Dze

where y is n|1 vector of phenotype measurements from n

individuals, m is the phenotype mean, a is the main environmental

effect mean, D is n|1 environmental status vector, b is the genetic

effect, X is n|1 genotype vector, c is GxE interactions effect,
: denotes the dot-product between two vectors, and e is the

residual error, which follows normal distribution. In this model,

vector D is a vector of indicators which describes the environ-

mental status of each individual. study. For example, Suppose the

environmental condition of one study is wildtype and that of

another is gene knockout. In this case, the environmental

condition of wildtype is described as 0 and that of knockout is

described as 1. In order to test if there are interactions, we test the

null hypothesis c~0 versus the alternative hypothesis c=0.

Another possible testing strategy is to test the interactions effect

together with the genetic effect, that is, the null hypothesis

b~0 and c~0 versus the alternative hypothesis b=0 or c=0.

This strategy is powerful in detecting loci exhibiting both the

genetic effects and the interactions effects.

Multivariate interactions model
For more complicated scenarios where the different environ-

ments can not be modeled with a single variable, a straightforward

Figure 6. Peak SNP in chromosome 8 shows interesting gene-by-environment interactions between sex6mutation-driven LDL
levels.
doi:10.1371/journal.pgen.1004022.g006
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extension of the standard univariate interactions model is the

multivariate model. Suppose that there are k different possible

environments and the information on the environments of each

individual are captured by a matrix D which has k columns where

each column corresponds to one environment. Then, the standard

multivariate interactions model will be

y~
Xk

i~1

aiDizbXz
Xk

i~1

ciX
:Dize ð3Þ

Di is the ith column of the D matrix, ai is the environment specific

mean, y denotes the phenotype measurements, X denotes the

genotypes, b denotes the fixed genetic effect, ci denotes GxE

interactions effect of ith environmental variable and, and e denotes

the residual error. Then the testing will be between the null

hypothesis c1~0 and . . . and ck~0 versus the alternative hy-

pothesis c1=0 or . . . or ck=0. The test statistic will be

SMult~
Xk

i~1

Z2
i

where Zi is the z-score corresponding to ci. SMult follow x2
(k) under

the null. Similarly to the univariate model, if we want to test the

interactions effect together with genetic effect, we add the z-score

corresponding to b into the statistic, in which case the statistic will

follow x2
(kz1).

Standard meta-analysis approach
Before we describe the relationship between gene-by-environ-

ment interactions and meta-analysis, we first describe the standard

fixed effects and random effects meta-analysis in details.

Fixed effects model meta analysis. In standard meta-

analysis, we have N studies. In each of the N studies, we estimate

the effect size of interest. Suppose that we estimate the genetic

effect in study i,

yi~aizdiXizei ð4Þ

We can obtain the estimates of di and its variance Vi. In the

fixed effects model meta-analysis, we assume that the underlying

effect sizes are the same as d (d~d1~ . . . ~dN ). The best estimate

of d is the inverse-variance weighted effect size,

�dd~

P
WidiP
Wi

, ð5Þ

where Wi~1=Vi is the so-called inverse variance. Then we test

the null hypothesis d~0 versus the alternative hypothesis d=0.

Testing heterogeneity. The phenomenon that the underly-

ing effect sizes differ between studies is called heterogeneity. The

presence of heterogeneity is tested using the Cochran’s Q test

[24,25]. Cochran’s Q test is a non-parametric test for testing if N

studies have the same effect or not. Particularly it tests the null

hypothesis d1~ . . . ~dN versus the alternative hypothesis

NOT(d1~ . . . ~dN ). Cochran’s Q statistic can be calculated as

the weighted sum of squared differences between individual study

effects and the pooled effect across studies.

Q~
XN

i~1

Wi(di{�dd)2 ð6Þ

Cochran’s Q statistic has a chi-square statistic with N{1 degrees

of freedom.

Random effects model meta analysis. Under the random

effects model meta-analysis, we explicitly model heterogeneity by

assuming a hierarchical model. We assume that the effect size of

each study di is a random variable sampled from a distribution

with amean d and variance t2,

di*N(d,t2)

Traditional formulations of a random effects meta-analysis method

are known to be overly conservative [24,31,32]. However, we

recently developed a random effects model that addresses this issue

[33]. The method assumes that there is no heterogeneity under the

null, a modification that is natural in the context of association

studies because the effect size should be fixed to be zero under the

null hypothesis. This random effects model tests the null

hypothesis d~0 and t2~0 versus the alternative hypothesis

d=0 or t2
=0.

Similarly to the traditional random effects model [24], we use

the likelihood ratio framework considering each statistic as a single

observation. Since we assume no heterogeneity under the null,

m~0 and t2~0 under the null hypothesis. The likelihoods are

then

L0~P
i

1ffiffiffiffiffiffiffiffiffiffi
2pVi

p exp {
d2

i

2Vi

 !

L1~P
i

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p(Vizt2)

p exp {
(di{m)2

2(Vizt2)

 !
:

The maximum likelihood estimates m̂m and t̂t2 can be found by an

iterative procedure suggested by Hardy and Thompson [34].

Then the likelihood ratio test statistic can be built

Smeta~{2 log(l)~
X

log
Vi

Vizt̂t2

� �
z
X d2

i

Vi

{
X (di{m̂m)2

Vizt̂t2
, ð7Þ

whose P-value is calculated using tabulated values [33].

Relation between gene-by-environment interactions and
meta-analysis

Here we explain more about the relationship between gene-by-

environment interactions and meta-analysis based on the expla-

nation in Results section. If we do not consider the interactions, it

has been already known that the fixed effects model meta-analysis

is approximately equivalent to the linear model of combined

cohorts [35]. That is, the fixed effects model equation (5) gives

approximately equivalent results to the combined linear model

y~
Xk

i~1

aiAizbXze ð8Þ

where X is the combined genotype vector from all cohorts, A is a
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matrix that includes indicator columns which identify which

individual is in each cohort, Ai is the ith column of matrix A, and

ai is the cohort specific mean. The two methods are approximately

equivalent because they both test the fixed mean effect (b in

equation (8) and d in equation (5)). The subtle difference between

the two models is that in equation (8), we assume the error e

follows a single normal distribution (e.g. N(0,s2)), whereas in

equation (5), the variance of the distributions may differ between

studies (e.g. ej*N(0,s2
j ) for each j). In other words, under the

constant error variance assumption (s2
1~s2

2~ . . . ~s2
N ), the two

models become equivalent and b in equation (8) equals d in

equation (5),

b~d :

Similarly, by considering interactions, we extend this argument

to show the relationship between gene-by-environment interac-

tions and meta-analysis. We consider the relationship between

equation (3) and equation (4). For simplicity of the notation, we

consider the case where the matrix D is defined in such a way that

each individual is only in one environment such that the D matrix

is equivalent to the matrix A described above. If we assume the

constant error variance assumption, we establish the following

relationship,

di~bzci

where the left hand side is the coefficient of the genotype Xi of

study i from the meta-analysis equation (4) and the right hand side

is the same coefficient of Xi (the study i’s part within the combined

genotype matrix X ) from the equation (3).

Suppose that there are no interactions (null hypothesis of

interaction testing). Then, ci~0 for each study i. Thus, the effect

size of meta-analysis di is equivalent to b, the genetic effects that

are invariant across studies. Therefore, t2~0 (null hypothesis of

heterogeneity testing). On the other hand, suppose that t2~0 (null

hypothesis of heterogeneity testing). Naturally, ci~0 for all studies

(null hypothesis of interaction testing). This shows that the null

hypothesis of the interactions test in the model (3) and the null

hypothesis of the heterogeneity test in meta-analysis are equiva-

lent. As a result, we can utilize meta-analytic heterogeneity testing

to detect interactions.

Using reasoning, it is straightforward to show that we can utilize

the random effects model meta-analysis method to detect the

mean effect and the interaction effect at the same time, which can

be powerful for identifying loci bearing both kinds of effects.

Controlling for population structure within studies
Model organism such as the mouse are well-known to exhibit

population structure or cryptic relatedness [36,37], where genetic

similarities between individuals both inhibit the ability to find true

associations and cause the appearance of a large number of false or

spurious associations. Mixed effects models are often used in order

to correct this problem [38–42]. Methods employing a mixed

effects correction account for the genetic similarity between

individuals with the introduction of a random variable into the

traditional linear model.

yi~mzdiXzuizE ð9Þ

In the model in equation (9), the random variable ui represents

the vector of genetic contributions to the phenotype for individuals

in population i. This random variable is assumed to follow a

normal distribution with ui*N(0,s2
gKi), where Ki is the ni|ni

kinship coefficient matrix for population i. With this assumption,

the total variance of yi is given by Si~s2
gKizs2

eI . A z-score

statistic is derived for the test di~0 by noting the distribution of

the estimate of d̂di. In order to avoid complicated notation, we

introduce a more basic matrix form of the model in equation (9),

shown in equation (10).

yi~SiCzuizE ð10Þ

In equation (10), Si is a ni|2 matrix with the first column being

a vector of 1 s representing the global mean and the second vector

is the vector and C is a 2|1 coefficient vector containing the

mean ai and genotype effect (di). We note that this form also easily

extends to models with multiple covariates. The maximum

likelihood estimate for C in population i is given by

ĈCi~(S
0
iS

{1
i Si)

{1S
0
iS

{1
i yi which follows a normal distribution

with a mean equal to the true C and variance (S
0

iS
{1
i Si)

{1. The

estimates of the effect size di and standard error of the di (SE(di))
are then given in equation (11) and equation (12), where

R~½0 1� is a vector used to select the appropriate entry in the

vector ĈCi.

di~R(S
0
i S

{1
i Si)

{1S
0
i S

{1
i yi ð11Þ

SE(di)~½R(S
0
i S

{1
i Si)

{1R
0 �1=2 ð12Þ

Meta-analysis of studies with population structure
When we test gene-by-environment interactions with meta

analysis approaches, one important step is correcting for

population structure. This can be achieved by correcting for

population structure within each study first as described above.

For example, consider the random effects model meta-analysis

method that we primarily focus on. We employ population

structure control, using (11) and (12). Then the likelihood ratio test

statistic will be

SPop~{2 log(l)~
X

log
Vi

Vizt̂t2

� �

z
X d2

i

Vi

{
X (di{m̂m)2

Vizt̂t2
,

ð13Þ

where di~R(S
0
i S

{1
i Si)

{1S
0
i S

{1
i yi and Vi~½R(S

0
i S

{1
i Si)

{1R
0 �.

Identifying studies with an effect
After identifying loci exhibiting interaction effects, we employ

the meta-analysis interpretation framework that we recently

developed. The m-value [16] is the posterior probability that the

effect exists in each study. Suppose we have n number of studies

we want to combine. Let E~½d1,d2, . . . ,dn� be the vector of

estimated effect sizes and V~½V1,V2 . . . ,Vn� be the vector of

estimated variance of n effect sizes. We assume that the effect size

di follows the normal distribution.

Meta-Analysis Identifies GxE Interactions

PLOS Genetics | www.plosgenetics.org 13 January 2014 | Volume 10 | Issue 1 | e1004022



P(di Dno effect)~N(di; 0,Vi) ð14Þ

P(di Deffect)~N(di; m,Vi) ð15Þ

We assume that the prior for the effect size is

m*N(0,s2) ð16Þ

A possible choice for s in GWASs is 0.2 for small effect and 0.4 for

large effect [43]. We also denote Ci be a random variable whose

value is 1 if a study i has an effect and 0 otherwise. We also denote

C as a vector of Ci for n studies. Since C has n binary values, C
can be 2n possible configurations. Let U~½c1, . . . ,c2n � be a vector

containing all the possible these configurations. We define m-value

mi as the probability P(Ci~1DE), which is the probability of study

i having an effect given the estimated effect sizes. We can compute

this probability using the Bayes’ theorem in the following way.

mi~P(Ci~1DE)~

P
c[Ui

P(EDC~c)P(C~c)P
c[U P(EDC~c)P(C~c)

ð17Þ

where Ui is a subset of U whose elements’ ith value is 1. Now we

need to compute P(EDC~c) and P(C~c). P(C~c) can be

computed as

P(C~c)~
B(DcDza,n{DcDzb)

B(a,b)
ð18Þ

where DcD denotes the number of 1’s in c and B denotes the beta

function and we set a and b as 1 [16]. The probability E given

configuration c, P(EDC~c), can be computed as

P(EDC~c)~

ð?
{?
P
i[c0

N(di; 0,Vi)P
i[c1

N(di; m,Vi)p(m)dm ð19Þ

~�CCN(�dd; 0, �VVzs2)P
i[c0

N(di; 0,Vi) ð20Þ

�dd~

P
i WidiP

i Wi

and �VV~
1P

i

Wi

ð21Þ

where where c0 is the indices of 0 in c and c1 is the indices of 1 in

c, N(d; a,b) denotes the probability density function of the normal

distribution with mean a and variance b. Wi~V{1
i is the inverse

variance or precision and �CC is a scaling factor.

�CC~
1

(
ffiffiffiffiffiffi
2p
p

)N{1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi

WiP
i Wi

s
exp

{
1

2

X
i

Wid
2
i {

(
P

i Widi)
2P

i Wi

 !( ) ð22Þ

All summations appeared for computing �dd, �VV and �CC are with

respect to j[t1.

The m-values have the following interpretations: small m-values(0.1)

represent a study that is predicted to not have an effect, large m-

values(0.9) represent a study that is predicted to have an effect, otherwise

it is ambiguous to make a prediction. It was previously reported that m-

values can accurately distinguish studies having an effect from the

studies not having an effect [16]. For interpreting and understanding

the result of the meta-analysis, it is informative to look at the P-value

and m-value at the same time. We propose to apply the PM-plot

framework [16], which plots the P-values and m-values of each study

together in two dimensions. Figure 1 (b) shows one example of a PM-

plot. In this example, studies with an m-value less than 0:1 are

interpreted as studies not having an effect while studies with an m-value

greater than 0:9 are interpreted as studies having an effect. For studies

with an m-value between 0:1 and 0:9, we cannot make a decision. One

reason that studies are ambiguous (0:9ƒm{valueƒ0:1) is that they

are underpowered due to small sample size. If the sample size

increases, the study can be drawn to either the left or the right side.
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