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Abstract

Most bacteria at certain stages of their life cycle are able to move actively; they can swim in a liquid or crawl on various
surfaces. A typical path of the moving cell often resembles the trajectory of a random walk. However, bacteria are capable of
modifying their apparently random motion in response to changing environmental conditions. As a result, bacteria can
migrate towards the source of nutrients or away from harmful chemicals. Surprisingly, many bacterial species that were
studied have several distinct motility patterns, which can be theoretically modeled by a unifying random walk approach. We
use this approach to quantify the process of cell dispersal in a homogeneous environment and show how the bacterial drift
velocity towards the source of attracting chemicals is affected by the motility pattern of the bacteria. Our results open up
the possibility of accessing additional information about the intrinsic response of the cells using macroscopic observations
of bacteria moving in inhomogeneous environments.
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Introduction

Bacteria constitute a major part of the biomass on our planet

[1]. They come in different shapes and sizes and are able to swim

in water and crawl on surfaces [2]. Bacteria build complex

colonies called biofilms [3] and find ways to adapt to the harshest

environmental conditions [4]. One of the ways cells react to

changes in the environment is by employing various ‘‘taxis-

strategies’’. In response to gradients in temperature, chemicals, or

electric fields [5], bacteria are able to alternate their motility to

locate favorable niches and avoid dangerous locations. Chemo-

taxis is one of the best studied examples of this behavior and its

biochemical mechanisms in bacteria are rather well understood

[6]. However, bacteria moving in homogeneous environments

often have a very distinct motility pattern, which is defined by the

phenotype of the cell. It remains unclear how different motility

patterns of bacteria can affect their ability to perform chemotaxis.

In this paper, we propose a generalized random walk description

of a broad class of observed bacterial motility patterns. It allows us

to describe quantitatively the dispersal process of bacteria and

calculate the effect of the motility pattern on the chemotactic

behavior of the cells. This rigorous description creates the

possibility of accessing additional information about the intrinsic

response of the cells using macroscopic observations of bacteria

moving in constant gradients or towards the point source of a

chemical.

The run-and-tumble motion of E. coli bacteria is probably the

best-known example of bacterial swimming. E. coli has multiple

flagella, which can rotate and propel the cell forward. Flagella

rotating in the counterclockwise (CCW) direction form a bundle

and the cell is in the ‘‘run’’ mode of highly persistent motion.

When one or several flagella reverse the direction of rotation, the

bundle comes apart and the cell body performs an irregular

tumbling motion [7]. Usually, there is little displacement during

the ‘‘tumbling’’ mode and it mainly serves to reorient the direction

of the cell for the next run. For E. coli, the turning angles are

randomly distributed with an average of about 700. Many marine

bacteria, such as S. putrefaciens or P. haloplanktis [8], that have just a

single flagellum simply reverse the direction of their swimming

when the flagellum switches the direction of rotation; this results in

a turning angle distribution peaked around 1800. Interestingly, the

run-reverse strategy is not exclusive to swimming cells but was also

observed for bacteria moving on surfaces. Some bacteria, as for

example M. xanthus [9,10], can also use different cell appendages

called pili [11,12] or even more complex mechanisms, to attach to

and actively move on surfaces. In this case, the alternation of pili

activity on different poles of elongated cells also leads to the run-

reverse motility pattern.

In response to changing environmental conditions, like a

difference in concentration of a certain signaling chemical or

nutrient, bacteria are able to regulate the durations of their run

phases [13]. On average, runs become longer if a bacterium moves

towards the source of the attracting signal and shortened if it

moves away from the source [5,14]. It is important that in bacteria

the probability to tumble or to continue a run depends on the

concentration of the chemical sampled by the cell during its

motion for a certain time interval, weighted by the internal

response function of the cell [15]. Therefore, the chemotactic

behavior and the motility pattern of bacteria are tightly coupled
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together. Recently, another pattern of swimming was reported for

V. alginolyticus bacteria [16]. These marine bacteria also have one

flagellum, but during each second reversal its rotation is unstable

and leads to a random turn of the cell body [17,18]. Hence, a

trajectory of these bacteria is composed of strictly alternating 1800

reversals and random turns with an average of 900. Remarkably,

V. alginolyticus were three times faster in gathering around the

source of a chemoattractant when compared to E. coli [16,19]. To

test if such an increased performance during chemotaxis can be

attributed to their peculiar motility pattern, we developed a

random walk model describing the trajectories of bacteria. It

allowed us to calculate analytically the diffusion constants in the

absence of the chemical and the drift speeds in a small linear

gradient of chemoattractant. In particular, we show that the

motility pattern alone cannot explain the experimentally observed

difference between the chemotactic behavior of V. alginolyticus and

E. coli. This strongly suggests that, instead, a difference in the

response functions of the bacteria is the key feature that leads to

the distinct behaviors observed experimentally. Our model can

serve as an analytical tool to test for various response strategies of

individual cells and relate them to the observed macroscopic

agglomeration dynamics.

Motility patterns
We start with a brief description of three distinct motility

patterns exhibited by bacteria. It appears that the motility of quite

a large part of studied or practically relevant bacterial species can

be attributed to one of these three classes. We first focus on a two-

dimensional setup, since many tracking experiments for swimming

cells are performed in planar geometry and surface-related motility

is naturally two-dimensional. We will however show how to

generalize our results to higher dimensions.

Swimming E. coli alternate persistent runs with tumbling events

(see Fig. 1a). The duration of tumbles on average is about ten times

shorter than the duration of runs, and in our model we will assume

this time to be vanishingly small (however, see also Ref. [20],

where tumbling times were explicitly modeled). The distribution of

run times is well approximated by the exponential function with a

mean value of *1 s [13]. Recent experiments on tethered cells

and accompanying theoretical analysis also suggest the possibility

of run times with a power-law distribution [21,22]. Each run does

not follow a perfectly straight line. The interaction of the cell body

and flagella with the surrounding fluid results in a fluctuating

direction of the cell velocity, which can be well described by

rotational diffusion [13]. The speed of the cell during a single run

and from one run to another is nearly constant [14,23].

Depending on the environmental conditions, the typical speed of

E. coli is in the range of 15{30mm s{1 [13,24]. After a tumbling

event, the new direction of swimming has on average an angle of

710 with the direction of the previous run [13].

Up to 70% of marine bacteria [25] and also bacteria twitching

on surfaces, such as P. aeruginosa or M. xanthus, adopt a similar

strategy to that of E. coli, but with 1800 reorientation events (see

Fig. 1b). The speed of their forward and backward motion is

usually comparable [26]. Note that the run speeds of marine

bacteria can reach up to 400mm s{1 [27], whereas cells twitching

on a surface are much slower with typical speeds of *0:1mm s{1

[28]. The motility pattern of another marine bacterium, V.

alginolyticus, is similar to the run-reverse strategy. However, the

flagellum of these cells is unstable when its rotation switches from

CW to CCW direction, leading to the appearance of ‘‘flicks’’ –

completely randomizing turning angles with an average of 900 (see

Fig. 1c) [16]. Durations and speeds of runs after reversal or flick

are fairly similar [16].

Analysis

To describe quantitatively the dynamics of dispersal of the

bacteria exhibiting the above motility patterns, we propose the

following generalized random walk model. Each random walker

representing a single bacterium moves with velocity v(t)~ve(t),
where the speed v~Dv(t)D is constant and the unit vector

e(t)~ cos Q(t),sin Q(t)ð Þ denotes the direction of propagation at

time t, see Fig. 2. Integration of the velocity with respect to time

yields the particle’s trajectory r(t)~r(0)z
Ð t

0
dt’ v(t’). It will be our

first goal to determine the velocity autocorrelation function

C(t1,t2)~Sv(t1):v(t2)T, ð1Þ

where S � � � T denotes the ensemble average. It is directly

connected to the mean squared displacement (MSD) via the

Kubo relation

S½r(t){r(0)�2T~

ðt

0

dt1

ðt

0

dt2 Sv(t1):v(t2)T: ð2Þ

If the MSD is a linear function of t for large times, the diffusion

coefficient can be defined as D~ lim
t??

S½r(t){r(0)�2T=(2dt), where

d is the spatial dimension [29,30]. Durations of runs are random

and described by the probability density function (PDF) f (t). For

the model with two types of events we will allow for two separate

PDFs of the run time after the corresponding reversal (r) or flick (f )

event, fr,f (t). When a run is interrupted by a turning event

(tumbling or reserval), the particle’s direction of motion changes

instantaneously by an angle Q, drawn from the probability density

g(Q)~
1

2
d(Q{Q0)zd(QzQ0)½ �, ð3Þ

where Q0*710 for run-and-tumble of E. coli and Q0*1800 for run-

reverse motion. Note that assuming a delta-peaked distribution for

g(Q) is a minor simplification; as we also show in Sec. III of Text

S1, our results do not change if one considers a continuous

distribution which leads to the same persistence parameter

a~Scos QT. The turning angles for run-reverse and flick mode

will be alternatingly chosen as +1800 (r) and +900 (f ).

In the case of constant speed, the correlation function C(t1,t2) is

determined by the dynamics of the angle Q(t) describing the

direction of the cell’s motion,

C(t1,t2)~v2 Scos Q(t2){Q(t1)½ �T~v2 <Se{i½Q(t2){Q(t1)�T, ð4Þ

where < denotes the real part; note that, for symmetry reasons, the

imaginary part vanishes after averaging. The random walk

dynamics of the angle Q(t) can be decomposed into two parts,

Q(t)~Qrw(t)zQrot(t), ð5Þ

where Qrw(t) models the actual random walk due to a specific

motility pattern with straight paths and jumps in the angle given

by Eq. (3), and Qrot(t) describes angular changes due to rotational

diffusion. It is natural to assume that the effects of fluctuations

during the runs are independent of the reorientation events

resulting from tumbles and reversals. Therefore, the averaging in

Eq. (4) can be decoupled into

Bacterial Motility and Chemotaxis
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Se{iDQT~Se{iDQrwT Se{iDQrotT, ð6Þ

where DQ~Q(t2){Q(t1). The velocity correlation function factor-

izes into a pattern-specific part Crw(t1,t2) and a factor due to

rotational diffusion Crot(t1,t2):

C(t1,t2)~Crw(t1,t2)|Crot(t1,t2): ð7Þ

The latter is known to be Crot(t1,t2)~exp {Dt2{t1D=trotð Þ, where

trot~1=(2Dr) is the characteristic rotational diffusion time

showing how fast a particle is forgetting its direction of motion,

and Dr is the rotational diffusion constant [31]. The averaging of

the random walk part Se{iDQrwT from Eq. (6) can be expressed as

Se{iDQrwT~Se{i½Qrw(t2){Qrw(t1)�T

~

ðz?

{?
dQ1

ðz?

{?
dDQ e{iDQ P(Q1,t1; DQ,t2):

ð8Þ

Here, P(Q1,t1;DQ,t2) is the joint probability density to find a

particle with direction Q1 at time t1 and direction Q1zDQ at time

t2. We define the Fourier transform of a function g(Q) as

�gg(k)~
Ðz?
{? dQ e{ikQg(Q), and observe that Eq. (8) corresponds to

a double Fourier transform of P with respect to Q1 and DQ, where

the corresponding coordinates in Fourier space are set to k1~0
and k2~1, respectively:

Se{iDQrwT~�PP(k1,t1; k2,t2)Dk1~0, k2~1: ð9Þ

To find the joint PDF P(Q1,t1;DQ,t2), we note that it is just a two-

point density for a continuous time random walk model (CTRW)

[32–34], where the angle Q performs this random walk. We now

show how to solve the problem for the three motility patterns in

question.

Results

Random walk with one turning angle
For run-and-tumble and run-reverse motion, the angular jump

distribution g(Q) is given by Eq. (3). In this case, we make use of a

result from random walk theory for the joint probability P entering

Eqs. (8, 9) [32–34] (see Sec. I of Text S1 for details). To proceed,

we define the Laplace transform of a function f (t) as

f̂f (s)~L½f (t)�(s)~
Ð?

0
dt e{stf (t); the combined Fourier-Laplace

transform of a function h(Q,t) is denoted as

(k,s)~
Ð?

0
dt e{st

Ðz?
{? dQ e{ikQ h(Q,t), where the Laplace trans-

form corresponds to the variables t<s and the Fourier transform

corresponds to Q<k. After introducing the survival probability

F (t)~1{
Ð t

0
dtf (t), one obtains

~PP(k1~0,p; k2~1,s)~

F̂F (p)F̂F(s)z L½f (t1zDt)�(p,s){F̂F(p)F̂F (s)
� �

(1{cos Q0)

½1{f̂f (p)�½1{f̂f (s) cos Q0�
,
ð10Þ

where the correspondence p<t1 and s<Dt~t2{t1 applies for

the Laplace transform; note that

L½f (t1zDt)�(p,s)~
Ð?

0
dt1

Ð?
0

dDt e{pt1 e{sDtf (t1zDt) can be

rewritten as
L½f (t1)�(p){L½f (Dt)�(s)

s{p
, see for instance Ref. [35].

This is a very general result for the two-point density function,

where the evolution for Dtw0 depends on the pre-history of the

system until time t1. It is therefore capable of describing processes

with aging, in particular with run times, which follow a power-law

distribution [32–34]. Formally, we have thus solved our random

walk model analytically for any distribution f (t) of run times. To

calculate the correlation function Crw(t1,t2), one has to find the

inverse Laplace transform of Eq. (10) with respect to p and s, and

this sometimes presents a technical difficulty. To apply our result

Figure 1. Sketch of the predominant motility patterns. a) Run-and-tumble, b) Run-reverse, and c) Run-reverse-flick. During a ‘‘run’’ event, a cell
moves with high persistence. Runs are interrupted by reorientation events like tumbling or reversal. The time steps t1vt2vt3vt4 indicate the
sequence of these events. An average turning angle after tumbling in E. coli bacteria is *700 (a), whereas it is an almost perfect reversal of 1800 for
many marine bacteria, or cells with twitching motility due to cell appendages, called pili (b). V. alginolyticus (c) alternates reversals (at t2) with
randomizing flicks (at t3) with an average turning angle of 900 .
doi:10.1371/journal.pone.0081936.g001

Figure 2. Setup of the model. A cell with velocity v(t) moves at
constant speed v. The angle Q(t) between the velocity vector v(t) and
the x axis defines the direction of cell motion.
doi:10.1371/journal.pone.0081936.g002

Bacterial Motility and Chemotaxis
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to relevant biological examples, we will focus on two special cases,

namely run times which follow an exponential or power-law

distribution.

Exponential distribution of run times
We first consider an exponential run time distribution,

f (t)~
1

trun

exp {
t

trun

� �
, ð11Þ

where trun~
Ð?

0
dt f (t)t is the mean run time. Since the

exponential PDF is the memoryless distribution, Eq. (10) simplifies

considerably. Performing two inverse Laplace transforms and

using Eqs. (4, 8), we obtain a well-known result for the velocity

autocorrelation function [36],

Crw(t1,t2)~v2 exp {
Dt2{t1D

~tt

� �
, ~tt~

trun

1{cos Q0

, ð12Þ

which decays exponentially on the time scale ~tt. It is plotted for

run-and-tumble motion for E. coli (a~Scos QT~0:33) and run-

reverse (a~Scos QT~{1) in Fig. 3. With the help of Eq. (2), we

find the MSD for the random walk pattern (without rotational

diffusion),

S½r(t){r(0)�2Trw~2v2~tt2 t

~tt
{1ze{t=~tt

� �
, ð13Þ

whose analytical form also arises from the Ornstein-Uhlenbeck

process of a Brownian particle [37]. Note that, up to this point, our

results were derived for the model in d~2. In Sec. III of Text S1,

we show that Eq. (13) is also valid for d~3. Therefore, below we

use d~3 to compute the diffusion constant and compare with

known results. For small times t%~tt, the MSD from Eq. (13)

describes ballistic motion; for large times t&~tt, the MSD scales

linearly in time, S½r(t){r(0)�2Trw*6Dt (see Fig. 4), with diffusion

coeffficient [13,36]

D~
v2trun

3(1{cos Q0)
: ð14Þ

Note that the regime of reversals, where cells backtrack along their

previous path, has a minimal diffusion constant, which is two times

smaller than in the case of completely random reorientations with

cos Q0~0. The limiting case of Q0~00 generates ballistic motion,

such that D diverges. However, this divergence can be regularized

by rotational diffusion during the run events. As a consequence of

Eq. (7), the full velocity autocorrelation function then becomes

C(t1,t2)~v2 exp {
Dt2{t1D

teff

� �
, ð15Þ

which gives rise to the characteristic time scale teff~
~tt trot

~ttztrot

, or

1

teff
~

1

~tt
z

1

trot
: ð16Þ

Power-law distribution of run times
In Refs. [21,22], it was pointed out that cells of E. coli can have

power-law distributed run times,

f (t)~
c

t0 1zt=t0ð Þ1zc
, ð17Þ

with exponent c&1:2. The power-law distribution (17) leads to a

finite mean run time StT~t0=(c{1) (for cw1), but the average of

the squared run length diverges, leading to anomalous diffusion

[35]. Also because of the power-law tail in the distribution of run

times, memory effects play a significant role in the transport

process. This means that the probability that a cell tumbles within

a small time interval depends on its history. However, with the

help of the general expression Eq. (10), which explicitly takes into

account these memory effects, we can calculate Crw(t1,t2). The

double inverse Laplace transform required to compute the

correlation function in the real time domain presents a technical

challenge, which can be resolved numerically. Analytically, it is

Figure 3. Velocity correlation function. The normalized velocity
correlation function Crw(t1,t2)=v2 is plotted as a function of dimen-
sionless time Dt1{t2D=trun. The curves are shown for run-and-tumble of
E. coli with persistence parameter a~0:33 (red), run-reverse with
a~{1 (green), and run-reverse-flick with alternating a~{1 and a~0
(blue). The analytical expressions are given in Eqs. (12) and (21),
respectively.
doi:10.1371/journal.pone.0081936.g003

Figure 4. Mean squared displacement (MSD). The curves of the
normalized MSD versus dimensionless time t=trun correspond to E. coli’s
run-and-tumble with a~0:33 (red), run-reverse with a~{1 (green),
and run-reverse-flick with alternating a~{1 and a~0 (blue). The
analytical expressions are given in Eqs. (13) and (22), respectively. The
crosses are obtained from numerical simulations and fully agree with
the analytical results.
doi:10.1371/journal.pone.0081936.g004
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possible to consider the asymptotic behavior of the correlation

function for large t1 and Dt (corresponding to the limit p, s?0 in

Laplace space). An asymptotic analysis for 1vcv2 leads to

Crw(t1,t2)^v2 1z
Dt2{t1D

t0

� �1{c

{ 1z
max(t2,t1)

t0

� �1{c
" #

, ð18Þ

valid for large t1, t2, and Dt2{t1D. One of the remarkable results

here is that in the asymptotic regime the correlation function and

therefore the MSD do not depend on the turning angle

distribution: Long persistent runs dominate over geometric effects.

From Eq. (18), it follows that the MSD displays superdiffusive

behavior for large times, when the MSD grows faster than linearly

in time: S½r(t){r(0)�2Trw!t3{c. In fact, the trajectories of

bacteria in this regime represent a two-dimensional realization

of a Lévy walk [35,38]. If we now consider rotational diffusion

during the runs it makes the dispersal normal again and for large

times the MSD scales linearly in time.

Random walk with alternating turning angles: Run-
reverse-flick

We now discuss the motility pattern, which is represented by the

alternation of a forward run, reversal event, backward run, and

flick event. The angular jump distribution from Eq. (3) is thus

different for reversal and flick angles,

gr,f (Q)~
1

2
d(Q{Qr,f )zd(QzQr,f )
h i

, ð19Þ

with Qr~1800 and Qf ~900. We also allow for two different

distributions for run times after reversals fr(t) and after flicks ff (t).

To determine the joint probability density P, we formulate and

solve the full set of equations of the underlying CTRW for the

direction Q(t). In Sec. I of Text S1, we sketch the derivation and

present our analytical result for the two-point PDF P. It is exact

and holds for arbitrary run time and turning angle distributions in

its most general form. In the following, we restrict our study to the

experimentally relevant case of exponential distributions, as given

in Eq. (11), but we allow for two different mean values tr and tf ,

corresponding to run times after reversal and flick events,

respectively. Our approach yields an exact analytical result for

the velocity autocorrelation function,

Crw(t1,t2)~

v2

tf (tf {2tr)exp {
jt2{t1j

tf

� �
{tr(tr{2tf )exp {

jt2{t1j
tr

� �
(tf {tr)(tf ztr)

:

ð20Þ

For V. alginolyticus, the mean run times are similar with

tr*tf *0:3 s. For a single run time trun~tr~tf , Eq. (20) then

reduces to

Crw(t1,t2)~v2 1{
Dt2{t1D
2trun

� �
exp {

Dt2{t1D
trun

� �
: ð21Þ

A peculiar feature of this correlation function is that it becomes

negative for Dt2{t1Dw2trun, see also Fig. 3. Note that for the run-

reverse pattern without flicks, the correlations are always positive,

see Eq. (12). Next, we use Eq. (21) to obtain the expression for the

MSD,

S½r(t){r(0)�2Trw~v2trunt 1{e{t=trun
� �

: ð22Þ

The functional form of this MSD is different from the

corresponding expression for the random walk with a single

turning angle [Eq. (13)]. However, it is striking that the resulting

diffusion coefficient D~v2trun=6 is identical for run-reverse and

run-reverse-flick motion, see Fig. 4. This degeneracy vanishes if

rotational diffusion during the runs is taken into account; the

diffusion coefficient then reads (for d~3)

D~
v2

6

1=trunz2=trot

1=trunz1=trotð Þ2
, ð23Þ

and, in general, Drun{rev{flick§Drun{rev. It is instructive to

present the result for the diffusion coefficient with tr=tf (for

details, see Sec. I of Text S1):

D~
v2

3

t2
r {trtf (1{2Drtr)zt2

f (1z2Drtr)

(trztf )(1z2Drtr)(1z2Drtf )
: ð24Þ

The exact answers (23) and (24) differ from previous simple

estimates [16,19,39]. For example, an intuitive attempt to use an

average value of cos(1800) and cos(900) and substitute it into Eq.

(14) [19] yields an incorrect result. We also see that the diffusion

constant does not vanish when tr*tf , cf. [16].

Comparison of the diffusion coefficient for E. coli and V.

alginolyticus. As typical parameters, we set v~19 mm s{1 and

trun~1 s for E. coli, and v~45 mm s{1 and trun~0:3 s for V.

alginolyticus [13,16,24,40]. A realistic rotational diffusion constant,

which is applicable to both types of bacteria, is Dr~0:2 rad2 s{1

[16,41]. With these numbers, the diffusion coefficients (in d~3)

read

E:coli D~112mm2 s{1,

V :alginolyticus D~101mm2 s{1:

Note that the diffusion coefficient is sensitive to the rotational

diffusion constant Dr if the mean run time is comparable to the

time scale of rotational diffusion trot~1=(2Dr)~2:5 s, as is the

case for E. coli. For example, the diffusion coefficient of E. coli

becomes D~180 mm2 s{1, if we neglect rotational diffusion and

set Dr~0.

This demonstrates how the rigorous theoretical model can

quantitatively describe the dispersal of bacteria in a homogeneous

environment. We next investigate the process of chemotaxis.

Chemotaxis
If a bacterium, such as E. coli, is exposed to a gradient of

chemoattractant, for example amino acids or sugars, with

concentration c, it changes its unbiased run-and-tumble strategy

in order to move along the gradient [13]. To do so, the genetic

chemotactic pathway of E. coli extends the run times if the cell

swims in the direction of increasing concentration +c [14]. The

bacterial response to a short pulse of chemoattractant is measured

by the fraction of time that a flagellum tethered to a surface rotates

CCW [42]; the response reveals a biphasic behavior. After the

stimulation with the chemical pulse, the fraction quickly reaches a

maximum and remains above the baseline for *1 s, then it falls
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below and finally approaches the baseline after *4 s [15]. The

shape of this curve for the fraction of CCW rotation motivated the

introduction of a response function R(t). In Ref. [43], the response

function was used to linearly connect the tumbling rate l(t) of a

bacterium to the concentration of chemicals it experienced along

its path,

l(t)~l 1{

ðt

{?
dt’ c(t’)R(t{t’)

� �
, ð25Þ

where l~1=trun is the cell’s tumbling rate in a homogeneous

environment. In fact, l(t) hardly increases when a cell moves

against the gradient [14,15]; however, we use the full expression

from Eq. (25) and note that our calculations could also be modified

to account for this detail. In this paper, we employ the following

analytical expression for the response function, which was

frequently used in previous work [41,44,45]:

R(t)~W le{lt 1{
lt

2
{

lt

2

� �2
" #

, t§0: ð26Þ

Here, we introduce a single normalization constant W with the

dimension of volume. One of the interesting features of R(t) is that

it satisfies the adaptive response property
Ð?

0
dt R(t)~0.

In Ref. [46], de Gennes used Eq. (25) and a perturbation theory

approach to calculate the chemotactic drift velocity of bacteria,

vd~ lim
t??

Sr(t){r(0)T=t, in the presence of a small gradient D+cD.

This result was generalized by Locsei for E. coli by including the

directional persistence between tumbling events and rotational

diffusion during runs [45]. Note that the result is fully consistent

with the different approach by Celani and Vergassola from Ref.

[41]: The authors also assume the tumbling rate from Eq. (25), but

they introduce additional Markovian internal variables and arrive

at a Fokker-Planck description. The hydrodynamic limit provides

expressions for the chemotactic sensitivity x~vd=D+cD and

bacterial diffusivity D. The directionality parameter v&1 from

[41] corresponds to our persistence parameter a~1=3—the value

of E. coli—, and using the adaptive response property, both the

diffusion constant and chemotactic sensitivity from [41] agree with

[13,36,45].

Using the response function from Eq. (26), the drift speed

vd~Dvd D is given by [45]

vd~D+cDWv2 l2 l(5{2a)z4Dr½ �(1{a)

6 2Drzl(1{a)½ � 2Drzl(2{a)½ �3
: ð27Þ

This is plotted as a function of a~Scos QT in Fig. 5 (red curve).

We are primarily interested in the effect of the motility pattern on

the chemotactic drift speed vd . Therefore, we use the chemotactic

response function of E. coli for our modeling; to the best of our

knowledge, it is also the only experimentally measured one.

However, we recall that the chemotactic response of bacteria, such

as E. coli, B. subtilis, or R. sphaeroides, has been recently modeled on

a biochemical level [47,48].

Chemotactic drift speed for run-tumble-flick motion
We want to compare the chemotactic drift speed of run-and-

tumble with persistence parameter a~Scos QT to a random walk,

where one turn happens with the same a, but every second angular

change stems from a flick, which destroys any directional

persistence. We denote the second pattern as ‘‘run-tumble-flick’’;

setting a~{1 yields the run-reverse-flick strategy.

Now it is important to consider the motion of cells in three

dimensions. We assume a small chemical gradient D+cD in the z
direction, and the concentration c(t), which is experienced by the

bacterium at position z(t), becomes c(t)~D+cDz(t). In the simplest

case, the times for runs after tumbles and flicks are equally

distributed with mean trun~l{1. We then take the approach from

Eq. (25) and perform a calculation of vd in the spirit of Refs.

[45,46]: To first order in D+cD, we determine the mean

displacement during a forward and subsequent backward run,

SzT, which yields the chemotactic drift speed vd~SzT=(2trun). We

arrive at the following result (see Ref. [49] and Sec. IV of Text S1

for details):

vd~j+cjWv2l2

16D3
r (2{a)z4lD2

r (22{5a)z2l2Dr(38z5a)zl3(20z11a)

192(lzDr)
4(lz2Dr)

2
:
ð28Þ

The chemotactic drift speed vd is always positive and a linear

function of a (see the blue curve in Fig. 5). The red curve of Fig. 5

shows vd for the same parameters but without flicks. For negative

persistence parameter a, the additional flick event helps the

random walker to approach the gradient better, and vd is larger

with a flick for av0. For a~0, both random walk processes are

equal as they have no persistence, and the curves intersect. For

increasing aw0, vd is smaller in the presence of the randomizing

flick event. Finally, there is a pronounced difference at a~1,

where vd~0 for the run-and-tumble strategy, while vd becomes

maximal for run-tumble-flick motion. This is easy to understand

since the a~1 in the run-and-tumble model entails no turning

events for the cell and the cell is not able to move actively in the

direction of the gradient. An additional flick clearly allows the cell

to reorient.

Note that a similar calculation for the run-reverse-flick pattern is

also found in Ref. [39], where the chemotactic drift is determined

only for the delta-response R(t)!d(t{T) and without rotational

diffusion. Our result in Eq. (28) is based on the response function

of E. coli and explicitly shows the influence of rotational diffusion

on the chemotactic drift speed.

Figure 5. Comparison of the chemotactic drift speed vd versus
persistence parameter a between run-tumble-flick [Eq. (28)]
and run-tumble [Eq. (27)]. All parameters are adjusted to E. coli in
the gradient D+cD~1 mm{4 with l~1 s{1 , v~19mm s{1 , Dr~0:2 s{1,
and W~0:0458mm3 .
doi:10.1371/journal.pone.0081936.g005
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Comparison of the chemotactic drift speed for E. coli and

V. alginolyticus. In recent experimental work [24], the

chemotactic drift velocity of E. coli in a constant gradient of the

amino acid serine was measured. It is important to note that the

perturbative nature of the analysis we used to calculate the drift

velocity assumes a very small gradient. An obvious limitation on

the gradient arises from Eq. (25), where the rate l(t) cannot

become negative. Therefore, we use the value of the drift speed for

the smallest measured gradient (see Sec. II of Text S1) and formula

(27) to calculate the only remaining unknown parameter

W~0:0458mm3. As before, we use v~19 mm s{1, l~1 s{1 for

E. coli, and v~45 mm s{1, l~3:3 s{1 for V. alginolyticus. Rotational

diffusion is set to Dr~0:2 rad2 s{1, and the value of the gradient is

D+cD~1 mm{4. Finally, we stress that we choose the same shape

and prefactor W of the response function for both bacteria.

For E. coli, the chemotactic drift speed then becomes

vd~1mm s{1. For V. alginolyticus, we obtain the larger value

vd~1:23mm s{1. For smaller values with Dr *; 0:14 rad2 s{1, the

chemotactic drift speed of V. alginolyticus becomes smaller than that

of E. coli; as in the above case, for sufficiently large Dr, the winner

of the chemotaxis race is the run-reverse-flick swimmer V.

alginolyticus, see Fig. 6. However, as the swimming speed of V.

alginolyticus v~45 mm s{1 is more than twice that of E. coli

v~19mm s{1, we also compare the chemotactic index, defined by

vd=v. For Dr~0:2 rad2 s{1 or smaller values, vd=v for E. coli

(5.3%) is almost twice as large as for V. alginolyticus (2.7%). In this

sense, the relative chemotaxis race trophy goes to E. coli. Ref. [19]

reports the experimental observation that ‘‘V. alginolyticus has a

threefold larger chemotactic velocity than E. coli.’’ Our analytical

results clearly show that the motility pattern alone cannot explain

the threefold difference in the chemotactic behavior observed

experimentally. In fact, the only unknown in our model is the

response function of V. alginolyticus bacteria, which for the sake of

comparison we set to be the same as of E. coli. It is therefore

natural to conclude that a different response function of V.

alginolyticus is the key to interpret the experimental data of Ref.

[16].

Discussion

We have demonstrated how the careful analysis of bacterial

motility patterns could quantitatively describe the dispersal of cells

in homogeneous environments and the chemotactic drift velocity

in small gradients of signaling chemicals. When the characteristic

length scale on which the chemical concentration changes is much

larger than the average run length of the cell, it is possible to use a

continuous description for the density of cells r(r,t). Its dynamics

can be described by an advection-diffusion equation, as part of the

Keller-Segel model for chemotactic aggregation [50], where the

drift term represents the effect of chemotaxis and biases the

otherwise uniform spreading of cells,

Ltr~D+2r{+(rx+c): ð29Þ

Here, c(r,t) denotes the chemical field and x~vd=D+cD is defined as

the chemotactic sensitivity and assumed to be constant. We can

consider an oversimplified setting of an infinite one-dimensional

domain with an imposed gradient of the chemical and find a

stationary solution for this problem. One can show that the density

of cells follows the profile of the chemical and has the following

shape:

r(r)! exp
x

D
c(r)

� �
: ð30Þ

This stationary profile depends on the ratio of the chemotactic

drift coefficient x and diffusion constant D. If we estimate this ratio

for E. coli and V. alginolyticus, again assuming the same response

function, they appear to be remarkably close to each other:

x=D~0:009 mm3 (E. coli), x=D~0:012 mm3 (V. alginolyticus). This

result cannot be directly compared to the available experimental

data [16], where gradients are very steep and the characteristic

width of the cloud of cells around the source of the chemoat-

tractant becomes comparable to the average length of the cell run.

Nevertheless, the significantly different extensions of the cell

clumps forming around the source hint to a difference in the

response function between the two bacterial species (and not the

motility pattern) as the reason for the observed behavior.

It appears that many cells, which are able to perform

chemotaxis, have the motility patterns discussed in this paper. In

particular, our analytical approach is not limited to the bacterial

world, but can also be applied to swimming algae [51], cells

moving during the early stages of embryo development [52], or

artificial nano swimmers [53] — all of them demonstrating a very

similar motility pattern. There are some examples, like swimming

P. putida bacteria, which in addition to a reversal have also two

different speeds for backward and forward motion [54]. With

Figure 6. Chemotactic drift speed as a function of Dr for E. coli and V. alginolyticus. The plot on the left shows vd ; on the right, the
chemotactic drift is normalized by the swimming speed as vd=v and coincides with the chemotactic index.
doi:10.1371/journal.pone.0081936.g006
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some minor modifications such a scenario can easily be

incorporated into the framework developed here. The fact that

the motility pattern of cells is now accounted for rigorously, makes

it possible to apply the model to the existing data on drift velocities

or agglomeration experiments [8,16]. This way, it is feasible to

access the characteristics of cells, like the response function, which

would require much more sophisticated experiments to be

measured directly. The response functions of various bacteria

might have different functional forms or different strengths and

depend on the chemical nature of the signal. We believe that our

theoretical framework, complemented by numerical simulations,

may serve as an excellent tool to test various hypotheses regarding

the response of bacteria and check their consistency with

experimental data for various motility patterns of bacteria

observed in nature and laboratory.

Supporting Information

Text S1 How the motility pattern of bacteria affects
their dispersal and chemotaxis.
(PDF)
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