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Abstract
A critical question in tuberculosis control is why some strains of Mycobacterium tuberculosis are
preferentially associated with multiple drug resistances. We demonstrate that M. tuberculosis
strains from Lineage 2 (East Asian lineage and Beijing sublineage) acquire drug resistances in
vitro more rapidly than M. tuberculosis strains from Lineage 4 (Euro-American lineage) and that
this higher rate can be attributed to a higher mutation rate. Moreover, the in vitro mutation rate
correlates well with the bacterial mutation rate in humans as determined by whole genome
sequencing of clinical isolates. Finally, using a stochastic mathematical model, we demonstrate
that the observed differences in mutation rate predict a substantially higher probability that
patients infected with a drug susceptible Lineage 2 strain will harbor multidrug resistant bacteria
at the time of diagnosis. These data suggest that interventions to prevent the emergence of drug
resistant tuberculosis should target bacterial as well as treatment-related risk factors.

Recently, strains of Mycobacterium tuberculosis have emerged that are resistant to most or
all effective antibiotics1-4. Given the low mutation rate of M. tuberculosis5,6 and its slow
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replication rate, it is unclear how the bacterium acquires resistance to multiple antibiotics,
especially in the face of concurrent multiple drug treatment. The most commonly cited risk
factors for treatment failure due to antibiotic resistance are patient noncompliance1-4,7-9,
inappropriate drug regimens and dosing2,5,6,9,10 and primary infection with drug resistant
strains11,12. The relative importance of bacterial determinants of treatment failure has been
unclear. Recently, whole genome sequencing of M. tuberculosis isolates has revealed the
importance of novel mutation in the emergence of drug resistance13-15. Sequencing of M.
tuberculosis from patients failing antibiotic therapy revealed that new antibiotic resistance
mutations can arise multiple times within a given individual15. Moreover, several studies
suggest that certain strains of M. tuberculosis may be more frequently associated with multi-
drug resistance (MDR) 16,17. Given that all drug resistances in M. tuberculosis occur
through chromosomal mutation, these data suggest that the mutational capacity of the
bacterium may be an important determinant of the likelihood of drug resistance.

M. tuberculosis forms phylogeographic lineages associated with particular human
populations18-21. Though less genetically diverse than many other pathogens, there is both
experimental and clinical evidence that M. tuberculosis strains from different lineages vary
in their capacity to cause disease20-24 and acquire drug resistance11,12,16,20,25-28.
Specifically, M. tuberculosis strains within Lineage 2 (the East Asian lineage, which
includes the Beijing family of strains) have been epidemiologically associated with an
increased risk of drug resistance in several cross-sectional studies in diverse locales, though
not in all29. Strains from this lineage have polymorphisms in DNA replication,
recombination, and repair genes as compared to Lineage 4 (the Euro-American lineage)
strains, raising the possibility that they are more mutable than other M. tuberculosis
strains30. However, these epidemiologic observations might also reflect social and
programmatic factors (such as noncompliance and inappropriate dosing) correlating with the
phylogeography of the Lineage 2 strains. Indeed, in vitro studies comparing the rate or
frequency of drug resistance in the Lineage 2 and Lineage 4 strains have produced differing
results31,32. Here, we sought to determine the rate at which M. tuberculosis strains of
different lineages acquire drug resistance and the effect of strain based differences in
mutation rate on the predicted de novo generation of MDR in patients with tuberculosis.

Results
Effect of mutation and genetic background on drug resistance in M. tuberculosis

To measure the drug resistance rate of strains from different M. tuberculosis lineages, we
performed Luria-Delbrück fluctuation analysis33,34 on a panel of laboratory and clinical
isolates from both Lineage 2 and Lineage 4. All strains were fully drug susceptible, with
MIC's at least 100 fold less than the drug concentrations at which we assessed drug
resistance rates (MICrif<0.015μg/mL; MICINH<0.007 μg/mL, Supplemental Table 1).
Within both lineages, there was some strain-to-strain variation in the rate at which
rifampicin resistance was acquired (Figure 1). However, every strain from Lineage 2
acquired resistance to rifampicin (2μg/mL) at a significantly higher rate than every Lineage
4 strain, with a nearly 10-fold difference between the means of the two groups (Figure 1,
Supplementary Table 1).

The higher rate of rifampicin resistance could reflect three possible mechanisms: 1)
differences in the ability to survive and mutate after exposure to antibiotic, 2) inherent
differences in the number of rpoB mutations conferring rifampicin resistance (target size), or
3) differences in the basal mutation rate in the absence of selection. To test these hypotheses,
we chose well-characterized representatives from Lineage 4 and Lineage 2 - CDC1551 and
HN878, respectively - for further study.
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Differences in response to antibiotic
We first sought to determine whether Lineage 4 and Lineage 2 strains differed in their
ability to acquire drug resistance after exposure to rifampicin. Fluctuation analysis assumes
that all mutations occur prior to selection and that all mutants replicate as well as wild
type33; however, if a strain is capable of surviving and mutating in the presence of drug, it
will produce a greater number of drug-resistant mutants. Building on similar studies in
Saccharomyces cerevisiae35, we reasoned that if mutations occur in the presence of a drug,
then lowering the drug concentration might allow strains from both lineages to grow and
acquire mutations post-exposure. Conversely, increasing the drug concentration might
abrogate the ability of both strains to survive and acquire mutations in the presence of drug.
However, we found that statistically significant increases in the rifampicin resistance rate for
the Lineage 2 strain, HN878, relative to the Lineage 4 strain, CDC1551, were maintained
over 10-fold variation in drug concentration (0.5μg/mL – 5μg/mL) (Figure 2, Supplementary
Table 1).

To extend these findings, the distribution of mutations observed in each fluctuation assay
can be analyzed using tools developed by Lang et al35. This analysis takes advantage of the
fact that mutations occurring in culture, prior to antibiotic exposure, result in a Luria-
Delbrück distribution. While mutations arise according to a Poisson distribution, the
subsequent outgrowth of mutants during broth culture generates a Luria-Delbrück
distribution. In contrast, mutations occurring after plating on antibiotic will occur according
to a Poisson distribution without the expansion in culture that creates a Luria-Delbrück
distribution33,36,37. Thus, the appearance of any additional mutants resulting from
acquisition of resistance after antibiotic exposure will generate a mixed distribution of the
number of mutants, containing a Poisson-distributed number of post-plating mutants and a
Luria-Delbrück-distributed number of mutants occurring prior to drug exposure.

We therefore used a curve-fitting approach to determine whether the distribution of mutant
frequencies in the two strains is better fit using a one-parameter Luria-Delbrück model, or a
two-parameter Luria-Delbrück and Poisson mixture model (Figure 3a-f). The algorithm first
fits the data to a Luria-Delbrück model alone, and then optimizes the fit with the addition of
a Poisson model. A purely Poisson model was also fit to serve as a reference. We used the
Akaike information criterion with correction for sample size (AICC) to identify instances
where the Luria-Delbrück model alone provided the optimal fit over either the Poisson
model or the two parameter mixture model38,39. The AICC quantifies the evidence in favor
of using a more complex model (here, the two parameter mixture model) over a simpler
(here, Luria-Delbrück) model, appropriately penalizing the fit of the more complex model
by the increase in model complexity. As expected, the ΔAICc (AICC(Luria-Delbrück) -
AICC(Poisson)) was highly negative in all conditions, confirming that the Luria-Delbrück
model fits the distributions significantly better than the Poisson model alone (Supplementary
Table 2). More revealing, the ΔAICc (AICC(Luria-Delbrück) - AICC(two parameter)) was
also negative, indicating that there is insufficient evidence to support the inclusion of an
additional Poisson component in the Luria-Delbrück distributions (Figure 3g,
Supplementary Table 2). This suggests that post-exposure mutation is not responsible for the
higher rifampicin resistance rate in HN878, the Lineage 2 (East Asian) strain.

This analytic approach also suggests that the difference in rifampicin resistance rates is not
due to strain based differences in the fitness effects of the drug-resistance mutations33,37. If
the drug resistant mutants in either strain suffered a strong fitness cost, the outgrowth of
mutants in culture prior to selection would have been slower than drug susceptible cells,
driving the Luria-Delbrück distribution back towards the underlying Poisson distribution of
mutation. However, our data suggest that in both strains, drug-resistant mutants occur
primarily according to a Luria-Delbrück distribution.
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Differences in target size
Rifampicin resistance is encoded by multiple mutations in the rifampicin resistance-
determining region (RRDR) of rpoB. Strains in which there are a greater number of potential
mutations in the RRDR that produce drug resistance would more rapidly acquire resistance
to rifampicin. Therefore, we sought to determine whether M. tuberculosis strains of different
lineages differ in the total number of mutations that confer rifampicin resistance, accounting
for differences in the rifampicin resistance rates. We sequenced the RRDR of rpoB from 600
independent mutants (100 from each fluctuation assay in Figure 2) to determine the number
of mutations conferring rifampicin resistance in both strains under each condition tested
above (Figure 4a, Supplementary Table 3). Though there is potentially a discrepancy
between drug resistance mutants found in vitro and in vivo40, all of the mutations that we
identified correspond to mutations seen clinically41. For both strains, the target size became
smaller as drug concentration increased, indicating that some rpoB mutations generate lower
level rifampicin resistance. There were small differences in target size between the two
strains at two of the three drug concentrations tested, such that the number of mutations
conferring resistance at both 0.5 and 2μg/mL was higher in the Lineage 2 strain. These data
suggest that target size differences between strains contribute to strain based differences in
the acquisition of rifampicin resistance. However, correcting for target size to determine the
per base pair mutation rate, the Lineage 2 strain, HN878, remained significantly higher than
the Lineage 4 strain, CDC1551, at each of the drug concentrations tested (Figure 4b,
Supplementary Table 4). Therefore, it is likely differences in basal mutation rate that lead to
differences in the acquisition of rifampicin resistance.

Resistance to other antibiotics
If the mutation rate of HN878 is higher than that of CDC1551, then the Lineage 2 M.
tuberculosis strain should also acquire resistances to other antibiotics at a higher rate. We
therefore assessed the rate at which HN878 and CDC1551 acquire resistance to ethambutol
(5μg/mL) and isoniazid (1μg/mL). For both antibiotics, the rate of resistance was nearly 3-
fold (2.51 and 2.75, respectively) higher in the Lineage 2 strain, HN878, consistent with the
increased rate of rifampicin resistance (Figure 5, Supplementary Table 1). Taken together,
these results suggest that M. tuberculosis strains from Lineage 2 have a higher basal
mutation rate than strains from Lineage 4.

In vitro mutation rates to predict in vivo resistance
We then sought to understand how these in vitro measures of mutation translate to the in
vivo environment. In our previous work, we determined that in nonhuman primates, M.
tuberculosis mutates at a relatively fixed rate over time and this in vivo per-day mutation
rate is well-approximated by the in vitro per-day mutation rate as measured by fluctuation
analysis and adjusted for target size6. To determine if the in vitro mutation rate is similarly
concordant with the mutation rate of M. tuberculosis during human infection, we analyzed
the whole genome sequences of M. tuberculosis isolates derived from an outbreak of a
Lineage 4 (Euro-American) strain in British Columbia, Canada42. We determined the
number of SNPs in each strain relative to a historical isolate, identifying SNPs according to
parameters that were experimentally validated through Sanger resequencing in our previous
work (Figure 6a). By reconstructing the phylogeny of these strains through Bayesian
Markov chain Monte Carlo analysis 43,44 (Supplementary Figure 1), and informing the
phylogeny with dates for each isolate, we have estimated the base substitution rate
(equivalent to the mutation rate under a neutral model of evolution45) in this outbreak.
Strikingly, we found that the British Columbia strains acquired mutations at approximately
the same rate over time as previously shown for M. tuberculosis strains isolated from
macaques with active and latent disease irrespective of disease course (Figure 6b,
Supplementary Table 5). In addition, the rate at which these strains acquired mutations in
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vivo was well approximated by the in vitro per-day mutation rate of the Lineage 4 strain
(Erdman) used in the macaque infections as defined by fluctuation analysis. Finally,
consistent with both our previous work6 and the work of others46, these data indicate that a
molecular clock of 0.3-0.5 mutations/genome/year may be applicable to analysis of M.
tuberculosis genetic diversity over the time scales assessed here.

A time-based model of mutation and drug-resistance predicts MDR before treatment
Given these data, we developed a stochastic simulation model of the evolution of drug
resistance within a patient in order to assess the potential clinical impact of the observed
differences in mutation rate between Lineage 2 and Lineage 4 strains. Our model of drug
resistance utilizes a stochastic mutation parameter in which mutation occurs at a constant
rate over time and we informed this parameter with the in vitro mutation rates for CDC1551
and HN878 as a proxy for their mutation rates in the human host (Supplementary Figure 2a,
Supplementary Table 6). We used this model to simulate the emergence of MDR (defined
here as resistance to both rifampicin and isoniazid) within an infected individual prior to
diagnosis and treatment (Supplementary Figure 2b).

In the model, as a result of the differences in mutation rate, patients infected with the
Lineage 2 strain, HN878, are at a significantly increased risk of MDR before treatment as
compared to patients infected with the Lineage 4 strain, CDC1551 (Figure 7a). When all
other parameters (birth, death, fitness and bacterial burden at the time of diagnosis) are kept
equal, the difference in the probability of MDR before diagnosis and treatment is
approximately 22-fold. We find similar results when using an alternative model of drug
resistance developed by Colijn et al in which mutation is replication- rather than time-
dependent (Supplementary Figure 2c)47. We assessed the sensitivity of our model to
fluctuations in both growth rate and fitness (Figure 7b & c). Varying these parameters does
not alter our principle conclusion that patients infected with Lineage 2 strains of M.
tuberculosis are at a significantly higher risk for the de novo acquisition of MDR, reflecting
the multiplicative effects of an increased risk of acquiring each individual drug resistance
due to a higher basal mutation rate.

Discussion
Here we demonstrate that strains from Lineage 2 of M. tuberculosis (the East Asian lineage,
which includes the Beijing family of strains) acquire drug resistances in vitro more rapidly
than strains from Lineage 4 (the Euro-American lineage). This is likely not the result of an
enhanced ability of these strains to survive and mutate in the presence of drug, and we find
no evidence of strong fitness effects that would explain the observed differences in drug
resistance rates. Interestingly, we do find evidence that the genetic context of a given M.
tuberculosis strain can impact the range of observed mutations conferring resistance to a
single drug. In our analysis, the Lineage 2 strain, HN878, was permissive for a broader
range of rpoB mutations than the Lineage 4 strain, CDC1551. However, the difference in
target size is not sufficient to explain the observed difference in rifampicin resistance rates,
suggesting that a basal difference in mutation before selection drives the accelerated rate of
drug resistance in HN878. In support of this, we find that HN878 more rapidly acquires
resistance to not only rifampicin, but also isoniazid and ethambutol.

We also find significant variation in the mutation rates of the other strains within each
lineage. Previous analyses suggest that there is substantial genetic and phenotypic diversity
among isolates from the various M. tuberculosis lineages48. We expect that differences in
mutation rate and differences in target size both contribute to the two to thirty-five fold
differences in rifampicin resistance rates that we have measured in these other strains.
Further work will be required to establish the relative contribution of these factors to the
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drug resistance rate of each strain and to determine to what extent these findings can be
generalized to strains from other M. tuberculosis lineages.

To establish the in vivo relevance of these findings, we sought to assess the concordance
between mutation rates measured in vitro and in vivo. Strikingly, we found that the mutation
rate of M. tuberculosis in vitro is very close to the mutation rate – assessed as mutation per
unit time – in isolates from a human transmission chain. Thus, M. tuberculosis acquires
mutations at a similar rate over time in people as it does in an actively growing culture. This
is consistent with our previous findings that the in vitro mutation rate over time was similar
to the rate of mutation over time in M. tuberculosis isolated from macaques with latent and
active disease. Taken together, these findings define a molecular clock for M. tuberculosis
that may be used in future evolutionary and epidemiologic studies, though care must be
taken to identify and compensate for potential sources of variation in rate49,50.

We propose two possible explanations for the finding that M. tuberculosis acquires
mutations at the same rate over time in vitro, in macaques, and across a human transmission
chain. First, there may be a population of M. tuberculosis replicating in vivo at a rate similar
to the replication rate in vitro. These same bacteria may be over-represented in culturable
clinical isolates, suggesting that they may be more likely to cause disease and be
transmitted. Alternatively, it is possible that the mutation rate of M. tuberculosis is driven by
a time dependent rather than a replication dependent factor. For example, the replicative
error rate in M. tuberculosis could be very low relative to time and mutations may occur
both in vitro and in vivo largely through DNA damage from endogenous metabolic
processes or exogenous stressors.

We expect that these models may be resolved in part by elucidating the molecular basis of
strain-based differences in mutation rate. The differences in mutation rate between clinical
M. tuberculosis strains measured here are more modest than the differences that distinguish
clinical isolates of other bacteria such as Pseudomonas aeruginosa or Escherichia coli51-53.
Clinical isolates of these pathogens may become orders of magnitude more mutable than
wild type strains through the loss of mismatch repair51. However, mycobacteria, like all
other actinomycetes, lack mismatch repair entirely54,55, and the molecular basis of
replicative fidelity in mycobacteria remains unclear. While mutations in DNA replication
and repair genes are enriched in some M. tuberculosis strains from Lineage 230, no single
point mutation has been found to accelerate the basal mutation rate of M. tuberculosis in
isogenic strains. Importantly, Lineage 2 strains also differ in important metabolic pathways
from Lineage 4 strains56,57. Thus, it is possible that genetic differences outside DNA
replication and repair contribute to the differences in mutation rate that we have measured.

We have used the observation that M. tuberculosis mutates at a constant rate per unit time to
develop a predictive model of the evolution of MDR in vivo. Our model demonstrates that it
is possible to see multi-drug resistance evolve before the onset of treatment, consistent with
a prior replication-dependent model47. Moreover, differences in mutation rate have
approximately multiplicative effects for each mutation required, leading to stark differences
in the de novo generation of MDR. Indeed, we parameterized our model with data from
HN878, which has only modestly elevated acquisition rates of rifampicin and isoniazid
resistance. Strain X005632 has a 35-fold higher rate of rifampicin resistance as compared to
CDC1551. With a similarly elevated rate of isoniazid resistance, the risk of MDR in an
individual infected with X005632 would be nearly three orders of magnitude higher than for
a patient infected with CDC1551. The predicted differences in the occurrence of at least one
MDR bacterium within infected patients may not be directly proportional to the clinical risk
of drug resistant tuberculosis because individual bacteria may not have equal capacity to
cause disease. However, the magnitude of these differences suggests that strain based
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variation in drug resistance rates is an important risk factor for the development of drug
resistant disease. Indeed, just as strains with higher mutation rates have increased risk of
drug resistance mutations and mutations that facilitate acquisition of drug resistance (i.e.
efflux pumps58-60), these strains have increased capacity to acquire compensatory
mutations61 that may enhance their fitness in vivo.

While our model focused on the evolution of multidrug resistance (rifampicin and isoniazid
resistance), the findings are applicable to the evolution of resistances to any antibiotic. New
antibiotics and novel regimens of new and current antibiotics are being developed,
combining drugs for which resistance is not yet prevalent. The expectation is that with
proper implementation, a novel regimen will treat patients infected with MDR M.
tuberculosis and prevent the emergence of resistance to new drugs62,63. However, both
clinical and high resolution sequencing evidence suggests patients fail therapy with strains
that are resistant to only a subset of antibiotics administered14,15,64. Thus, even in the
context of a novel regimen, resistance to these new antibiotics may be difficult to avoid
especially in the context of infection by strains from Lineage 2.

Consistent with epidemiologic data suggesting that severe disease at diagnosis is associated
with the acquisition of MDR in new cases65,66, our model also predicts that bacterial burden
is a critical determinant of the probability of drug resistance. In the face of substantial
capacity for mutation and resistance, early and active case detection with novel, sensitive
point of care diagnostics remains our best hope of curbing the drug resistance epidemic.
Smear microscopy is the most common primary diagnostic for M. tuberculosis around the
world but is orders of magnitude less sensitive than both culture and molecular
diagnostics67,68. If, as our model suggests, higher bacterial burden at diagnosis results in
increased risk for the evolution of MDR M. tuberculosis, then improving diagnostic
sensitivity will not only curtail ongoing transmission of disease as previously suggested69,70,
but also limit the de novo emergence of drug resistance. The risk of drug resistance appears
to be even higher in the setting of infection with Lineage 2 strains of M. tuberculosis. Taken
together, these data emphasize that M. tuberculosis strains differ in their propensity for
acquiring drug resistance and suggest that these biological factors should be considered in
efforts to limit the emergence of novel resistances to both existing antibiotics and new
treatment regimens.

Methods
Culture and MIC determination of clinical isolates

Clinical Strains were identified as previously described71. Strains were grown in broth
culture of 7H9 supplemented with 10% Middlebrook OADC, 0.0005% tween 80, and
0.005% glycerol. To determine MIC, strains were grown to log phase (OD 0.5 to 0.8), and
diluted to an OD of 0.006. Wells were inoculated with 50μL of culture and then
supplemented with 50μL of media containing the appropriate concentration of drug. All
concentrations were tested in triplicate, and two sets of triplicate control wells were
established for each strain. After 6 days, 10μL of Alamar Blue (Life Technologies) was
added to each well of one triplicate set of controls, where control wells were not
supplemented with antibiotic. If control wells converted from blue to pink after 24 hours,
10μL of Alamar Blue was added to each triplicate set of experimental wells as well as a new
set of control wells. All wells were examined after 24 hours. Any wells that remained blue
represented inhibition of growth. The following concentrations were tested: 0.5, 0.25, 0.125,
0.06125, 0.03063, 0.01531μg/mL of rifampicin (Sigma); 0.25, 0.125, 0.06125, 0.03063,
0.01531, 0.00766μg/mL of isoniazid (Sigma). The MIC was defined as the lowest
concentration of drug that prevented color change from blue to pink.
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Fluctuation analysis
Fluctuation analysis was performed as previously described6. Briefly, for a single strain of
M. tuberculosis, starter cultures were inoculated from freezer stocks of optical density (OD)
1.0 culture. Once at an OD of 0.7 to 1.1, approximately 300,000 cells were used to inoculate
120mL of Middlebrook 7H9 supplemented with 10% Middlebrook OADC, 0.0005% tween
80, and 0.005% glycerol, giving a total cell count of 10,000 cells per 4mL culture. This
volume was immediately divided to start 24 cultures of 4mL each in 30mL square PETG
culture bottles (Nalgene, Rochester NY). Cultures were grown at 37°C with shaking for 11
to 14 days, until reaching an OD of 1.0. Once at an OD of 1.0, 20 cultures were transferred
to 15mL conical tubes and spun at 4000 RPM for 10 minutes at 4°C. Cultures were then
resuspended in 250-500μL of 7H9/OADC/tween/glycerol and spotted onto 7H10/OADC/
tween/glycerol plates supplemented with 0.5, 2, or 5μg/mL rifampicin (Sigma, R3501), 1μg/
mL isoniazid (Sigma, I3377), or 5μg/mL ethambutol (MP Biomedicals, 157949). Once
spread using sterile glass beads (4mm diameter), plates were allowed to dry and
subsequently incubated at 37°C for 28 days. Cell counts were determined by serial dilution
of 4 cultures for each strain. The drug resistance rate was determined by calculating m (the
estimated number of mutations per culture) based on the number of mutants (r) observed on
each plate using the Ma, Sarkar, Sandri (mss) method as previously described33,35. Dividing
m by Nt, the number of cells plated for each culture, gives an estimated drug resistance rate.
95% confidence intervals were estimated using equations (24) and (25) as described in
Roshe and Foster33,36. For comparing pairs of fluctuation analysis data (Figure 2), the
nonparametric two-sided Wilcoxon rank sum test (also known as the Mann-Whitney U-test)
was performed using the ranksum command in Matlab with alpha set to 0.05, comparing the
frequency of drug resistant mutants in each culture.

Fluctuation analysis data analysis
To estimate the extent to which the data met the assumptions of Luria-Delbrück fluctuation
analysis, we performed a curve fitting analysis as described by Lang and Murray35. Briefly,
data were fit using either a one-parameter model consistent with the Luria-Delbrück model,
or a two-parameter model containing an additional parameter describing a Poisson
distribution. The fit of each model was assessed using the least-squares methodology
described by Lang and Murray, with AICC calculated as described previously39. A lower
AICC reflects a better fit given a penalty for increasing the number of parameters, and a
negative ΔAICC (ΔAICC = AICC (one-parameter) – AICC (two parameter)) indicates the one
parameter model is a better approximation of the data.

Determination of target size
The number of rpoB mutations conferring resistance to 0.5, 2, and 5μg/mL of rifampicin
was determined by isolating 100 colonies, five from each fluctuation analysis culture, into
100μL Middlebrook 7H9 supplemented with 10% Middlebrook OADC, 0.0005% tween 80,
and 0.005% glycerol. Cultures were grown overnight at 37°C, and then heat-inactivated at
85°C for 2 hours. Heat-inactivated culture was then used as template for PCR and
sequencing using primers previously described72. Sequences were analyzed for mutation
relative to the reference sequence H37Rv, and totaled. For each culture, duplicate mutations
were only counted once. The absolute number of unique mutations observed across cultures
for a given condition was used to determine target size for each strain under each condition.

Estimate of mutation rate from human isolates
To determine the per base, per day mutation rate in human isolates, phylogenies were
created using the concatenated SNP sequences reported by Gardy et al from a clonal
outbreak of a Lineage 4 (Euro-American) strain in British Columbia, Canada42 using
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BEAST v.1.7.2 43,44 to perform Bayesian MCMC analysis. Prior to phylogenetic analysis,
SNPs located in repeat regions (PE_PGRSs, PPEs, and transposable elements) were
excluded, consistent with our previous experimentally validated analysis of SNPs from
whole genome sequencing to estimate mutation rate6. Concatenated SNP sequences were
compiled and prepared using BEAUti v1.7.2 to select analysis parameters and construct the
xml input file. Concatenated sequences were converted to NEXUS format, and loaded into
BEAUti where time was noted for each isolate. Time was defined in days based on time
elapsed from symptom onset relative to isolation of the historical isolate, MT0005 (1995). A
GTR substitution model was used with empirically determined base frequencies. Default
priors were used for 10,000,000 chains. Output was analyzed in Tracer v1.5, and all
parameters produced an effective sample size of 200 or greater. Phylogenetic tree
construction was completed using TreeAnnotator v1.7.2 with a posterior probability limit of
0.5 and a burnin of 1000 trees, leaving 9001 potential trees for construction. Tree
visualization was completed using FigTree v1.3.1 and the tree was rooted on MT0005, with
the most likely tree depicted in Supplementary Figure 1.

Mathematical simulation of drug resistance
We developed a compartmental, partially stochastic mathematical model of the evolution of
drug resistance within an individual according to the following set of equations:

(1)

(2)

(3)

(4)

Where:

(5)

(6)

(7)

(8)

Here, NS(t), NR(t), NH(t), NMDR(t) are the population sizes of the susceptible, rifampicin
resistant, isoniazid resistant, and MDR populations at time (t), respectively. The parameters
b and dA represent the birth and rates of bacteria in each population. The subscripted mX·Y
parameters are the number of bacteria transitioning from population NY to population NX. m
is a stochastically determined parameter, determined by a random Poisson variable where
lambda is determined by the mutation rate to resistance times the population size of the
susceptible population. These equations were parameterized with the values displayed in
Supplementary Table 6. All simulations were run in Matlab (Natick, MA). For all
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simulations and for both mutation parameter sets (μH−W & μR−W, μH−CDC & μR−CDC),
simulations of the evolution of drug resistance were run 100,000 times to determine the
probability of observing drug resistance with a given set of parameters. To determine the
effect of varying birthrate, 10 simulations of 200,000 simulated patients (100,000 per
simulated strain) each were run with b = (0.20:1.10 in increments of 0.10), giving a net birth
rate of 0.05:0.95. To determine the effect of varying the fitness of drug resistance mutants,
10 simulations of 200,000 patients each (100,000 per simulated strain) were run with crH =
crR = (0.0 : 0.90 in increments of 0.10). For all simulations, bacterial burden was allowed to
increase to 1012 bacteria within a patient, and the probability of observing rifampicin
resistance, isoniazid resistance, and MDR was determined by dividing the number of
simulated patients with at least one resistant bacterium by the total number of simulated
patients. To determine the probability of observing resistance in a model where mutation is
determined by replication dynamics, we used equation 2 from Colijn et al (2011)47 with the
parameters listed in Supplementary Figure 2c.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Lineage 2 strains more rapidly acquire rifampicin resistance
Fluctuation analysis was used to determine the rifampicin (2μg/mL) resistance rate of
clinical and laboratory strains from both Lineage 2 and Lineage 4. Strains from Lineage 4
are in red; strains from Lineage 2 are in blue. Circles represent mutation frequency (number
of mutants per cell plated in a single culture), where darker circles represent multiple
cultures with the same frequency. Bars represent the estimated mutation rate, with error bars
representing the 95% confidence interval. Strains are displayed on the x-axis and the
rifampicin resistance rate is displayed on the y-axis in log-scale. Values are listed in
Supplementary Table 1.
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Figure 2. Altering drug concentration does not alter the observation that Lineage 2 strains more
rapidly acquire rifampicin resistance
Fluctuation analysis was used to determine the rifampicin (0.5, 2, 5μg/mL) resistance
mutation rate of representative strains from both Lineage 2 and Lineage 4 (HN878 and
CDC1551, respectively). The Lineage 4 strain CDC1551 is in red, and the Lineage 2 strain
HN878 is in blue. Circles represent mutation frequency (number of mutants per cell plated
in a single culture), where darker circles represent multiple cultures with the same
frequency. Bars represent the estimated mutation rate, with error bars representing the 95%
confidence interval. Significance was determined by comparing strain pairs using the
Wilcoxon rank-sum test. Strains are displayed on the x-axis and the rifampicin resistance
rate is displayed on the y-axis in log-scale. Values are listed in Supplementary Table 1.
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Figure 3. The cumulative distribution of drug resistant mutants from both lineages indicates that
mutations do not occur after exposure to antibiotic
(a) Curve fitting analysis was performed to determine if the cumulative distribution of the
fluctuation analysis data from Lineage 4 strain CDC-1551 plated on rifampicin, 0.5μg/mL
better fit a one-parameter Luria-Delbrück (LD) model, a one parameter Poisson model
(Poiss), or a two-parameter Luria-Delbrück and Poisson mixture model (TP). The number of
mutants per culture is displayed on the x-axis, and the probability of observing x or fewer
mutants per culture is shown on the y-axis. (b) Fitting as in (a) for Lineage 2 strain HN878
plated on rifampicin, 0.5μg/mL. (c) Fitting as in (a) for Lineage 4 strain CDC-1551 plated
on rifampicin, 2μg/mL. (d) Fitting as in (a) for Lineage 2 strain HN878 plated on rifampicin,
2μg/mL. (e) Fitting as in (a) data for Lineage 4 strain CDC-1551 plated on rifampicin, 5μg/
mL. (f) Fitting as in (a) data for Lineage 2 strain HN878 plated on rifampicin, 5μg/mL. (g)
To determine which model best fit each data set, we determined the Akaike Information
Criterion, corrected for small sample size (AICC). A smaller AICC represents a better fit,
given a penalty for more parameters in a model. If the AICC(LD) is smaller than the
AICC(TP), then the resulting value will be negative, reflecting a better fit for the LD model
(see Supplementary Table 2).
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Figure 4. Small differences in target size and differences in basal mutation rate are responsible
for the observed differences drug resistance rate
(a) The target size (the number of mutations conferring rifampicin resistance) of each strain
under each condition was determined by sequencing the rifampicin resistance determining
region of 100 isolates from each strain in each condition. Each mutation is shown on the x-
axis, with coordinates representing position within rpoB (Rv0667). The number of mutants
per strain uniquely formed within a culture is shown on the y-axis. The Lineage 4 strain,
CDC1551, is shown in red; the Lineage 2 strain is shown in blue. On the right, the target
size - the number of unique mutations conferring rifampicin resistance – is shown. (b) The
per base pair mutation rate is determined by normalizing the drug resistance rate by target
size. Drug concentration is shown on the x-axis, mutation rate per base pair is shown on a
linear scale on the y-axis. Lineage 4 is shown in red; Lineage 2 is shown in blue.
Significance was determined by comparing strain pairs using the Wilcoxon rank-sum test;
error bars represent 95% confidence intervals. Values are found in Supplementary Table 4.
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Figure 5. A representative Lineage 2 strain acquires isoniazid and ethambutol resistance at a
higher rate
Fluctuation analysis was used to determine the isoniazid (1μg/mL) and ethambutol (5μg/
mL) resistance rate for the Lineage 4 strain, CDC1551, (shown in red) and the Lineage 2
strain, HN878 (shown in blue). Circles represent mutation frequency (number of mutants per
cell in a single culture), where darker circles represent multiple cultures with the same
frequency. Bars represent the estimated mutation rate, with error bars representing the 95%
confidence interval. Significance was determined by non-overlapping 95% confidence
interval. Values are listed in Supplementary Table 1.
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Figure 6. Bayesian MCMC analysis reveals a mutation rate in humans similar to that estimated
in strains from the macaque model and in vitro
(a) The number of SNPs and the number of days separating the clinical isolate and MT0005
are plotted. SNPs located in repeat regions (PE_PGRSs, PPEs, and transposable elements)
were excluded, consistent with our previous analysis6. The data are fit to a first order
polynomial to illustrate the trend. (b) Estimates of mutation rate in human isolates were
derived by reconstructing the phylogeny from the isolates represented in (a). Mutation rate is
shown on the y-axis in log scale. Estimates of mutation rate from the macaque model and
the infecting strain, Erdman (in vitro) were determined previously6. Error bars represent
95% confidence intervals.
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Figure 7. A stochastic simulation mathematical model predicts the emergence of MDR-TB
before the onset of treatment
(a) Estimates of the probability of observing MDR within a population were derived using a
stochastic mathematical model of resistance in 200,000 simulations, 100,000 for each
lineage. Model parameters are listed in Supplementary Table 6. Bacterial burden at
diagnosis is shown on the x-axis, the probability of observing resistance is shown on the y-
axis in log scale. Estimates for Lineage 4 are shown in red, Lineage 2 in blue. (b, c) To
determine the sensitivity of our model to variations in growth rate and fitness, we varied
each parameter (see Supplementary Table 6) and determined the probability of observing
resistance (z-axis, log scale) at any given bacterial burden (y-axis, log scale) for a specified
parameter set (x-axis).
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