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Abstract

Broadly neutralizing monoclonal antibodies effective against the majority of circulating isolates of HIV-1 have been isolated
from a small number of infected individuals. Definition of the conformational epitopes on the HIV spike to which these
antibodies bind is of great value in defining targets for vaccine and drug design. Drawing on techniques from compressed
sensing and information theory, we developed a computational methodology to predict key residues constituting the
conformational epitopes on the viral spike from cross-clade neutralization activity data. Our approach does not require the
availability of structural information for either the antibody or antigen. Predictions of the conformational epitopes of ten
broadly neutralizing HIV-1 antibodies are shown to be in good agreement with new and existing experimental data. Our
findings suggest that our approach offers a means to accelerate epitope identification for diverse pathogenic antigens.
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Introduction

HIV afflicts 34 million people worldwide, with the highest

infection rates concentrated in sub-Saharan Africa [1]. Although

antiretroviral therapy has done much to alleviate the burden of

HIV infection in the developed world, a prophylactic vaccine still

remains the best hope of controlling the epidemic, particularly in

the developing world [2].

Effective vaccines induce neutralizing antibodies that protect

the host by binding to the infectious pathogen and/or infected cells

[3,4,5,6]. For HIV, passive administration of neutralizing

antibodies can prevent chimeric simian-human immunodeficiency

virus from establishing infection in non-human primates

[7,8,9,10,11,12,13], suggesting that the induction of such antibod-

ies should be a major goal of HIV vaccine research. However, the

high antigenic variability of HIV is a major roadblock to eliciting

effective antibody responses by vaccination [14,15]. Nevertheless,

renewed hope has emerged with the isolation of potent, broadly

neutralizing monoclonal antibodies (bnMAbs) effective against

diverse HIV-1 subtypes from a small number of HIV-positive

persons, suggesting that the adaptive immune system is capable of

generating broadly neutralizing antibody responses [16,17].

The target of HIV-1 bnMAbs is the surface glycoprotein, Env,

which natively exists as a trimer comprising three gp120 and three

gp41 glycoprotein molecules in non-covalent association [18]. The

viral spike binds to the receptor, CD4, and a chemokine co-

receptor on T-lymphocytes, and mediates viral entry into host cells

[19].

A number of studies have focused on the development of a

deeper understanding of the properties and neutralization targets

of bnMAbs to provide insight and guidance for rational

immunogen design [17,18]. An important aspect of defining the

antigenic target sites is the identification of newly isolated bnMAb

binding sites (epitopes) on the Env spike. Current experimental

techniques for monoclonal antibody (MAb) epitope mapping such

as peptide scanning [20], phage-display [21], and site-directed and

‘‘shotgun’’ mutagenesis [22] are typically expensive and/or labor-

intensive. Targeted mutational scans limited to residues within

likely antibody binding sites requires a pre-existing knowledge of

common antibody epitopes, which, for viruses less well-studied

than HIV, may be unavailable. Furthermore, such targeted

approaches are unable to identify novel epitopes bound by

previously uncharacterized bnMAbs. Computational epitope

prediction offers an inexpensive means to localize epitopes within

the protein structure, providing potentially valuable information to

target experimentation, and substantially reduce the time and

expense of epitope identification [23,24,25].

Computational prediction of Env epitopes from sequence data

alone has shown limited success [26,27,28]. A particular difficulty
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facing these approaches is that the preponderance of antibody

epitopes are not formed from linear regions of the protein chain,

but are conformational in nature, comprising non-contiguous

regions brought together in the three-dimensional structure

[29,30]. Despite significant advances in recent years, the

‘‘predictive performance of current methods is far from ideal’’

[29] even in instances where the three-dimensional antigen (Ag)

structure is available [29,30,31,32]. Partial structures for gp120

and gp41 have been previously reported [33,34], but only very

recently has the structure of the unliganded trimer been

determined by cryo-EM [35]. The ,11 Å resolution, however,

prohibits unambiguous identification of the individual residues

constituting potential antibody binding sites.

Combined approaches employing computational algorithms to

map experimental peptide phage display binding data to the

surface of an Ag structure have enjoyed greater success [29]. The

Mapitope algorithm, for example, has predicted gp120 epitopes

for several HIV MAbs that are in good accord with experimental

data [25,36,37]. Such approaches, however, require the availabil-

ity of both peptide binding data and the Ag structure, making

them unsuitable for the definition of epitopes in systems where

high resolution protein structures are difficult, or expensive, to

obtain.

Here, we develop a computational approach to predict

particular residues within MAb conformational epitopes by

analyzing experimental neutralization activity data against a panel

of viral strains. Cross-clade neutralization activity is generally

collected in the analysis of new HIV bnMAb isolates, making our

epitope prediction approach well-suited to ‘‘piggyback’’ existing

experimental data sets, without relying on structural information

or necessitating additional experimental characterization. These

residues predicted by our approach are expected to be those within

the conformational epitope that are most important in determin-

ing MAb neutralization efficiency. Our approach relies on

knowledge of the sequences of the viral strains within the panel,

but does not require structural information.

Multivariate regression models and machine learning tech-

niques have been widely applied to peptide binding data to build

and train predictive models of linear peptide binding affinities to

T-lymphocytes [23,27,32,38]. We do not seek to construct

quantitative models of conformational epitope binding affinities

for MAbs. Rather, we wish to identify residues that form part of

the MAb epitope that are the primary determinants of its

neutralization activity. Toward this end, we draw on techniques

from compressed sensing [39] and information theory [40] to serve

as variable selection tools.

Compressed sensing (CS) is a framework that enables the

recovery of sparse signals from far fewer measurements than

conventional approaches [39,41], and has been applied to great

effect in diverse areas including the design of protein-DNA

potential functions [41], face recognition [42], and the ‘‘single

pixel camera’’ [43]. In the present case, a ‘‘measurement’’

corresponds to the neutralization activity of a particular bnMAb

against a particular viral strain, and ‘‘signal’’ corresponds to the

influence of each amino acid residue in the strain upon the

antibody neutralization efficiency. Since bnMAb epitopes typically

comprise only a small number of residues, the impact of most

positions within the protein upon MAb neutralization is expected

to be small, leading to naturally sparse signals. Furthermore, the

number of viral strains against which neutralization activity

measurements are available is expected to be small compared to

the number of positions in the protein. Accordingly, compressed

sensing presents a powerful framework for the identification of the

residues constituting bnMAb epitopes from limited data.

The mutual information (MI) is an information theoretic concept

that quantifies the information that one random variable, or group

of variables, X, contains about another, Z [44]. Equivalently, it

provides a measure of the reduction of the uncertainty in Z given

knowledge of X [44]. The MI is a model-free measure that does

not require any a priori assumptions about the form of the

relationship between X and Z, and can therefore be used to detect

both linear and nonlinear associations [40]. The MI has previously

been used in variable selection algorithms in the context of protein

contact site prediction [45,46] and spectroscopic modeling [40]. In

the present work, the identity of the amino acid residue at most

positions in the protein is expected to possess low information

content about bnMAb neutralization activity. Only for the small

number of residues comprising the bnMAb epitope is this

information content expected to be high. Accordingly, the mutual

information presents a natural means to identify residues

constituting bnMab epitopes.

The new computational methodology described in this work is

the development of two classifiers based on compressed sensing

(CS) and mutual information (MI) to identify residues constituting

antibody epitopes by analyzing experimental neutralization

activity data. We combine the predictions of these two approaches

into a single ensemble classifier that is expected to possess better

classification performance than either classifier alone [38,47,48].

The details of our approach are described in Materials and

Methods.

Our approach can identify residues constituting the epitope that

may be remote in the primary protein sequence. In that sense, it is

capable of identifying conformational (or discontinuous) epitopes [29].

As is the case for all sequence-based approaches, however, in the

absence of structural information our technique identifies functional,

rather than structural, epitopes [31]. Studies have shown that

functional epitopes typically comprise between three and five

residues [31,49]. While it is typically expected that residues

comprising the structural epitope of the bnMAb will have the

largest impact on neutralization activity [50], it is possible that

point mutations at residues structurally remote from the antibody

binding site may impart long-ranged conformational perturbations

that substantially influence binding efficiency. Indeed, as we

discuss below, our technique identifies for one bnMAb considered

in this study (PGT-130) a residue in the gp41 C-terminal tail that

may influence binding via long-ranged non-covalent associations.

Furthermore, we assume that each MAb binds to a single antigenic

epitope; experimental work has shown this to be the case for all

bnMAbs considered in this work [51].

Results

In Tables 1, 2, 3 we present the Env residues identified by our

compressed sensing, mutual information, and ensemble classifiers

as important discriminants of neutralization activity for the ten

HIV-1 bnMAbs considered in this study by computational analysis

of experimental neutralization activity data against a panel of 141

viral strains (cf. Materials and Methods). The NCBI accession

numbers and measured neutralization activities of the 141 strains

are provided in Table S1. For nine of the ten bnMAbs, our

ensemble classifier predicts between one and three positions to

form part of the bnMAb epitope. For the remaining bnMAb –

PGT-125– the ensemble classifier fails to identify any positions,

due to an absence of consensus between the CS and MI classifiers.

We generically observe for all bnMAbs in this study that the CS

classifier identifies many more positions than the MI. We attribute

this observation to the fact that whereas the MI classifier seeks to

perform classification of sequences for neutralized and non-

Computational Prediction of HIV Antibody Epitopes
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Table 1. Compressed sensing (CS), mutual information (MI), and ensemble classifier predictions of HIV-1 Env positions constituting
bnMAb epitopes for PGT 123, 123, 125, and 126.

bnMAb CS classifier MI classifier Ensemble classifier Experiment

nCS position residue nMI position nENS position nEXPT position

PGT-121 4 323 Ile 3 332 1 332 2 332

330 His 334 334

332 Asn 475

843 Val

PGT-123 10 323 Ile 3 330 3 330 3 325

330 His 332 332 332

332 Asn 334 334 334

334 Asn

334 Ser

612 Ser

671 Asn

740 Gln

815 Val

843 Val

PGT-125 27 82 Arg 1 332 0 – 2 301

136 Ser 303

165 Ile

188 Asn

230 Asn

276 Asn

289 Val

290 Arg

297 Thr

300 Ser

323 Ile

325 Asp

334 Ser

442 Glu

465 Thr

513 Val

520 Leu

632 Asp

674 Asn

721 Phe

746 Thr

769 Arg

792 Ala

815 Val

817 Ala

840 Phe

841 Leu

PGT-126 6 297 Thr 3 297 3 297 4 301

332 Asn 332 332 303

334 Ser 334 334 332

373 Thr 334

442 Glu

842 Asn

Computational Prediction of HIV Antibody Epitopes
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neutralized viruses, the CS classifier seeks to perform a regularized

least squares fit to a continuous observation, the neutralization

activity. Abstracting the neutralization activity to a binary variable

(neutralized vs. non-neutralized) eliminates degrees of freedom,

reducing the complexity of the problem from curve fitting to

binary classification. Concomitantly, the MI classifier appears

capable of performing its classification task using fewer variables.

A generalized version of our MI classifier could accept

neutralization activity data discretized into more than two

categories (e.g., non-neutralized, weakly neutralized, strongly

neutralized). It would be interesting to explore the impact of the

number of bins, and bin cutoffs, upon the positions, and number of

positions, identified by the MI classifier.

To compare our predictions to experimental data, we also

report in Tables 1, 2, 3 those positions identified by single-alanine

substitutions in the Env of JR-CSF pseudovirus to significantly

impact the measured neutralization activity – specifically, those

that cause a more than 30-fold increase in the measured IC50

concentration (cf. Materials and Methods) – providing experi-

mental evidence that these positions form part of the bnMAb

epitope [51].

To assess the robustness of our predictions to the size of the

panel of viral strains, we applied our approach to independently

selected random subsets of the 141 viral strains. In Table S2 we

present the predictions of the ensemble classifier to neutralization

activity data against 35, 70, 105, and 126 viral strains, respectively

constituting 25%, 50%, 75%, and 90% of the 141-strain

pseudovirus panel. Subsampling – or alternatively bootstrapped

resampling – of the pseudovirus panel provides a means to assess

the robustness of the predictions to the data, and determine

whether the panel is sufficiently large to generate statistically

reliable predictions. Only one of the predictions made using the

25% panel is in accord with those made over the full data set. At

50%, predictions for four of the ten bnMAbs are in agreement.

The 75% and 90% results are in good accord with the predictions

made over all 141 strains, differing by at most one predicted

position, with the single exception of the PGT-126 75% result that

differs by two. These results indicate that our predictions are

robust to the precise composition of the pseudovirus panel, and

reliable predictions can be made from neutralization activity

measurements for ,100 viral strains.

We now proceed to compare our predictions of key epitope

residues to previously reported [51] and new experimental

evidence for all ten bnMAbs. For two bnMAbs, PGT 143 and

145, we directly tested our computational predictions by

performing alanine scans at the identified positions. We emphasize

that experimental testing of our computational predictions for

these two bnMAbs was performed after making our computational

predictions. Details of the alanine scan studies performed for PGT

143 and 145 constitutes new experimental data to be fully detailed

in an upcoming publication.

Prior Experimental Characterization
Previous experimental work has demonstrated that bnMAbs

PGT 121, 123, 125–128, 130, and 135 all bind to monomeric

gp120 in enzyme-linked immunosorbent (ELISA) assays, and

compete with the glycan-specific bnMAb 2G12 for binding to

monomeric gp120 in ELISA assays [51]. Alanine scans have

demonstrated that PGT-135 binds residues within both the V3

and V4 loops of gp120, with the N-linked glycans at positions 332

and 392 particularly important to neutralization activity [51]. All

of the seven remaining PGT bnMAbs (PGT 121, 123, 125–128,

and 130) were shown to compete with a V3-loop-specific bnMAb,

failed to bind a gp120 mutant missing the V3 loop, and possessed

neutralization activities strongly dependent on N-linked glycans at

positions 301 and/or 332 [51]. These results strongly suggest that

PGT 121, 123, 125–128, and 130 bind to a tertiary epitope

involving the V3 loop of the gp120 chain that partially comprises,

or is configurationally dependent upon, the N-linked glycans at

positions 301 and 332, determined by the consensus sequence

NXT/S [51,52].

PGT 121, 123, 126, 127, 128, 135:332 N-glycan Dependent
bnMAbs

A JR-CSF pseudovirus containing single alanine substitutions at

positions 332 and 334 in the V3 loop significantly impacted

neutralization by PGT 121, 123, 126, 127, and 135 [51]. As is

apparent from Tables 1, 2, 3, the residues predicted by our

ensemble classifier are in good agreement with the experimental

results for these five bnMAbs. For PGT 123 and 126, it also

identifies residues 330 and 297, respectively, as proximate

positions implicated in binding.

For PGT-128, our ensemble classifier also identified positions

332 and 334. While the neutralization activity for the isolate JR-

CSF was not sensitive to alanine mutation at position 332 [51], our

predictions are supported by the crystal structure of PGT-128

bound to an engineered glycosylated gp120 outer domain

(containing a JR-FL mini-V3 loop) which revealed the importance

of positions 332 and 301 for binding [52].

In the cases of PGT 121 and 135, the ensemble classifier does

identify the N-linked glycan: identifying position 332 directly for

PGT-121, and position 334, which would remove the glycan at

332, for PGT-135. It does not, however, detect both of these

positions, and it is possible that the strong pairwise correlations

between these two residues may be frustrating the simultaneous

identification of the pair. For example, it is known that for groups

of variables containing strong pairwise correlations the LASSO

algorithm implemented in the CS classifier may identify only one

variable from the group [53]. We observe that more advanced

versions of the LASSO algorithm [53], or dynamic variable

selection routines for the MI classifier [40] may exhibit improved

group selection characteristics.

The experimentally identified positions are defined as those at which alanine point mutations were observed to increase the measured IC50 of the mutant by more than
30-fold relative to that of the wild type JR-CSF. Alanine scans were performed as part of the present work for PGT 143 and 145; data for PGT 121–135 were taken from
Ref. [51].
Footnote: For each of the ten HIV-1 broadly neutralizing monoclonal antibodies (bnMAb) considered in this study, we report the residues identified by the compressed
sensing (CS) classifier, positions identified by the mutual information (MI) classifier, and positions identified by the ensemble classifier (formed by combining the CS and
MI predictions) predicted to lie within the bnMAb epitope. The number of residues identified by the CS classifier, nCS, number of positions identified by the MI classifier,
nMI, number of positions predicted by the ensemble classifier, nENS, and number of positions identified by alanine scans, nEXPT, may differ between bnMAbs.
doi:10.1371/journal.pone.0080562.t001

Table 1. Cont.

Computational Prediction of HIV Antibody Epitopes
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Table 2. Compressed sensing (CS), mutual information (MI), and ensemble classifier predictions of HIV-1 Env positions constituting
bnMAb epitopes for PGT 127, 128, and 130.

bnMAb CS classifier MI classifier Ensemble classifier Experiment

nCS position residue nMI nCS position residue nMI

PGT-127 18 136 Ser 2 332 2 332 4 301

169 Lys 334 334 303

188 Asn 332

230 Asn 334

290 Arg

297 Thr

322 Ile

330 His

332 Asn

334 Asn

334 Ser

373 Thr

442 Glu

674 Asn

792 Ala

815 Val

817 Ala

843 Val

PGT-128 23 82 Arg 2 332 2 332 1 303

133 Lys 334 334

151 Gln

152 Glu

153 Gln

229 Arg

230 Asn

289 Val

297 Thr

306 Arg

323 Ile

326 Ile

332 Thr

334 Ser

347 Asp

373 Thr

442 Glu

500 Glu

520 Leu

754 Pro

792 Ala

815 Val

817 Thr

PGT-130 18 49 Asp 2 471 1 792 7 301

151 Asp 792 303

230 Asn 307

297 Thr 309

300 Ser 324

360 Val 325

373 Met 423

Computational Prediction of HIV Antibody Epitopes
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PGT 125–128, 130:301 N-glycan Dependent bnMAbs
Neutralization by PGT 125–128 and 130 is abolished by single

alanine substitutions of the N-linked glycan binding site at position

301, and/or position 303, which would also remove the glycan at

position 301, in the V3 loop of the JR-CSF isolate [51]. As

discussed above, PGT 126 and 127 neutralization activities are

also sensitive to alanine mutations removing the N-linked glycan at

position 332 [51].

Our algorithm did not identify position 301 for any of the five

bnMAbs, and failed to generate any predictions at all for PGT-

125. This result can be understood by considering the strains

tested in the pseudovirus panel. Of the 141 strains, only three

contained a residue other than Asn at position 301, and only six

contained a residue other than Thr at position 303. For a residue

to be identifiable as part of the functional epitope, the strains

within the panel must exhibit sufficient mutability at that position

for its impact on binding to be discernable above background

noise arising from experimental uncertainty and finite number of

measurements [50]. Numerical tests described in Materials and

Methods suggest that the minimum variability required for

detection of any single positions is on the order of 10 mutations

within the panel of 141 strains. This result is consistent with the

low variability of residues 301 and 303 in our virus panel

preventing our classifiers from identifying them as important

discriminants of neutralization activity for PGT 125 and 130. In

comparison, positions 332 and 334, where the latter is associated

with the N-linked glycan at position 332, were identified by our

algorithm for PGT 121, 123, 126, 127, and 135 (see above). These

residues are more highly variable within our panel, containing 28

and 40 non-Asn and non-Ser residues, respectively. A logo plot of

the variability of selected positions within the Env polyprotein

(Fig. 1) clearly illustrates the low variability of positions 301 and

303 relative to 332 and 334 within the 141-strain panel.

Three bnMAbs were sensitive to alanine substitutions removing

the N-linked glycan residue at 301, but not to those removing the

N-linked glycan at 332: PGT 125, 128 and 130. Despite the low

variability at residues 301 and 330, we note that our ensemble

classifier did not generate any false positives for PGT-125, and

identified only position 792 within the cytoplasmic domain of gp41

for PGT-130 [54]. Kalia et al. showed that point mutations in the

C-terminal tail caused conformational rearrangements in both

gp41 and – through non-covalent associations – gp120 [55]. These

conformational perturbations were sufficient to impair the

neutralization activity of certain antibodies whose epitopes lie

entirely within gp120, including the glycan-dependent bnMAb

2G12 [55,56]. It is conceivable therefore, that our classifier has

identified 792 as a position at which mutations may influence

PGT-135 binding efficiency by structural perturbations of the

binding site through non-covalent interactions. For PGT-128, our

classifier identified positions 332 and 334. As previously observed,

the crystal structure of PGT-128 bound to an engineered

glycosylated gp120 outer domain (containing a JR-FL mini-V3

loop) [52] supports these predictions, although these positions were

not sensitive to alanine mutations in the JR-CSF strain [51]. These

results illustrate the enhanced specificity – at the expense of

reduced sensitivity – of the ensemble classifier relative to either the

CS or MI classifier in isolation [38,48].

For PGT-130, our classifiers failed to identify other residues that

abolished neutralization in alanine scan experiments: viz., residues

307, 309, 324, 325, and 423 [51]. None of strains within our panel

contained Ala residues at any of these five positions. It is possible,

therefore, that the actual mutations present within the panel had a

weaker effect on bnMAb binding than a single Ala point mutation,

causing these positions to remain unidentified by our approach.

We also observe that positions 324 and 423 are very highly

conserved within the 141-strain panel (Fig. 1), where, as described

above, this low mutational variability impairs the ability of our

classifier to identify these positions as important determinants of

neutralization activity. None of these five positions are known

glycosylation sites [57].

PGT 143, 145:160 N-glycan Dependent bnMAbs
PGT 143 and 145 do not bind monomeric gp120 but recognize

the Env trimer. Indeed, PGT 143 and 145 target a quaternary

epitope similar to that defined for the bnMAbs PG9 and PG16

[51,58]. Our ensemble classifier identifies position 166 for PGT-

143, and positions 160 and 166 for PGT-145, both of which lie

within the V2 loop of gp120. Consistent with the evidence for a

Table 2. Cont.

bnMAb CS classifier MI classifier Ensemble classifier Experiment

nCS position residue nMI nCS position residue nMI

395 Cys

455 Glu

465 Thr

500 Glu

520 Leu

644 Asp

746 Ser

792 Ala

792 Leu

817 Thr

841 Leu

The experimentally identified positions are defined as those at which alanine point mutations were observed to increase the measured IC50 of the mutant by more than
30-fold relative to that of the wild type JR-CSF. Alanine scans were performed as part of the present work for PGT 143 and 145; data for PGT 121–135 were taken from
Ref. [51].
Footnote: See footnote to Table 1.
doi:10.1371/journal.pone.0080562.t002

Computational Prediction of HIV Antibody Epitopes
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Table 3. Compressed sensing (CS), mutual information (MI), and ensemble classifier predictions of HIV-1 Env positions constituting
bnMAb epitopes for PGT 135, 143, and 145.

bnMAb CS classifier MI classifier Ensemble classifier Experiment

nCS position residue nMI nCS position residue nMI

PGT-135 22 133 Ala 1 334 1 334 6 297

171 Thr 330

185 Ala 332

330 His 334

334 Ser 392

335 Asx 394

344 Gly

346 Ser

351 Ala

363 Ser

389 Gly

389 Lys

426 Leu

430 Ile

489 Ile

489 Val

733 Ile

733 Thr

752 Leu

815 Val

832 Gly

840 Val

PGT-143 16 47 Asx 1 166 1 166 2 160

51 Ser 166

166 Arg

167 Asp

171 Lys

182 Thr

240 His

252 Arg

252 Lys

269 Asx

360 Asn

389 Ser

491 Val

668 Asn

671 Asp

817 Ile

PGT-145 6 130 Asn 3 160 2 160 1 160

130 Lys 162 166

160 Asn 166

166 Arg

500 Lys

677 Asn

The experimentally identified positions are defined as those at which alanine point mutations were observed to increase the measured IC50 of the mutant by more than
30-fold relative to that of the wild type JR-CSF. Alanine scans were performed as part of the present work for PGT 143 and 145; data for PGT 121–135 were taken from
Ref. [51].
Footnote: See footnote to Table 1.
doi:10.1371/journal.pone.0080562.t003
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quaternary epitope, the V2 loops within each gp120 monomer are

thought to be brought within close proximity at the apex of the

viral spike in the native heterotrimer [19,35].

To test these predictions we performed neutralization assays

using a JR-CSF pseudovirus incorporating single alanine substi-

tutions at positions 160 and 166. Substitutions at both of these

positions abrogated neutralization by PGT-143, resulting in

.6300 fold increases of the IC50 relative to wild type. Similarly

PGT-145 binding was abolished by an alanine substitution at

position 160, causing a .32,000 fold increase in the IC50 relative

to wild type; the substitution at position 166 had a more moderate

effect, resulting in a fold IC50 increase of only 6.4. Position 160 is

the site of an N-linked glycosylation that has been previously

implicated in the binding of bnMAbs PG9 and PG16 [58,59,60].

These data strongly suggest that this glycan, along with position

166, is also critical to formation of the epitope for PGT 143 and

145. A publication describing a detailed experimental study of

these bnMabs, of which these alanine scan data will form a part, is

forthcoming.

We observed that position 160 is rather highly conserved

relative to 166 (Fig. 1), and also that no strains within the viral

panel contained an Ala mutation at position 160. It is possible,

therefore, that compared to PGT-145, the actual mutations

present within the panel had a weaker effect on PGT-143 binding

than a single Ala point mutation at position 160, offering a

potential rationalization for why position 160 should have been

identified for PGT-145, but not PGT-143.

Comparison of the Ensemble Classifier to Predictions by
Fisher’s Exact Test

To assess the performance of our new approach in identifying

bnMAb epitopes, we compared its predictions to those of a

standard classification approach that has been previously used, for

example, to identify positions in gp120 subject to differential

selection pressure between two distinct HIV cohorts [61].

Specifically, we compared the distribution of amino acid residues

occupying a particular position over those strains in the panel that

are neutralized by the bnMAb, to the distribution over those

strains that are not. Point mutations at positions within the

bnMAb epitope are expected to have the largest impact upon

neutralization activity, and may therefore be identified as those

positions possessing a statistically significant difference between the

two distributions. Statistical significance is measured by Fisher’s

exact test [62], and the Benjamini–Hochberg false discovery rate

correction used to account for multiple testing [63]. The details of

the approach are presented in Materials and Methods, and the

predictions are compared to those of our ensemble classifier and

experimental alanine scan data in Table S3.

Specifying a significance threshold of a= 5% for Fisher’s exact

test, the predictions of this approach are in good agreement with

those of our ensemble classifier for eight bnMAbs (PGT 125–128,

130, 135, 143, and 145). For PGT 121 and 123, however, it

exhibits very low specificity (high false positive rate), predicting 34

and 37 positions, respectively, as constituting the epitope, thereby

masking the true positives that are in agreement with experimental

data within a large number of false positives. It is necessary to

reduce the significance threshold to a= 0.1% for Fisher’s exact test

to isolate the top two and three positions for PGT 121 and 123,

respectively, where we observe good agreement with our ensemble

classifier and alanine scan data. This stringent significance

threshold, however, severely compromises the sensitivity of the

test (high false negative rate), causing it to generate no predictions

at all for six bnMAbs (PGT 125, 127, 128, 130, 135, and 145).

Overall, although there are commonalities between the predictions

of the two approaches, our ensemble classifier does not suffer from

the poor specificity/sensitivity trade-off exhibited by Fisher’s exact

test, that results in poor predictions for some fraction of the

bnMAbs at different significance thresholds.

Discussion

We have presented a novel computational methodology for the

determination of amino acid residues that are the primary

discriminants of antibody neutralization activity for highly

antigenically variable viruses. Assuming that variations in neutral-

ization activity upon introducing mutations at these positions may

be attributed to modifications of antibody binding efficiencies, we

infer such residues to constitute key components of the antibody

functional epitope. Our approach marries techniques from

Figure 1. Logo plot of the variability of selected positions in HIV-1 Env within the 141-strain pseudovirus panel. We present data for
all positions identified in Tables 1–3 as significant determinants of bnMAb neutralization activity by either the ensemble classifier or experimental
alanine scan data.
doi:10.1371/journal.pone.0080562.g001
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compressed sensing and information theory into a classifier

designed to predict with high specificity those residues constituting

the epitope. It requires as an input experimental measurements of

neutralization activities against a panel of viral strains that are

typically collected as a matter of course in the characterization of

new bnMAb isolates. Our approach requires that the amino acid

sequences of the viral strains are known, but importantly, it does

not require any structural information. We anticipate this

approach to be valuable for systems where antigenic structures

do not exist, or are expensive to obtain.

We applied our approach to ten recently identified HIV-1

bnMAbs [51]. All bnMAbs considered in this work depend on

glycan chains covalently linked to the Env protein for the

formation of their epitopes. Prior experimental work has shown

binding of eight of the ten bnMAbs – PGT 121, 123, 125–128,

130, and 135– to be dependent on NXS/T-linked glycans at

positions 301/303 and/or 332/334 [51]. Experimental alanine

scan assays motivated by our computational predictions for the

remaining two bnMAbs – PGT 143 and 145– verified that the N-

linked glycosylation site at position 160 is implicated in antibody

binding.

We robustly identified the N-linked glycan associated with

positions 332 and 334 for the five bnMAbs for which alanine scans

showed this to be a primary determinant of neutralization activity

(PGT 121, 123, 126, 127, and 135) [51].

Insufficient mutability at positions 301 and 303 within our panel

of viral strains likely prevented the recovery of N-linked glycan

associated with these positions for the three bnMAbs for which its

importance has been experimentally demonstrated (PGT 125,

128, and 130) [51]. Encouragingly, in all three cases our ensemble

predictor showed high specificity and noise suppression charac-

teristics, declining to generate any predictions for PGT-125, only

one for PGT-130– position 792 in the C-terminal tail of gp41.

This finding is in line with published studies demonstrating that

non-covalently mediated perturbations of the gp120 structure due

to point mutations in the gp41 C-terminal tail were sufficiently

large to impair bnMAb binding efficiencies to the mutant [55].

For PGT-128 our ensemble classifier identifies the proximate N-

linked glycan associated with positions 332 and 334 for PGT-128.

These predictions for PGT-128 are supported by the crystal

structure of PGT 128 bound to an engineered glycosylated gp120

outer domain containing a JR-FL mini-V3 loop [52]. The alanine

scan was done on the JR-CSF isolate, and loss of neutralization in

this isolate by PGT 128 is only observed with the removal of at

least two of the three glycans in the binding site (N295, N301, and

N332) [64]. PGT 128 is distinct in that, for certain strains, this

bnMAb is able to pivot between binding N295 and N332 glycans.

This important functional aspect of PGT 128 illustrates strain

specific differences that only functional studies are able to

elucidate.

For the remaining two HIV-1 bnMAbs, PGT 143 and 145, our

algorithm predicted neutralization activity to be critically depen-

dent on positions 160 and 166 within the V2 loop of gp120. We

subsequently validated these predictions by collecting new

neutralization activity data for JR-CSF pseudoviruses incorporat-

ing single alanine substitutions at these positions. Our predictions

for these two newly isolated bnMAbs – that were subsequently

experimentally confirmed – present the new biological insight that

their epitopes are contingent on the N-linked glycosylation site at

position 160– a residue which has been previously implicated in

the binding of bnMAbs PG9 and PG16 [59] – and position 166,

which is not an N-linked glycosylation site [57].

By analyzing neutralization activity data against panels of viral

strains, and validating these predictions against new and existing

experimental data, we have demonstrated a new method to

systematically identify key residues constituting antibody epitopes

within the antigenic proteins of highly antigenically variable

viruses. In particular, the experimental validation by targeted

alanine scans of our de novo predictions of key epitope residues for

two newly isolated HIV-1 bnMAbs illustrates the predictive

capacity of our approach, and exemplifies its value in guiding and

accelerating experimental epitope identification. A deficiency of

the present approach is the inability of our approach to identify

positions that do not exhibit sufficient variability within the

pseudovirus panel [50]. Interestingly, ideas from compressed

sensing (the restricted isometry property of the pseudovirus panel,

cf. Materials and Methods) present a means to rationally design

additional strains with which to augment the panel, and enhance

recovery of the residues comprising the epitope [39,65,66].

Materials and Methods

Neutralization Assays
Cross-clade neutralization assays for the ten recently identified

HIV-1 bnMAbs PGT 121, 123, 125–128, 130, 135, 143 and 145

[51] were performed on a 108 virus panel using a single round of

replication pseudovirus and measuring entry into TZM-bl cells as

previously described in Ref. [67]. The measured IC50 values – the

antibody concentrations necessary to inhibit HIV activity by 50%

– were combined with previously reported measurements for an

additional 33 strains [51]. The IC50 measurements for the ten

bnMAbs against the 141-strain panel are presented in Table S1.

Measurements reported as ,0.001 mg/ml and .50 mg/ml

denote IC50 values outside the range of our experimental

resolution. In the application of our algorithms to this data, we

elected to hard-threshold these values to 0.001 mg/ml and 50 mg/

ml, respectively. Nucleotide sequences of the env gene correspond-

ing to each viral strain were downloaded from the NCBI

Nucleotide database (http://www.ncbi.nlm.nih.gov/nuccore) and

translated to yield the amino acid sequence of the corresponding

Env polyprotein.

Alanine Scans
Pseudoviruses incorporating HIV-1 JR-CSF single alanine

substitutions were produced as previously described [68]. The

neutralization assay of the PGT bnMAbs against HIV-1 JR-CSF

pseudovirus was measured by luciferase activity, using entry into

TZM-bl cells as described in Ref. [67].

Compressed Sensing Epitope Prediction
The binding affinity of each bnMAb towards each viral strain is

determined by the primary amino acid sequence of the Env

protein. Mutations at key residues within Env that are part of the

epitope of the bnMAb will reduce neutralization efficiency, and be

reflected in an elevated IC50 value. Each viral strain possesses a

different amino acid sequence, and the interaction of each bnMAb

with each of the 141 viral strains possesses a measureable IC50

value. Our goal is to data mine the 141 IC50 measurements using

our variable selection algorithms to determine those positions in

the Env protein where mutations have the largest impact on

neutralization activity for each bnMAb. We infer these residues to

be critical components of the conformational epitope of the

bnMAb.

We pre-processed the sequence data to remove from consider-

ation those among the 856 positions in Env at which the amino

acid type was fully conserved within all strains in the panel.

Positions at which the same amino acid residue is present in all

strains in the panel cannot, by definition, be identified by our
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techniques as discriminants of binding. This operation removed

196 residues from consideration. (As indicated in the Discussion,

additional strains may be added to the pseudovirus panel to

introduce mutational variability at conserved positions.) Further-

more, to suppress spurious effects arising from incomplete

experimental knowledge, we also eliminated those residues at

which more than 2.5% of strains harbored a residue of unknown

identity [69]. This operation eliminated a further 53 positions.

Together, these pre-processing steps removed 249 of 856 residues.

The amino acid sequence at the remaining 607 positions in each

viral strain was encoded as a 12,747-dimensional vector (21 amino

acid types 6 607 residues, where the 21st amino acid ‘‘type’’

denotes a gap or residue of unknown identity) [70]. Each element

of this vector can take a value of 1 or 0, to indicate the presence or

absence of a particular amino acid type in a particular position.

The 141612,747 element matrix formed from the panel of n = 141

viral strains was simplified by deleting those columns containing

only 09s (i.e., those amino acid types that were never observed at a

particular position within the panel of strains), to generate the

14163,021 element measurement matrix, W.

The n = 141 element measurement vector, yk, was constructed for

each bnMAb, k, from the measured pIC50 = –log(IC50) values from

the neutralization activity panel. As is conventional, we convert

measured IC50 values to ‘‘p-units’’ [70]. Assuming the residues

within the epitope to contribute additively to MAb binding, a

model for the neutralization activity of each bnMAb may be

formulated as a multivariate linear regression problem [70,71],

min
b̂bk

yk{Wb̂bk
��� ���

‘2

, ð1Þ

where b̂bk is an estimate of the signal vector for bnMAb k, containing

the m = 3,021 regression coefficients pertaining to each amino acid

type in each residue of the Env protein. Without loss of generality,

we choose to operate in a gauge in which the yk vector is centered

(
Pn
i~1

yk(i)~0) and the columns of the measurement matrix, W, are

standardized (
Pn
i~1

W(i,j)~0,
Pn
i~1

W(i,j)2~1) [72]. Standardization

of W places all regression coefficients on similar scales, irrespective

of the number of observations of each amino acid in each position.

As a linear transformation, this procedure does not affect the

predictive capacity of the inferred model, but rescales all

regression coefficients to be of the same order of magnitude.

Since the compressed sensing approach enforces sparsity by

penalizing large absolute values of the regression coefficients

constituting the elements of the signal vector, egalitarian

application of this penalization necessitates that the coefficients

be of similar magnitudes.

Mutations at the great majority of residues in Env will not affect

binding, with the amino acid identity at only a small number of

positions governing MAb binding affinity. Accordingly, the ‘‘true’’

signal vector for each bnMAb, bk, is expected to be sparse,

possessing only a small number, s,,m, of non-zero elements.

Compressed sensing (CS) exploits the anticipated sparsity of the signal

vector to permit its recovery from very few measurements [39,73],

making it is well suited to sparse signal recovery in the high

dimensionality-low sample size (HD-LSS), m..n, regime.

The restricted isometry property (RIP) of the measurement matrix, W,

may be loosely interpreted as the degree to which W preserves the

length of s-sparse vectors, and hence the capacity of the matrix to

faithfully ‘‘measure’’ sparse signals [39]. Adherence to the RIP

guarantees the recovery of any sparse signal within defined

mathematical bounds [39,65,66]. If one can manipulate the

sensing matrix – in the present case by augmenting the panel of

viral strains with additional engineered mutants – the RIP

provides a means to design a sensing matrix that guarantees

accurate recovery of s-sparse signals [73]. The RIP condition

provides a sufficient, but not necessary, condition for sparse signal

recovery, and, in practice, accurate recovery is generally achieved

if the number of non-zero elements of bk, s, is small compared to

its dimensionality, m [42,74].

Estimators of the sparse signal vector, b̂bk, are computed by

solving the convex unconstrained optimization problem,

min
b̂bk

yk{Wb̂bk
��� ���

‘2

zt b̂bk
��� ���

‘1

, ð2Þ

where t is a non-negative coefficient, and the ‘p-norm of a vector

x is defined as xk k‘p~
P
k

xkj jp
� �1=p

where xkj j denotes the

absolute value of the kth element of the x vector [75]. To enforce

sparsity of the signal vector, b̂bk, it would seem necessary to replace

its ‘1-norm in the second term of Eqn. 2– which sums the absolute

values of the elements of b̂bk – with its ‘0-norm – which counts the

number of non-zero entries in the vector. No efficient algorithms

exist to solve the ‘0-norm problem, which is NP-complete and

numerically unstable [73]. However, fast algorithms do exist for

the ‘1-norm problem, the solution to which recovers ‘0-norm

solution with overwhelming probability under the mathematically

precise conditions specified by the RIP [39,65,66]. This remark-

able result lies at the heart of practical applications of the

compressed sensing methodology [73]. As observed above, in

practice, accurate recovery of sparse signals is achieved if the

number of non-zero elements of bk, s, is small relative to its

dimensionality, m [42,74].

For efficient solution, the problem in Eqn. 2 may be

reformulated as a ‘1-regularized linear least-squares quadratic

programming problem,

min
b̂bk

yk{Wb̂bk
��� ���

‘2

s:t: b̂bk
��� ���

‘1

ƒt, ð3Þ

where t is a non-negative parameter [75]. Solutions to Eqn. 3 are

efficiently provided by the LASSO algorithm [39,75,76]. The ‘1-

constraint enforces sparse solutions to the ‘2 regression problem,

with signal vector, b̂bk
, becoming progressively less sparse as t is

increased from zero [72]. From a Bayesian perspective, the ‘1

penalty corresponds to the adoption of a Laplacian prior

distribution on the regression coefficients [53]. Appropriate values

of t – or, equivalently, the number of non-zero elements in b̂bk –

may be specified by identifying a knee in the ‘2 reconstruction

error [77], or by cross-validation [78]. At sufficiently large t, the

regularization constraint becomes inactive, and the signal vector,

b̂bk t~?ð Þ, is precisely that obtained from ordinary least squares

[72]. In the present work, the LASSO optimization defined by

Eqn. 3 was solved using an in-house modification of a MATLAB

implementation of the LARS algorithm [72,79]. Signal vectors,

b̂bk(t), were computed along the entire LASSO path as t was

increased from zero and the signal vector became progressively

less sparse.

Non-zero elements in b̂bk identify particular residues in

particular positions that are the principal discriminants of bnMAb

neutralization activity. In this manner, we employ compressed
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sensing as a variable selection tool to identify a small number of

residues that constitute bnMAb functional epitopes on Env. To

determine an appropriate number of variables (i.e., non-zero

elements of b̂bk) to retain in the regression model, we constructed

plots of the mean squared error (MSE) and leave-one-out cross

validation mean squared error (LOO-CV MSE) as a function of

the sparsity of b̂bk.

The MSE, yk{Wb̂bk
��� ���

‘2

, provides a measure of the predictive

capacity of the fitted model, and typically decreases as more

variables are incorporated into the model. We anticipate that a

small number of variables – the key residues within the bnMAb

epitope – will be capable of explaining most of the variance in the

measured IC50 values, and therefore expect to observe a knee in

the MSE curve, where an initially rapid decrease transitions to a

more gradual decay (cf. Fig. 2a). The location of the knee may be

used to infer an appropriate number of variables to retain in the

model, and may be systematically identified using, for example,

the L method of Salvador and Chan [77]. (We note that it is

possible for non-zero elements of b̂bkz to shrink back to zero as t

increases, giving rise to non-unique solutions for b̂bk at a particular

level of sparsity [72]. In such cases, we select the solution with the

lowest MSE value.).

Cross validation, here leave-one-out cross validation (LOO-

CV), provides a tool to assess overfitting, offering a complementary

means to infer an appropriate number of variables to retain. This

analysis proceeds by removing from consideration each observa-

tion in turn from within the n = 141 element measurement vector,

yk, and recomputing the LASSO path by solving Eqn. 3 over

the remaining n = 140 observations. The squared error between

the measured IC50 value removed from the data set, and its

prediction using the refitted model is then recorded at each level of

sparsity of b̂bk. The LOO-CV MSE is defined as the average of

the squared errors at a particular level of sparsity computed over

the removal of each of the n = 141 elements of yk in turn. We note

that under this protocol, the precise variables included in the

regression model at a particular level of sparsity may differ for

different 140-observation subsets of the n = 141 element measure-

ment vector.

In general, the LOO-CV MSE decreases as more variables are

included and the regression model is better able to fit the data,

then passes through a minimum and increases as models

incorporating large numbers of variables begin to overfit the data.

For all ten bnMAbs considered in this work, we observed

the LOO-CV curves to possess relatively shallow minima preceded

by relatively pronounced knees (cf. Fig. 2b). Accordingly, we

employed the L method [77] to systematically locate the knees

observed in both the MSE and LOO-CV MSE curves, and

took the mean of these two values as the appropriate number

of residues (i.e., non-zero elements of b̂bk) to identify for each

bnMAb.

Mutual Information Epitope Prediction
Given the panel of n = 141 viral sequences, we compute for each

position, a, the probability of observing each of the 20 amino

acids, xi, i~1 . . . 20, denoting this quantity as p(xa
i ). The entropy of

the random variable X a indicating the identity of the amino acid

at position a is defined as [44],

Figure 2. Compressed sensing (CS) selection of PGT-123 epitope residues. Results of the application of the compressed sensing
classification algorithm to the neutralization activity of bnMAb PGT-123 against a panel of 141 HIV-1 pseudoviruses (cf. Table S1). In each panel, the
abscissa indicates the number of non-zero elements in the b̂bk signal vector computed by the LASSO algorithm, and therefore the number of residues
incorporated into the regularized least squares fit of the neutralization data (Eqn. 3). For clarity of viewing, plots are terminated at the 100-
component model. As indicated by the arrows, knees in the (a) mean squared error (MSE) over the complete data set and (b) leave-one-out cross-
validation mean squared error (LOOCV-MSE) curves were identified using the L method at 11 and 9 residues, respectively [77]. The mean of these
values motivated the selection of the ten residues constituting this model: I323, H330, N332, N334, S334, S612, N671, Q740, V815, and V843 (c.f.
Table 1).
doi:10.1371/journal.pone.0080562.g002
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H(X a)~{
X20

i~1

p(xa
i ) log p(xa

i ) ð4Þ

Since the mutual information framework is most naturally

applied to discrete, rather than continuous, variables, we chose to

define a cutoff in the neutralization activity of each bnMAb.

Motivated by the range of measured IC50 values reported for

existing HIV-1 bnMAbs [51,59], we defined an IC50 cutoff of

10 mg/ml. We demonstrate in Table S4 that our predictions for

key residues in bnMAb epitopes are robust to the precise value of

this parameter. The cutoff permitted us to discretize the IC50

measurements for each bnMAb, k, against the panel of viral strains

into a vector of random variables, Zk, where zk
1~1 denotes a

strong neutralizing activity (IC50,10 mg/ml) of bnMAb k against

a particular viral strain, and zk
0~0 indicates a weak response.

In an analogous manner to Eqn. 4, we define the entropy of the

random variable Zk describing the neutralization activity of

bnMAb k as,

H(Zk)~{
X1

i~0

p(zk
i ) log p(zk

i ) ð5Þ

By extension, the joint entropy of X a and Zk, is defined as,

H(X a,Zk)~{
X20

i~1

X1

j~0

p(xa
i ,zk

j ) log p(xa
i ,zk

j ) ð6Þ

and the conditional entropy of Zk with respect to X a as,

H(ZkjX a)~{
X20

i~1

X1

j~0

p(xa
i ,zk

j ) log p(zk
j jxa

i ) ð7Þ

Finally, the mutual information is given by,

MI(X a,Zk)~H(X a)zH(Zk){H(X a,Zk)

~H(Zk){H(ZkjX a):
ð8Þ

Eqn. 8 shows that the mutual information may be regarded as a

measure of the reduction in the uncertainty in the neutralization

activity of bnMAb k, given knowledge of the amino acid identity at

Env position a.

In practice, we choose to work with a normalized form of the

mutual information, known as the redundancy,

R(X a,Zk)~
MI(X a,Zk)

1

2
H(X a)zH(Zk)½ �

: ð9Þ

Normalization of the MI in this manner has been shown to

improve the predictive power of information theoretic predictions

of protein contact residues [46]. The redundancy also possesses the

attractive feature of being bounded between 0 and 1, with a value

of R(X a,Zk)~0 indicating that knowledge of the residue identity

at position a has no impact on our ability to predict the

neutralization activity of bnMAb k. At the other extreme, a one-

to-one correspondence between residue identity and neutralization

activity implies R(X a,Zk)~1, indicating that predictions may be

made with 100% accuracy. To suppress artifacts arising from

incomplete experimental knowledge, in practical calculations with

Eqn. 9 we neglect those among the n = 141 sequences for which

the residue type at position a is unknown, or a gap exists.

For each bnMAb, k, we compute R(X a,Zk) for each of the 607

positions, a, in Env. (As described above, the 249 positions that are

either fully conserved within all viral strains in the panel, or

contain an unknown residue in more than 2.5% of strains, were

eliminated from consideration). The positions are rank ordered to

produce a non-ascending spectrum of R(X a,Zk) values [40].

Knowledge of the amino acid identity at the positions constituting

the bnMAb functional epitope is expected to lead to a large

decrease in the uncertainty in the neutralization activity, and these

positions should therefore possess high redundancy values.

Conversely, the majority of positions should not contain high

information content about the measured neutralization capacities.

To systematically identify which redundancy values are

statistically significant, and therefore which positions should be

selected by the MI classifier, we estimate from our data the

spectrum of R(X a,Zk) values that would be expected in the

absence of correlations between neutralization activity and the

residue identity in each position. We empirically construct a null

model lacking these correlations by aligning all n = 141 the viral

sequences, each containing 607 positions, into a 1416607 matrix,

and randomly and independently permuting each column. The

effect of this operation is to shuffle the identity of each amino acid

at each position among the n = 141 strains, breaking correlations

between neutralization activity and residue identity. Since the

probability of observing each amino acid residue at each position

is unaltered by shuffling, H(X a) and H(Zk) remain unchanged,

whereas H(X a,Zk), and therefore MI(X a,Zk) and R(X a,Zk), are

affected by breaking these correlations. We then compute the

R(X a,Zk) value for each position. We perform this shuffling

operation ten times for each bnMAb to construct an empirical

distribution of R(X a,Zk) values in the absence of correlations. The

maximum R(X a,Zk) value, Rcutoff, detected by this procedure

represents an estimate of the largest redundancy expected to arise

under the null hypothesis that the neutralization activity and

amino acid identities are uncorrelated. R(X a,Zk) values computed

from the original (unshuffled) data that are larger than Rcutoff

correspond to positions for which there is statistically significant

correlation between the amino acid identity and neutralization

activity. These positions are extracted as our MI classifier

predictions of the key residues within the bnMAb epitope.

In Fig. 3 we present the redundancy values computed from the

unshuffled data for bnMAb PGT-123, along with a dashed line

indicating Rcutoff computed by our shuffling procedure. In this case,

the MI classifier identified three positions – 332, 334 and 330 – as

statistically significant predictors of neutralization activity.

Ensemble Classifier
Combining the predictions of classification algorithms into a

single ensemble classifier is an established means to suppress noise

and improve classification performance [38,47,48]. In the present

case, we employ positive unanimity voting, or consensus prediction, to

improve the prediction specificity at the cost of reduced sensitivity

[38,48]. Accordingly, we predict a position to form part of the

bnMAb epitope only if it is identified by both the compressed

sensing and mutual information algorithms. The ensemble
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classifier is expected to be a more conservative predictor than

either of the two classification algorithms alone, resulting in

improved confidence that the identified residues represent true

positives, at the expense of an elevated rate of false negatives [38].

This choice is consistent with the stated goal of this work to

localize bnMAb epitopes to a small number of critical positions,

rather than as a means to predict all residues constituting the

conformational epitope.

As an example of the residue selection protocol, we present the

results of the CS and MI classification algorithms for bnMAb

PGT-123. In Fig. 2 we show the CS classifier MSE and LOO-CV

curves, both of which exhibit a steep decline to a conspicuous knee

as the first ten residues are incorporated into the model. Beyond

this point, the MSE decays more gradually, and the LOO-CV

MSE passes through a shallow minimum at the 27-residue model.

Application of the L method to these curves identified a knee in

the MSE and LOO-CV curves at 11 and 9 residues, respectively

[77]. Taking the mean of these values motivated us to select a ten-

component model using the CS classifier, corresponding to the

selection of residues: I323, H330, N332, N334, S334, S612, N671,

Q740, V815, and V843 (cf. Table 1). We note that although the

minimum in the LOO-CV curve suggests that a 27-component

model may be constructed without overfitting the data, the more

parsimonious 10-component model accounts for 82% of the

reduction in the cross validation error in moving from a one to 27-

component model. In Fig. 3 we show the MI classifier redundancy

spectrum. The shuffling procedure described above identified

redundancy values above Rcutoff = 0.15 to be statistically significant,

motivating the selection of the three top ranked positions using the

MI classifier: 332, 334, and 330 (cf. Table 1). Observe that while

the CS classifier identifies specific residues in particular positions

as primary discriminants of neutralization activity, the MI

algorithm identifies only positions. Combining these two sets of

predictions, the ensemble classifier identifies positions 330, 332,

and 334 as forming part of the PGT-123 epitope.

Epitope Prediction by Fisher’s Exact Test
For each bnMAb we used the same IC50 cutoff of 10 mg/ml

employed by our MI classifier to partition the sequences in our

141-strain panel into those that were neutralized by the bnMAb,

and those that were not. For each of the 856 positions in Env, we

compiled two histograms of the observed distribution of amino

acid residues: one over the neutralized sequences, and another

over the unneutralized sequences. It is the anticipation that point

mutations within the bnMAb epitopes will most strongly influence

neutralization activity, and should therefore exhibit the largest

differences in the observed amino acid residue distributions

between the neutralized and unneutralized sequence ensembles.

Employing Fisher’s exact test [62] we then assigned a p-value to

the null hypothesis that each pair of histograms for each position in

Env were drawn from a common underlying distribution. (Due to

small sample sizes and highly unequal representations of amino

acid residues at each site, Fisher’s exact test is a more appropriate

test than the two-sample chi-squared test [62].) Specifying

significance levels of a= 5%, 1% and 0.1%, we applied the

Benjamini–Hochberg false discovery rate correction to account for

multiple testing [63] to identify for each bnMAb those residues for

which differences in the observed amino acid residue distributions

reached the significance threshold. These positions are predicted

to form part of the bnMAb epitope. A comparison of these

Figure 3. Mutual information (MI) selection of PGT-123 epitope positions. The redundancy spectrum produced by application of the
mutual information classification algorithm to the neutralization activity of bnMAb PGT-123 against a panel of 141 HIV-1 pseudoviruses (cf. Table S1)
using an IC50 cutoff of 10 mg/ml. The ordinate records the computed redundancy of the residue identity in each position with the observed
neutralization activity. The abscissa lists the positions of the protein in decreasing order of redundancy. The dashed line indicates the cutoff
computed by the shuffling procedure described in Materials and Methods, Rcutoff = 0.15, above which redundancy values should be considered
statistically significant. These results suggest that the three top ranked positions – respectively, 332, 334 and 330– be retained in the model (cf.
Table 1). For clarity of viewing, plots are terminated at the 100-component model.
doi:10.1371/journal.pone.0080562.g003
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predictions to positions identified by the ensemble classifier and

experimental alanine scans are presented in Table S3.

Estimation of Minimum Residue Variability Required for
Detection

We have suggested that the high conservation of residues at

positions 301 and 303 may be responsible for the inability of our

classifiers to detect the N-linked glycan at position 301 for the five

bnMAbs (PGT 125–128 and 130) for which alanine scans indicate

it to be an important discriminant of binding. To test this claim,

and estimate the minimum variability required for detection, we

constructed and analyzed a synthetic data set as described below.

For simplicity, we make our estimate using only the MI classifier,

for which the binary classification criterion (neutralized vs.

unneutralized) makes generation of synthetic data straightforward,

since it does not require the specification of quantitative IC50

values.

The mean number of the n = 141 strains neutralized (i.e.,

IC50,10 mg/ml) by each of the 10 bnMAbs is 78, and the mean

value of Rcutoff calculated using the shuffling protocol is 0.12.

Using these figures we constructed a synthetic data set consisting of

141 viral strains, each consisting of a single amino acid residue that

may take on one of two identities: wild type or mutant. Of the 141

strains, 78 were considered neutralized by a hypothetical bnMAb,

and 63 unneutralized. If the strain is neutralized, the residue was

mandated to be wild type. If the strain is not neutralized, the

residue can be either wild type or mutant. The question we wished

to answer was: How many of the non-neutralized strains must

contain a mutant amino acid for the redundancy calculated by the

MI classifier to breach Rcutoff = 0.12? By varying the number of

mutant residues, we determined that 10 mutations within the 141-

strain panel are required for detection by the classifier, providing

an empirical estimate for the minimum amino acid variability

required for detection within the pseudovirus panel.

This result is numerically consistent with the observation that

the N-linked glycan associated positions 301 and 303 that were

undetectable by our classifier contained only three and six

mutations, respectively, whereas the N-linked glycan positions

332 and 334 containing 28 and 40 mutations, respectively, were

detectable by our approach.

Supporting Information

Table S1 Neutralizing activity of PGT MAbs against a cross-

clade 141-pseudovirus panel.

(PDF)

Table S2 Ensemble classifier predictions of positions of HIV-1

Env positions constituting bnMAb epitopes using randomly and

independently selected subsets of the 141-strain pseudovirus panel.

Predictions generated using 35, 70, 105, and 126 viral strains,

respectively constituting 25%, 50%, 75%, and 90% of the 141-

strain pseudovirus panel are reported to assess the robustness of

our predictions to the size and composition of the panel. We also

list the experimentally identified positions reported in Tables 1–3.

(PDF)

Table S3 Comparison of the ensemble classifier predictions of

HIV-1 Env positions constituting bnMAb epitopes (cf. Tables 1–

3), to those identified by application of Fisher’s exact test to detect

positions with statistically significant differences in the observed

distribution of amino acid residues in the neutralized

(IC50#10 mg/ml) and non-neutralized (IC50.10 mg/ml) strains

in the pseudovirus panel. Results for Fisher’s exact test are

reported at 5%, 1% and 0.1% significance; p-values were

corrected for multiple comparisons using the Benjamini–Hoch-

berg procedure [63]. We also list the experimentally identified

positions reported in Tables 1–3.

(PDF)

Table S4 Ensemble classifier predictions of HIV-1 Env positions

constituting bnMAb epitopes as a function of the MI classifier IC50

cutoff.

(PDF)
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