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Abstract

The Indivo X personally controlled health record creates a channel between researchers and the patient/subject in 
several large scale projects. Indivo enables patients to access their health data through a web interface and, as an 
“apps platform”, can be extended in functionality. Patient-facing apps,  such as a medication list,  may improve the 
data flow between researcher and patient, in both directions, and as such provide better data for the researcher and 
immediate benefit for the patient. However, research projects in general do not allocate large funds to patient facing 
apps, let alone a mobile interface. Thus we have created a framework that greatly simplifies connecting an iOS app 
to an Indivo X server. Our open-source framework enables novel as well as experienced iOS developers to build 
mobile interfaces for their research subjects, taking advantage of Indivo X.

Introduction & Background

The personally controlled health record (PCHR) platform Indivo X1-3 is an “apps platform” that supports 
substitutability4 – the capability of swapping out core components for new ones. Substitutability is an important 
concept because it allows the platform to adapt to the needs of the diverse patient population. The value of such 
substitutability is accentuated by Indivo’s role as personal health information (PHI) store for large scale research 
projects such as The Gene Partnership 5 or CARRAnet 6. However profound the level of substitutability, most value 
for patients is still achieved by offering a wide range of apps interacting with personal health data2.  Giving patients 
access to their health data, especially in research environments, can improve data flow from patient to researcher, 
not only from researcher to the patient. Well-built patient-facing apps, for example a medication list manager, may 
immediately benefit the patient, in contrast to the usual patient-reported outcome collection via surveys. Often 
however, the resources to build patient facing interfaces in such studies are limited, and building a separate mobile 
interface is out of the question.

In order to facilitate building patient facing apps that interface with an Indivo X backend we have released an iOS 
framework. Our framework seeks to fulful the following desiderata:
1. Authentication. The framework handles authentication, including the presentation of a login- and record 

selection screen, automatically upon request.

2. Access to Indivo. All relevant API calls are abstracted into object logic.

3. Data handling. The framework provides classes for all relevant Indivo documents, automating XML 
serialization and deserialization.

Indivo’s source code is available under GPL and L-GPL licenses; packaged versions as well as documentation are 
available at www.indivohealth.org. The iOS framework is available under the L-GPL license from https://
github.com/chb/IndivoFramework-ios.

Methods

Indivo recognizes three categories of apps with a different set of privileges:

• User App. Runs in context of a record. This is the type of apps targeted at end-users – patients and health 
professionals alike.
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• Admin App. Has privileges in the context of an Indivo account. It can create records, receive messages and 
handle account-level tasks such as resetting a password.

• Chrome App. Has access to Indivo’s core features. Administrative interfaces use this type, as do UI servers 
such as our reference UI server.

The framework we created supports “User App” API calls.

Authentication

Authorization and authentication in the Indivo environment is handled through OAuth 7. Figure 1 shows the 
authentication workflow between the user, the app developer,  the framework and the Indivo Server. Since user apps 
can only authorize request tokens in scope of a record, the app first has to get a record id, ideally selected by the app 
user. Because user level apps however are not authorized to handle login- and record-selection, this functionality is 
provided by the UI server. For authentication purposes, the framework talks to a UI server, which delivers a login 
page that the framework displays in an embedded web view. After login, still in the web view, the UI server displays 
a page listing all records available to the user. Upon record selection, the app receives a callback with a record-id 
which is subsequently used to request a token and perform the remaining steps of the OAuth dance. Once the 
framework obtains valid access tokens, all calls scoped to the selected record are directly made to the server.  This 
makes the framework dependent on two servers,  one supplying login functionality (the UI server) and the other 
handling data exchange (the Indivo X backend server).

XML Data Model

Indivo is a document-centric container sending and accepting XML documents. Cocoa Touch, the application 
framework for building iOS applications,  does not offer lightweight XML facilities,  handling XML however is a 
fundamental requirement in Indivo. We therefore built a simple DOM implementation which represents XML nodes 
as INXMLNode objects that can be navigated using jQuery8 inspired methods.

XML Serialization and Deserialization

To achieve the goal of automatic XML serialization and deserialization, we built a hierarchy of classes that can 
instantiate themselves from an INXMLNode and write their own XML representation. From the INObject base 
class, which merely knows its node name, we created subclasses to represent the base data types such as xs:date and 
xs:string. These classes can all represent one XML node that has no child nodes and we have created classes for 
most standard XML simple types.

Another subclass of INObject, INServerObject, adds “server awareness” to the object. Instances of this class hold a 
reference to their Indivo server object and can perform basic Hypertext Transfer Protocol (HTTP) GET, PUT, POST 
and DELETE actions. This class is the abstract superclass for all objects that live on the server, specifically the 
record object and all the documents belonging to a record.

The latter, representing the type of objects that will most often be interacted with, has an abstract superclass called 
IndivoAbstractDocument. Instances of this class can instantiate themselves from an XML tree and also serialize 
themselves into an XML tree representation. To achieve this,  the class, when being told to instantiate itself from a 
given XML node, walks through all instance variables and looks for variable names matching a child node name and 
inheriting from INObject. If both conditions are met, the instance variable is told to instantiate itself from the 
matching child node. Array instance variables are handled in a similar way, except that to know which class to use 
for objects, the class holds a static dictionary, mapping instance variable names to INObject subclasses.

The reverse process,  XML serialization, is achieved by the same principle. When an object is asked for its XML 
representation, it collects all instance variables that are a subclass of INObject or respond to the “xml” method. All 
these instances are then asked to return their XML representation from which the object itself can construct a 
complete XML tree.
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Class Generation

Indivo 2.0 introduced “pluggable schemas”, the ability to add data models to an Indivo instance by dropping a 
JSON-like data description by simple file drop. The core data models use the same format. To avoid building Cocoa 
classes around the schemas by hand and allow developers to easily support custom data models,  we have built a 
companion application that can generate Cocoa classes from Indivo’s SDML files.as part of the framework bundle.

API Calls

The Indivo X API has iteratively been fine-tuned to the needs of different stakeholders such as academic computer 
scientists,  practicing physicians or hospital IT staff3. Of the resulting definite REST 9 call set of 155 API calls, 41 
pertain to record specific actions. We have abstracted most of these record-specific calls into object logic to provide 
a pure object-oriented interface to Indivo. The record object for example provides a “fetch reports of class” method, 
which directly maps to Indivo’s “GET /records/<record-id>/reports/<report-type>/” API call.

Figure 1: Authentication Workflow. Most interaction of the app with the server during authentication is 
handled by the framework, initiated by the developer implementing the “selectRecord:” method on the Indivo 
server object.
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Resulting Framework

Our iOS framework interfaces with Indivo X and abstracts most “User-App” level API calls relevant to working 
with a record into object logic. The framework greatly facilitates building native iOS apps with Indivo as data 
storage backend. With this we hope to lower the barrier for creating health-related apps for clinical and translational 
research that can take advantage of PCHR data, patient as well as caregiver-focused.

Implementation 

The framework can be used as a static library, a standard format for using foreign C code. This makes it a drop-in 
component to any Objective-C app and allows the developer to keep his code separate from the Indivo code,  with a 
minimal amount of glue-code. Our use of blocks10, a C-language extension to create closures, throughout the 
framework requires apps using the framework to target iOS version 4.0 and higher.

The properties of the Indivo server that the app wants to connect to, namely the URL to both the backend server and 
the UI server, the app id as well as the consumer key and consumer secret needed to authorize the app, can be 
changed at runtime. This enables an app to be run against different Indivo instances, in line with Indivo’s 
substitutability paradigm. Still, all servers first have to be set up to allow the app to run against its data.

Framework Use

Authentication logic is hidden to the framework user, and,  true to the idea of OAuth, at no point do users enter their 
credentials into the app itself. The framework loads Indivo’s login screen, provided by an instance of an Indivo UI 
server, in an embedded web view. As a cautionary point, the presentation of an embedded web view technically 
enables the app to extract user credentials from the web view. Thus to make it impossible for the app to grab 
credentials, one would have to load the login and record selection screen in the OS’s native browser. The app could 
then receive the callback through a URL-handler registered with the OS. This is possible without much changes to 
the framework, however since Indivo apps have to be approved by an admin before they can access an Indivo 
instance, we assumed a certain level of trust and we chose to use an embedded web-view by default,  for better user 
experience.

To alleviate the hurdles posed by API calls and data schemas, we chose to abstract all of Indivo’s functionality into 
Cocoa objects. This means developers need not know the specifics of Indivo’s API or data structures, they only work 
with Indivo objects, instances of Cocoa classes, and interact with Indivo by calling a small set of methods. For 
example, to upload a new medication to Indivo, the developer instantiates a new medication object, sets its 
properties and then calls the “push:” method on the object.

SMART-Indivo App Challenge

An iOS app utilizing our framework won second place at the SMART-Indivo App Challenge, a developer challenge 
sponsored by the Office of the National Coordinator for Health Information Technology. The challenge entries can 
be viewed at http://www.health2con.com/devchallenge/smart-indivo-app-challenge/.

Security Issues

Mobile applications utilizing OAuth for authentication purposes inherently need to store their consumer secret and 
consumer key in the application bundle. For this reason, OAuth defines apps living on users’  devices as “public” 
clients because they are incapable of maintaining credential confidentiality 11. There are techniques to hamper 
attempts to extract app credentials from an app binary, such as storing the consumer secret in scrambled order and 
putting it back together at runtime, but this attempt at security through obscurity offers little extra protection, 
especially in an open source framework. There currently exists no feasible solution to this problem, not only for 
Indivo but for mobile apps in general.

Conclusion

The Indivo X PCHR provides a basis for storing personal health data, and the framework we developed provides 
iOS developers with the functionality they need to develop mobile PCHR apps. This greatly reduces the effort 
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required to integrate Indivo with native iOS apps and thus enables researchers to build mobile interfaces for their 
patients, improving the data flow between patient and researcher. The iOS framework has application in the multiple 
Indivo testbeds, including the Gene Partnership at Boston Children’s Hospital 5, the TuAnalyze application 12, and 
the CARRANet 60 site pediatric rheumatology registry 6. Additionally, several components of the framework are 
being reused in the development of an iOS framework for the SMART platform 13.
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