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Abstract 

Acute rupture of vulnerable plaques frequently leads to myocardial infarction and stroke. Within 
the last decades, several cellular and molecular players have been identified that promote ather-
osclerotic lesion formation, maturation and plaque rupture. It is now widely recognized that in-
flammation of the vessel wall and distinct leukocyte subsets are involved throughout all phases of 
atherosclerotic lesion development. The mechanisms that render a stable plaque unstable and 
prone to rupture, however, remain unknown and the identification of the vulnerable plaque re-
mains a major challenge in cardiovascular medicine. Imaging technologies used in the clinic offer 
minimal information about the underlying biology and potential risk for rupture. New imaging 
technologies are therefore being developed, and in the preclinical setting have enabled new and 
dynamic insights into the vessel wall for a better understanding of this complex disease. Molecular 
imaging has the potential to track biological processes, such as the activity of cellular and molecular 
biomarkers in vivo and over time. Similarly, novel imaging technologies specifically detect effects of 
therapies that aim to stabilize vulnerable plaques and silence vascular inflammation. Here we will 
review the potential of established and new molecular imaging technologies in the setting of 
atherosclerosis, and discuss the cumbersome steps required for translating molecular imaging 
approaches into the clinic. 
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Inflammation in Atherosclerosis 
Atherosclerotic cardiovascular disease is an in-

creasingly common disease and contributes consid-
erably to mortality and morbidity worldwide. Ath-
erogenesis is driven by a combination of disturbed 
equilibrium of lipid accumulation and maladaptive 
immune responses. The disease entails chronic in-
flammation of the arterial wall and cross‐talk with 
procoagulant pathways, culminating in plaque rup-
ture and atherothrombosis. Atherosclerosis is charac-
terized by arterial lesions that progress from an initial 
fatty streak towards an unstable (vulnerable) plaque 
in the arterial vessel wall. Early atherosclerotic lesion 
development is triggered by endothelial dysfunction 

and the local deposition of lipids (e.g. low density 
lipoprotein), particularly at sites of hemodynamic 
strain. In the intima, lipoproteins are prone to oxida-
tive modifications and subsequently activate endo-
thelial cells and intimal resident or infiltrated immune 
cells, causing a local inflammatory response that sus-
tains leukocyte recruitment to the vessel wall. Mono-
cytes that ingest excess lipids differentiate into mac-
rophages and foam cells. The more advanced stable 
plaque consists of a thick fibrous cap with high col-
lagen and smooth muscle cell content and a lipid core 
containing foam cells, debris and lipid droplets. The 
presence of an intact advanced plaque may lead to a 
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stenotic obstruction of the blood vessel (e.g. the cor-
onary artery), a phenomenon which may clinically 
manifest as angina pectoris. Mechanisms that still 
largely remain unknown can render a stable plaque 
unstable and prone to rupture. Plaque rupture results 
in exposure of the plaque's prothrombotic core con-
tents and leads to massive local blood coagulation and 
formation of a thrombus. Such thrombosis may lead 
to local and/or distal obstruction of blood vessels and 
gives rise to the major part of acute myocardial in-
farctions and stroke. Notably, plaque rupture is the 
most common type of plaque complication, account-
ing for ≈70% of fatal acute myocardial infarctions 
and/or sudden coronary deaths [1-4].  

 While animal models of disease have greatly 
advanced our understanding of the molecular mech-
anisms and cellular players underlying atherogenesis, 
atheroprogression and atherothrombosis as the 
pathogenetic sequence of CAD, the greatest challenge 
in cardiovascular medicine remains the identification 
of unstable or vulnerable (but often non-obstructive) 
arterial plaques that may be prone rupture. Although 
sensitivity, specificity, and overall predictive value of 
potential factors remain to be conclusively defined, 
criteria have been defined that make a plaque more 
likely to rupture. These include active inflammation, 
often defined as extensive macrophage accumula-
tions, a thin fibrous cap with a large lipid core, super-
ficial erosion and platelet aggregation or fibrin depo-
sition, a fissured plaque cap and severe stenosis [1]. 

The development and refinement of 
non-invasive imaging therefore aims at providing 
reliable tools for the identification of preclinical dis-
ease and unstable lesions that reach beyond identifi-
cation of flow-limiting stenosis. We here review mo-
lecular imaging modalities and discuss the cellular 
and molecular targets for imaging in the clinic. 

Modalities for non-invasive Molecular 
Imaging 

Imaging has become an indispensable tool both 
in cardiovascular research and clinical care within the 
last decades. Various imaging technologies are now 
available that each have their strengths and weak-
nesses (Table 1). Imaging in the clinical theatre is 
mostly restricted to depicting anatomy and quantify-
ing the degree of vessel stenosis. However, more and 
more approaches aiming at the detection and charac-
terization of vulnerable plaques are being translated 
into patient care [5, 6]. Molecular imaging of athero-
sclerosis is challenging as the vessels move rapidly 
with heart beat and respiration and most vessels of 
interest are in close proximity to tissue interfaces such 
as lung, blood or myocardium which can cause dis-
turbing artifacts or strong background signal. ECG 

and respiratory triggering have facilitated data acqui-
sition and lead to a significant improvement in image 
quality. When evaluating and comparing modalities 
for Molecular imaging both spatial resolution and 
temporal resolution are considered key properties of 
an imaging system. Spatial resolution describes a 
systems’s ability to separate two closely spaced ob-
jects, or with respect to molecular imaging two closely 
spaced molecular probe concentrations. The higher 
the spatial resolution is, the higher the possibility to 
detect subtle molecular signals emitted from a cell or a 
molecular probe. Similarly, temporal resolution de-
scribes the ability to discriminate between two points 
in time. The temporal resolution is especially im-
portant when dynamic imaging is performed to track 
the kinetics of probe accumulation over time as well 
as when CINE imaging of moving/pulsating struc-
tures is performed. Sometimes there is a tradeoff be-
tween temporal and spatial resolution, and the tem-
poral resolution theoretically achievable by a certain 
modality may be hampered by the special resolution 
and vice versa. 

Nuclear Imaging Techniques and Computed 
Tomography 

As nuclear imaging approaches are covered 
elsewhere in this issue only few important points 
relevant to multimodality approaches shall be men-
tioned here. 

The most important disadvantage of both PET 
and SPECT is their limited spatial resolution. Small 
animal PET can resolve structures at ~1-2mm resolu-
tion, whereas clinical PET is limited to 4-5mm maxi-
mum spatial resolution. Such physical limitations 
make it unlikely that PET’s spatial resolution will 
improve significantly[5], however the limited spatial 
resolution may be compensated by hybrid imaging. 
PET-CT combines the excellent spatial resolution of 
CT with the high sensitivity in probe detection of the 
PET. A relevant concern using PET-CT is the radiation 
dose of ~10mSv a patient is exposed during 
imaging[7]. While CT offers only limited capabilities 
to differentiate various plaque components, recent 
integration of PET and MRI promises a significant 
advance for non-invasive characterization of vulner-
able plaques. Combination of PET with MRI instead 
of CT significantly reduces radiation exposure due to 
replacement of the x-ray radiation, which is especially 
important for whole-body imaging. In comparison, 
average radiation exposure of coronary artery cathe-
terization is ~7mSv, a SPECT based sestamibi stress 
test ~9mSv and coronary CT ~4-15mSv (depending on 
the technique used and the patient’s size). When 
comparing nuclear imaging techniques, cost and 
availability have to be taken into account. Short-lived 
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PET tracers require a cyclotron facility nearby the 
imaging site, while longer-lived SPECT tracers can be 
provided from outside sources. The minor costs of 
SPECT compared to PET have led to a broad availa-
bility in clinical medicine. 

CT is able to detect and accurately quantify ves-
sel calcification, and coronary calcium scoring has 
been used as a risk predictor for future cardiovascular 
events. However, three-quarters of all coronary le-
sions are non-calcified plaques and high-risk vulner-
able plaques prone to rupture usually do not contain 
significant calcifications [8-11]. With the help of io-
dinated contrast agents such non-calcified plaques 
can be detected. Improvements in multislice detector 
technology now enable the visualization of coronary 

anatomy in addition to large vessels with rapid (se-
conds) acquisition and minimal motion artifact. Sim-
ilarly, novel reconstruction algorithms enable a sig-
nificant dose reduction, making coronary CT attrac-
tive for wide applications. Moreover, detection of 
plaque inflammation using CT has been achieved by 
using N1177, an iodine containing agent taken up by 
macrophages [12]. Gold nanorods may become an 
attractive alternative as they are able to yield good 
contrast on CT imaging and can be coupled to gado-
linium (Gd) compounds, NIR fluorochromes and nu-
clear tracers for multimodal imaging and be addi-
tionally used as drug carriers for various theranostic 
applications [13-15]. 

Table 1: Non-invasive Modalities for Molecular Imaging of Atherosclerosis 

Technique Spacial 
Resolution 

Depth Acquisi-
tion Time 

Quan-
titative 

Imaging Agents Molceular Targets Clinical applica-
tion 

Specific Features 

MRI 10-100µm No limit min-h Yes Gd-Chelates, 
superparamag-
netic nanoparti-
cles (SPIO, 
USPIO, VSOP) 

Adhesion Molecules, 
Macrophages, 
pro-inflammatory 
enzymes (myelop-
eroxidase), Lipopro-
teins, Apopto-
sis/Necrosis, Integ-
rins, Fibrin 

Quantification of 
stenosis, Plaque 
morphology, 
Flow measure-
ments 

+ No radiation 
+ high-soft-tissue contrast 

CT 50µm No limit sec-min Yes Iodinated mol-
ecules 

Calcification Plaque mor-
phology, Coro-
nary Plaque 
burden 

- Radiation 
- high spatial and temporal 
resolution 

Ultrasound 50µm cm sec-min Yes Microbubbles Adhesion molecules, 
Integrins, Gylcopro-
teins 

Plaque Mor-
phology, Inti-
ma-Media 
Thickness, Flow 
velocities 

- Operator-dependent 
+ high temporal resolution 

PET ~ 2mm No limit min-h Yes* 18F, 64Cu, 11C 
Tracers 

FDG, Adhesion 
Molecules, Integrins, 
Fibrin, 
Ca2+hydroxyapatite 

Plaque inflam-
mation 

- Radiation  
- Cyclotron required 
- limited spatial resolution 
- stand alone PET not 
quantitative (overcome by 
hybrid PET/CT) 

SPECT ~ 2mm No limit min-h Yes 99mTc, 
123/124/125/131I, 
111In Tracers 

Adhesion molecu-
laes, Lipoproteins, 
Macrophages, Pro-
teases, Glycopro-
teins, Apoptosis 

Myocardial 
Perfusion Imag-
ing 

- Radiation 
- limited spatial resolution 
-full quantification only by 
hybrid SPECT/CT 
-lower costs and higher 
availability compared to 
PET 

Biolumi-
nescence 
Imaging 

2-5mm Few cm min No Luciferins Gene expression, 
Cell tracking 

No - Experimental only 
- limited spatial resolution 

Fluores-
cence Mo-
lecular 
Tomogra-
phy 

1mm Few cm min Yes* NIR fluoro-
chromes 

Adhesion molecules, 
Mono-
cyte/Macrophages, 
Proteases, Collagen, 
Ca2+hydroxyapatite, 
Thrombosis 

Not yet -semiquantitative only 
(improved by hybrid 
FMT/CT) 
- experimental only (Clin-
ical applications under 
development) 

Optoa-
coustic 
Imaging 

<50µm Few cm min-h Yes NIR Fluoro-
chromes 

targets comparable 
to FMT 

Catheter appli-
cations (see 
Table 2) 

-Interference with hemo-
globin 
-experimental only 

(+) advantage, (-) disadvantage 
*when hybridized with CT/MRI for proper attenuation correction 
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Magnetic Resonance Imaging 
MRI provides high spatial and temporal resolu-

tion and has the advantage of combining anatomic, 
functional and molecular imaging in an all-in-one 
approach. Its high soft tissue contrast enables to dis-
tinguish the major components of atherosclerotic 
plaques and allows risk stratifications based on 
plaque composition irrespective of the degree of ste-
nosis [16, 17]. Contrast enhanced MRI enables highly 
sensitive molecular imaging of vulnerable plaques. 
Paramagnetic gadolinium based agents provide en-
hance contrast by shortening the spin-lattice relaxa-
tion time (T1). Superparamagnetic iron-oxide nano-
particles, which target the phagocytic capacity of 
plaque-infiltrating leukocytes, consist of an iron-oxide 
core and a surrounding shell made of dextran, syn-
thetic polymers or polyvinyl alcohol. Depending on 
their size these nanoparticles are classified as SPIO 
(small superparamagnetic iron oxide, >60nm), USPIO 
(ultra-small superparamagnetic iron oxide, <60nm) 
and VSOP (very small superparamagnetic iron oxide, 
<10nm) particles. The size of the particles affects their 
extravasation and biodistribution, as well as the mode 
of elimination from the body. Upon contact, these 
particles are rapidly taken up by phagocytic cells in 
vitro and in vivo. Superparamagnetic iron-oxide parti-
cles influence signal intensity mainly by shortening 
T2* and T2, which at a given echo time produces 
darkening of the contrast-enhanced tissue. Converse-
ly, they can act as positive agents (T1 shortening and 
image brightening) when appropriate imaging se-
quences are used [18]. The USPIO/SPIO derived MRI 
signal correlates highly with macrophage presence in 
murine, rabbit and human atheroma [19-23]. The 
dextran or alcohol shell of the nanoparticles can be 
used to conjugate antibodies or other peptides for 
targeted imaging. In contrast, conjugation of 
high-affinity ligands to Gd-based paramagnetic 
agents is more difficult. A new and elegant tool for 
targeting mononuclear phagocytes is to pack micelles 
or liposomes with Gd agents, thereby reducing tox-
icity [24, 25]. A more sophisticated approach is the 
synthesis of activatable MR contrast agents that lead 
to signal amplification upon specific binding[26, 27]. 

Ultrasound 
Molecular imaging using ultrasound-targeted 

microbubbles to enhance ultrasound contrast may 
potentially be translated to imaging in patients [28]. A 
significant obstacle is the strong background signal 
that decreases detection sensitivity especially in deep 
vessels such as the coronaries. Yet, targeted mi-
crobubbles may not only be used for specific molecu-
lar imaging of inflammation and the detection of ad-
hesion molecules, selectins or von-Willebrand Factor 

[29-32], they can additionally be used as drug carriers 
for theranostic applications[33]. A detailed overview 
of molecular imaging of cardiovascular disorders 
with ultrasound is provided in reference [34]. 

Fluorescence imaging 
Fluorescence techniques have significantly en-

hanced our understanding of cardiovascular disease. 
Their high sensitivity, cost-effectiveness and the large 
portfolio of targeted agents have led to wide applica-
tions in preclinical research investigating pathophys-
iology at the microscopic, mesoscopic and macro-
scopic scale [26, 27, 35-39]. Fluorescence Molecular 
Tomography (FMT) technology permits a highly sen-
sitive 3-D detection of enzyme activities [39-41], tissue 
calcification[42, 43] and integrin expression[44]. The 
use of fluorescent probes emitting light in the 
near-infrared (NIR) spectrum allows the detection of 
molecular signals in living animals in depths of sev-
eral centimeters [39, 45]. Also, imaging in the NIR 
region minimizes tissue autofluorescence, thereby 
improving target to noise ratio. 

Near-infrared fluorescence (NIRF) sensors can 
be constructed in three different ways: 1) Non-specific 
fluorescent blood-pool agents injected in the circula-
tion of the animal that inform on perfusion or per-
meability of the tissue, 2) targeted probes that bind via 
specific ligands to protein structures on the cell sur-
face or 3) ‘smart probes’, that are activated in situ by 
enzymatic conversion or enzymatic cleavage [35, 46]. 
These probes have been used to detect enzyme activ-
ity in live mice by FMT and with cellular resolution by 
fluorescence microscopy [43, 47, 48]. Currently, FMT 
allows the non-invasive detection of fluorochrome 
concentrations in the pico-molar range in deep tissues 
with a submilimeter resolution in vivo. 

Clinical translation of optical imaging is limited 
by the restricted tissue penetration of NIR light. While 
non-invasive imaging may be applicable to superficial 
carotid arteries, deeper vessels would require more 
invasive assessment. Recent advances in miniaturiza-
tion of fluorescence light source and detector tech-
nology have led to first catheter-based applications. 

One challenge of Fluorescence Imaging is the 
proper signal quantification. As the fluorescent light 
emitted from the molecular target experiences diffuse 
scattering and attenuation on its way through com-
plex tissues, full signal quantification is obtained by 
methods of attenuation correction using similarly 
acquired CT data [49]. These additional CT data sets 
can be obtained sequentially after FMT by using mul-
timodal animal holders with fiducial markers [41]. 
However, the first prototypes of full hybrid FMT-XCT 
(Fluorescence Molecular Tomography- X-ray Com-
puted Tomography) systems have shown improved 
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performance by using a dual prior inversion method 
[50-52]. 

One advantage of fluorescence molecular imag-
ing is the possibility to subsequently perform tradi-
tional ex vivo laboratory techniques. After in vivo flu-
orescence imaging the animal can be sacrificed and 
the biodistribution of the molecular sensor can be 
detected and quantified by cryoslicing[53]. Similarly, 
fluorescence microscopy can be performed on tissue 
sections after in vivo biodistribution of the injected 
probe; the sections can then be further evaluated ex 
vivo with classical tools such as immunofluorescence, 
immunohistochemistry, and in situ hybridization. 
Multicolor flow cytometry is an elegant tool to de-
termine the cellular source of a fluorescence imaging 
signal obtained non-invasively in vivo [40, 47]. 

Photoacoustic imaging 
Photoacoustic imaging is based on the photoa-

coustic effect, where ultra-short pulses of light that are 
absorbed in tissue create broadband ultrasound 
waves, which can be detected non-invasively outside 
the body. Because ultrasound scatters orders of mag-
nitude less compared to fluorescence light in tissue it 
can provide optical images with a spatial resolution of 
~50µm. By using multiple excitation wavelengths and 
tomographic signal detection, Multispectral Optoa-
coustic Imaging (MSOT) can provide images of spe-
cific chromophores including organic dyes as well as 
nanoparticles based on their unique spectra[37, 54]. 
First preclinical applications of MSOT in cardiovas-
cular research have achieved successful anatomic 
visualization of the heart and major blood vessels as 
well as high-resolution imaging of inflammation in a 
model of acute myocardial infarction. First ex vivo 
studies with specimens from patients with sympto-
matic carotid artery disease have demonstrated that 
MSOT is capable of rendering detailed biodistribution 
of MMP activity together with high-resolution images 
of vulnerable plaques [55]. 

Intravascular Molecular Imaging 
Intravascular catheter-based imaging techniques 

have contributed significantly to the understanding of 
human atherosclerosis. An overview of the specific 
features of existing techniques and their advantages 
or disadvantages is provided in Table 2. Intravascular 
Ultrasound (IVUS) is able to provide high-resolution 
images of the vessel wall and plaque morphology at 
an axial resolution of ~100µm using high-frequency 
detectors (up to 45 MHz). Spectral analysis of the 
IVUS backscatter radiofrequency signal enables col-
or-coded images of certain plaque characteristics, re-
ferred to as virtual histology (IVUS-VH) [56]. With 
high spatial resolution this technique is able to dif-

ferentiate lipid-rich areas, the necrotic core, fibrous 
tissue and calcifications on the basis of different 
echolucent structures [57]. With increased spatial res-
olution of 10-15µm optical coherence tomography 
(OCT) has facilitated the characterization of neointi-
mal hyperplasia following percutaneous coronary 
intervention (PCI), and has allowed for depiction of 
the internal and external elastic lamina as well as a 
thin fibrous cap (<65µm)[58-60]. The drawback of 
OCT is the inability to image in the blood stream be-
cause the small wave lengths reflect very small objects 
such as blood cells. Further improvement of conven-
tional time-domain OCT has been achieved by intro-
ducing frequency domain OCT (also referred to as 
OFDI, Optical frequency Domain Imaging), where a 
Fourier transformation of the acquired spectra enables 
to image at much higher frame rates of >100 frames/s. 
This allows fast 3D image acquisition of long vessel 
segments under a single non-occlusive saline flush 
without occluding the vessel [61]. 

Intravascular radiation detector systems have 
been tested for endovascular sensing of 18F-FDG in 
atherosclerotic lesions. Various systems were able to 
detect 18F point sources in the canine femoral as well 
as in the coronary arteries using an open chest model 
[62]. Using a model of femoral artery denudation in 
hypercholesterolemic rabbit’s intravascular 18F detec-
tion in injured artery segments correlated with in-
creased macrophage content [63]. Miniaturized cath-
eters systems were even able to detect increased 18F 
accumulation in murine aortas of apoE-/- mice [64]. 
The catheter based 18F detection may be superior to 
regular PET/SPECT as spatial mapping of the probe 
distribution within the lesion may be improved. 

Intravascular NIRF Imaging is an attractive ap-
proach for human coronary artery imaging and has 
the potential to identify vulnerable plaques upon the 
high macrophage load as well as increased protease 
activity. A first study in hypercholesterolemic rabbits 
has demonstrated that this technique can detect the 
fluorescent signal emitted from a previously injected 
protease sensor activated in plaques within the iliac 
artery [65]. Further improvement of the technique has 
led to engineering of new catheter capable of 2D flu-
orescence imaging in a 360° view during automated 
pullback. This improvement enabled a submilimeter 
axial resolution, nanomolar sensitivity to the injected 
NIR probe and only moderate light attenuation by the 
circulating blood [66]. The whole system was based 
on a 2.9F angiography catheter and thus potentially 
applicable to human coronary arteries. In a recent 
report intravascular NIRF imaging has been com-
bined with OFDI technology for molecular and mi-
crostructural imaging of atherosclerosis [67]. Intra-
vascular MSOT approaches similarly aim to provide 
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high-resolution anatomical images of the atheroscle-
rotic plaque and to report on the biological activity by 
using targeted molecular probes [68]. The successful 
preclinical application of these intravascular molecu-

lar imaging approaches in various animal models will 
pave the route for first human trials with the aim to 
detect vulnerable plaques prior to percutaneous cor-
onary intervention via a transarterial approach. 

 

Table 2: Invasive Modalities for Molecular Imaging of Atherosclerosis 

Technique Spacial 
Resolution 

Depth Acquisition 
Time 

Quanti-
tative 

Imaging 
Agents 

Molceular 
Targets 

Clinical application Specific Features 

         
OCT ~10 µm 2-3mm min Yes - - Plaque and thrombus 

charcterization 
- Blood-free field re-
quired 

         
OFDI ~10 µm 2-3mm min Yes - - Plaque and thrombus 

charcterization 
+ Faster image acquisi-
tion compared to OCT 

         
IVUS-VH ~100µm 10mm min Yes - - Plaque characterization - Interference with blood 

at frequencies>40MHz 
         
Angioscopy 10-50µm Surface 

Imaging 
Min No - - Imaging of plaque surface, 

thrombus characterization 
- Blood-free field re-
quired 

         
Intravascular 
Fluorescence 
Imaging 

1mm Few cm min Yes NIR 
Fluoro-
chromes 

Macro-
phages, 
Proteases, 
Apoptosis 

Not yet + Imaging of arterial 
inflammation 

         
Intravascular 
Optoacoustic 
Imaging 

<50µm Few cm min Yes NIR 
Fluoro-
chromes 

targets 
compara-
ble to FMT 

Lipid detection in athero-
sclerotic plaques 

- Interference with he-
moglobin 
+ high spatial resolution 

(+) advantage, (-) disadvantage 
OCT=Optical Coherence Tomography, IVUS-VH=Intravascular Ultrasound-Virtual Histology, OFDI=Optical Frequency Domain Imaging 

 
 

Cellular and Molecular Targets within 
the inflamed vessel 
Initiating steps of inflammation: shear stress 
and lipid accumulation 

A schematic overview of plaque formation and 
its’ consequences are shown in Figure 1. Atheroscle-
rotic lesions develop in particular predisposed re-
gions of the vasculature. While flow with physiologi-
cal levels of laminar shear stress in straight segments 
is regarded as atheroprotective, areas experiencing 
low and especially oscillatory shear stress or turbulent 
blood flow such as inner curvatures as well as vessel 
bifurcations are prone to develop atheroma [69]. Os-
cillatory shear stress in particular leads to increased 
activation of the endothelium [70], and it is therefore 
not surprising that these regions are characterized by 
a higher inflammatory load and an increase of reac-
tive oxygen species, and accumulate lipids within the 
intima [71-73]. Simulations based on computational 
mechanics will help to better understand the effects of 
wall shear stress on the arterial wall and the associ-
ated cellular and molecular adaptations to altered 
mechanical forces. High-resolution MR Imaging can 

aid in identifying atherosclerosis-prone areas with 
altered shear stress [74]. 

Paving the route for immune cell influx: En-
dothelial activation and permeability 

Endothelial activation one of the initiating steps 
of vessel inflammation and atherosclerotic lesion de-
velopment. Upon activation endothelial cells express 
various adhesion molecules triggering leukocyte re-
cruitment across the blood-vessel wall [75]. Selectins 
(e-selectin, p-selectin and l-selectin), adhesion mole-
cules such as intercellular adhesion molecule 
(ICAM)-1 and vascular cell adhesion molecule 
(VCAM)-1, and chemokines control leukocyte rolling, 
adhesion and migration into the vessel wall. The ad-
hesion molecule is expressed on activated endothelial 
cells, smooth muscle cells but also macrophages, and 
recruits leukocytes via binding of the integrin very 
late antigen (VLA)-4. Thus, imaging approaches tar-
geting VCAM-1 use VLA-4 peptides, anti-VCAM-1 
antibodies and peptides of the MHC-I molecule in-
teracting with VCAM-1. These targeting moieties can 
be conjugated to various nuclear tracers (123I, 99mTc, 
18F) for PET and SPECT imaging, NIR fluorochromes 
for intravital microscopy and non-invasive tomo-
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graphic optical imaging, iron-oxide based nanoparti-
cles (SPIO) for MRI or microbubbles for CEU [76-84]. 
These agents have been reported to successfully de-
tect vascular inflammation and atherosclerotic lesions 
and to correlate with intraplaque VCAM-1 mRNA 
levels. However, VCAM-1-targeted probes do not 
exclusively detect activated endothelium, as also ac-
tivated macrophages express VCAM-1 and other in-
tegrins [30, 80, 85]. To enhance uptake and probe ac-
cumulation, targeting multiple moieties represents an 
interesting and promising approach. It has been 
shown that combined VCAM-1 and selectin targeting 
leads to > 5-fold binding to activated endothelium 

compared to single-targeted probes[29, 86, 87]. 
ICAM-1 targeted mircobubbles as well as a liposomal 
Gd-based MRI agent are similarly able to visualize 
activated endothelium and inflammatory atheroscle-
rotic lesions in vivo [88, 89]. Selectin-target probes 
have similarly been engineered for targeting inflam-
mation. A dendritic polyglycerol sulfate based fluo-
rescent probe has been applied to target inflammation 
within the injured myocardium [90]. The inhibitory 
properties of this agent impair leukocyte recruitment 
to sites of inflammation, rendering an agent for both 
imaging and treatment of atherosclerosis [91]. 

 
Fig 1. Tools and targets for molecular imaging of atherosclerosis. Figure demonstrates schematic evolution of atherosclerotic plaques and 
potential targets for molecular imaging. 
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Fig 2. MR Imaging of endothelial permeability. Uptake of gadofosveset in regions of the brachiocephalic artery of control (Panel A-E) and ather-
osclerotic mice after 4 (Panel F-J) and 12 weeks (Panel K-O) of high-fat diet is associated with endothelial permeability. After 12 weeks significant increase 
in R1 relaxivity is observed in the inflamed vessel wall following gadofosveset injection (Panel P). Image courtesy of Alkystis Phinikaridou and René M. 
Botnar, King’s College London. 

 
Concomitant to the expression of adhesion mol-

ecules, endothelial dysfunction and increased endo-
thelial permeability are considered as initiating events 
in plaque formation. Progressive endothelial leakage 
permits low-density lipoproteins to diffuse across the 
endothelial cell lining and accumulate in the arterial 
intima. Gadofosveset is a clinically approved albu-
min-binding contrast agent. Binding of albumin leads 
to a prolonged half-life within the blood pool and a 
dramatically higher r1-relaxivity. The uptake of 
gadofosveset has been linked to mechanically dam-
aged endothelium in a porcine model of coronary 
injury [92] as well as with atherosclerosis-induced 
endothelial damage in apoE-/- mice [93]. Figure 2 
demonstrates gadofosveset accumulation in athero-
sclerotic plaques with underlying endothelial damage 
indicated by a bright contrast in T1-weighted MR 
images. Similarly, amphiphilic NIR fluorochromes 
can be used for optical imaging of vulnerable plaques. 
Indocyanine green (ICG), a clinical approved NIRF 
dye, also binds to albumin with high affinity and ac-
cumulates in atherosclerotic plaques after in vivo in-
jection in hypercholesterolemic rabbits as well as after 
incubation of human carotid artery specimens[94]. 

Monocyte accumulation, phagocytosis and 
metabolism 

During atherogenesis, monocytes accumulate in 
the arterial intima and differentiate into macrophages, 
which then ingest oxidized lipoproteins, secrete a 
diverse array of proinflammatory mediators, and 
mature towards foam cells [95, 96]. Monocyte heter-
ogeneity has been conserved in various species [97]. 
At least two different subpopulations exist with di-
vergent properties. In hypercholesterolemic mice, 
Ly6Chi (Gr-1+) monocytes preferentially accumulate in 
lesions [98]. Proinflammatory Ly6Chi monocytes 
dominate hypercholesterolemia-associated mono-

cytes and give rise to macrophages in atheroma [99]. 
The role of Ly6Clo monocytes is less clear in athero-
genesis, but it appears that these cells exhibit an an-
ti-inflammatory phenotype and play a major role in 
extracellular matrix formation and tissue remodeling. 
Also in humans, two major subpopulations have been 
described. CD14loCD16hi monocytes (corresponding 
to Ly6Clo monocytes in mice) display elevated serum 
levels in patients with coronary artery disease [100, 
101] whereas levels of CD14hiCD16lo monocytes (cor-
responding to Ly6Chi monocytes in mice) are predic-
tive for myocardial salvage after myocardial infarc-
tion [102]. Targeting monocytes has been performed 
using various formulations of superparamagentic 
nanoparticles.. An example of targeting macrophages 
in murine atheroma using VSOPs is shown in Figure 
3. Interestingly, under anti-inflammatory therapy 
with atorvastatin leading to a decrease in macrophage 
activity, uptake of USPIOs was significantly reduced 
[103]. While murine Ly6Chi and Ly6Clo monocytes 
exhibit equal phagocytic capacity of cross-linked 
iron-oxide nanoparticles[104], human CD14hiCD16lo 
monocytes display a higher phagocytic capacity in 
vitro compared to their CD14loCD16hi 
counterparts[101, 105]. This phagocytic phenotype 
may therefore be well suited for specific targeting of 
monocyte subsets in patients with atherosclerosis. 
Imaging of iron-oxide loaded inflammatory macro-
phages has been successfully performed in animals 
and humans and constitutes a promising approach for 
identifying vulnerable plaques[106-108]. While most 
studies report on the direct injection of the nanoparti-
cles into the circulation, ex vivo labeling with subse-
quent reinjection and recruitment of labeled phago-
cytes to sites of inflammation has also been utilized 
[109]. The latter approach may enhance tar-
get-to-background signal by eliminating unspecific 
probe accumulation, yet it has to be considered that ex 
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vivo labeling with iron-oxides affects the phenotype of 
the labeled cells and potentially their function [105]. 
Ex vivo labeling with 111In-oxine was similarly suc-
cessful at visualizing macrophage accumulation in 
murine atherosclerotic lesions [110]. Also nanoparti-
cles can be conjugated to radionuclides as well as NIR 
fluorescent dyes for hybrid nuclear and optical im-
aging in conjunction to MRI[47, 81]. Beside targeting 
the phagocytic capacity of monocytes/macrophages, 
receptor-based imaging of phagocytes has been re-
ported by using Gd-loaded micelles targeting the 
macrophage scavenger receptor, the cannabinoid re-
ceptor and the neutrophil gelatinase-associated 
lipocalin 2 (NGAL) in murine plaques[24, 111-113] as 
well as targeting the MCSF-receptor on human mon-
ocyte subsets[101]. Furthermore, activated macro-
phages in atherosclerotic lesion express various in-
tegrins such as ανβ3. Targeting ανβ3 using RGD 
based nuclear tracers[114, 115] as well as MR contrast 
agents[116] allows identification of activated macro-
phages in atherosclerotic plaques in various animal 
models. 

Aside from targeting immune cells via their 
phagocytic capacity or receptor profile, imaging of 
metabolic activity of the cellular infiltrate has been 
applied to assess inflammation in atherosclerotic 
plaques by PET/CT [117-120]. The glucose analogue 
18F-FDG is taken up by metabolically active cells, es-
pecially by macrophages and foam cells, and thus 
reports on inflammatory activity in atherosclerotic 
lesions (Figure 4). First clinical trials of 18F-FDG 
PET/CT showed strong association between 18F-FDG 
uptake in carotid artery lesions with type 2 
diabetes[121] and more importantly with the occur-
rence of ischemic stroke[122, 123]. Exciting are the 

results of the dal-PLAQUE study, one of the first 
multicenter clinical trials employing non-invasive 
multimodality imaging, MRI and PET-CT, to assess 
structural and inflammatory indices as primary end-
points of the effects of dalcetrapib on carotid 
disease[124]. In patients, the 18F-FDG signal correlates 
closely with the expression of biomarkers such as 
GLUT-1, HK2, cathepsin K and CD68 in carotid artery 
lesions [125]. Interestingly, in a similar approach, the 
investigators were not able to find significant correla-
tions between 18F-FDG uptake and CD68 levels in 
patients with peripheral arterial occlusive disease 
[126]. A recent ex vivo study investigated the in vitro 
uptake of FDG in several cell types involved in ath-
eroma formation, revealing that predominantly hy-
poxia but not inflammatory cytokines stimulates cells 
to accumulate FDG,. Therefore FDG uptake signals in 
atheroma may reflect hypoxia-stimulated macro-
phages rather than the mere inflammatory burden 
[127]. Yet these results await further evaluation in 
vivo. 

Novel hybrid imaging technologies will be 
helpful in correlating specific tracer accumulation 
within the vessel wall/atherosclerotic lesions and 
lesion morphology when imaged simultaneously by 
CT or MRI. Figure 5 shows successful 18F-FDG imag-
ing of plaque inflammation in a hypercholesterolemic 
rabbit by full hybrid MR-PET (Panel A-C) as well as 
vessel wall inflammation in a patient with large-vessel 
vasculitis by both PET-CT and MR-PET (Panel D-L). 
PET-MR may in particular be promising for detection 
of vulnerable plaques as it combines the molecular 
information reported by various tracers from the PET 
with high-resolution and functional imaging by MRI. 

 
 

 
Fig 3. MR Imaging of vascular inflammation using very small superparamagnetic nanoparticles (VSOP). VSOPs target inflammatory 
macrophages in high-fat diet induced atherosclerosis in mice, inducing shortening of T2* relaxation in the vessel wall in HFD fed mice (lower row) as 
compared to controls (upper row). Imaging findings are corroborated by histology (A4-A6 and B4-B6). EvG=Elastica van Gieson, HFD=high-fat diet, 
SGM=susceptibility gradient mapping. TOF=Time-of-Flight angiography. Image courtesy of René M. Botnar, King’s College London. 



 Theranostics 2013, Vol. 3, Issue 11 

 
http://www.thno.org 

874 

 
Fig 4. Imaging of the vulnerable plaques in human coronary atherosclerosis. Representative images of 18F-FDG PET (A), CT (B), PET/CT (C), 
and coronary angiography (D) from patient with good suppression with coronary 18F-FDG uptake (arrows). Reprinted with the permission of the Society 
of Nuclear Medicine from Wykrzykowska et al. [183] 

 
Fig 5. Molecular Imaging of atherosclerosis by hybrid PET-CT and MR-PET. Inflammation in plaques of hypercholesterolemic rabbits can be 
assessed and quantified by 18F-FDG PET and co-localized to carotid artery by simultaneously acquired MRI. Panel A: TOF angiography, Panel B, contrast 
enhanced fat-suppressed T1 weighted MRI (delayed enhancement), Panel C: MR-PET fusion showing increase tracer accumulation around the left carotid 
artery. Images demonstrate good correlation of PET signal and contrast-enhanced MRI but also show limited spatial resolution of PET technology. Hybrid 
Molecular Imaging in a patient with large-vessel vasculitis (Panels D-L). Increased 18F-FDG uptake can be visualized by whole-body PET and correctly 
co-localized to the aortic arch by the subsequently performed contrasted enhanced CT (Panels D-G: PET-CT). Similar co-localization can be performed 
using hybrid MR-PET (Panels H-J). Whole body MRA (Panel K) and CTA (Panel L) can be routinely performed during hybrid image acquisition. Images 
courtesy of Isabel Dregely, Stefan Nekolla and Ambros J. Beer from the Munich PET/MR consortium of TUM and LMU (funded by DFG). 
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Fig 6. Myeloperoxidase (MPO) – targeted MRI of vascular inflammation. MPO-Gd MR imaging of atherosclerosis in a rabbit model fed high 
cholesterol diet for 24 months. MPO-Gd imaging identifies areas of high MPO activity and content (red circles) that are corroborated by MPO im-
munostaining. Images courtesy of John W. Chen, Massachusetts General Hospital, Harvard Medical School. 

 

Lipids and Oxidative Stress 
Oxidative stress promotes lipid oxidation and 

cell death and is one of the major triggers of lesion 
progression and destabilization. Oxidized lipids have 
been targeted in preclinical atherosclerosis models 
using MDA (malondialdehyde-lysine) MR contrast 
agents [128]. Oxidative stress is predominantly medi-
ated through reactive oxygen species (ROS). In ath-
erosclerotic plaques, ROS are produced by macro-
phages, neutrophils and smooth muscle cells. A sig-
nature enzyme of inflammation and ROS production 
is myeloperoxidase (MPO). Advanced human ath-
eroma as well as ruptured plaques contains increased 
numbers of MPO expressing macrophages [129]. 
Targeting of MPO may therefore be useful for the 
identification and characterization of vulnerable 
plaques. A prototype of an amplifiable MRI contrast 
agent has been reported by Chen et al [26, 27]. This 
Gd-MPO [bis-5HT-DTPA (Gd)] increases its relaxivity 
upon contact with MPO; subsequent polymerization 
and protein binding leads to signal amplification in 
situ compared to its native state. This agent has been 

applied for molecular imaging of various inflamma-
tory conditions [130, 131] and for targeting inflamma-
tion in a rabbit model of atherosclerosis (Figure 
6)[132]. Similarly, MPO-sensing in cardiovascular 
diseases can be achieved by fluorescent nanoparticles 
detecting hypochlorous acid production in vivo [133]. 

Consequences of infiltrating immune cells: 
proteolysis and matrix degradation 

In concert with the phagocytic activity of other 
infiltrating immune cells, macrophages in particular 
secrete proteolytic enzymes which can degrade ex-
tracellular matrix proteins promoting thinning and 
rupture of the fibrous cap [134]. Among the various 
existing proteases cathepsins and MMPs have most 
frequently been used for molecular imaging, and tar-
geted by two major strategies. Nuclear tracers based 
on small molecule protease inhibitors bind to the ac-
tive site of the enzyme of interest and enrich at sites 
with a high protease concentration. These MMP in-
hibitors (MMPI) can be coupled to various radiotrac-
ers such as 123I, 111In, 99mTc or 18F for PET and SPECT 
imaging. SPECT imaging signal of MMPI has been 



 Theranostics 2013, Vol. 3, Issue 11 

 
http://www.thno.org 

876 

shown to correlate to MMP-2/-9 activity in athero-
sclerotic plaques [135, 136]. 

Alternatively, optical reporters are being used 
that are activated upon contact with the target en-
zyme [137]. The sensor is injected in its inactive state 
in which fluorochromes are not excitable due to au-
to-quenching. Proteolytic cleavage of the scaffold re-
leases the fluorochromes and results in extensive flu-
orescence generation (de-quenching). Amplification is 
achieved because one active enzyme moiety can acti-
vate multiple reporters [39]. Both FMT and Optoa-
coustic Tomography are able to resolve this process 
non-invasively in small animals as well as tissue 
specimens. In a pilot study an activatable NIRF sen-
sor, activated by gelatinases A (MMP2) and B 
(MMP9), was able to detect MMP activity in aortas of 
apoE-/- deficient mice on high-cholesterol diet. Both ex 
vivo FRI and in vivo FMT yielded high MMP activity 
compared to injected apoE+/+ mice and animals not 
injected with the probe[138]. Similar to the detection 
of MMP activity, cathepsin can be detected in in-
flammatory lesions. Using pan-cathepsin NIRF sen-
sors, high protease activity was detected in athero-
sclerotic lesions of apoE-/- as well as double knock out 
apoE-/-eNOS-/- mice [139]. Strong co-localization of 
cathepsin B with macrophages within the lesion 
pointed towards mononuclear phagocytes as the main 
source of secreted proteases. Using a combined 
FMT-CT imaging approach and a variety of na-
nosensors tracing cathepsin activity, the study local-
ized the molecular fluorescence signal to the aortic 
root of mutant mice [41]. The combination of FMT and 
CT further allowed proper quantification of the 
pan-cathepsin signal and thus allowed to appropri-
ately monitor atorvastatin therapy. The an-
ti-inflammatory effect of statins in atherosclerosis was 
similarly reported using a cathepsin B-activatable 
NIRF sensor [140]. While most of the protease sensors 
discussed report pan-MMP or pan-cathepsin activity, 
more selective probes become available. A cathepsin 
K selective optical reporter demonstrated high prote-
ase activity by intravital microscopy as well as ex vivo 
FRI [141]. Activity of cathepsin S was associated with 
vascular calcification and co-localized with an osteo-
genesis targeted imaging agent in mice with chronic 
renal disease [142]. With respect to monocyte hetero-
geneity, as discussed above, these sensors can dis-
tinguish increased protease contents in proinflam-
matory Ly6Chi monocytes as compared to lower ac-
tivity in Ly6Clo monocyte subsets [104]. 

The only MRI-based approach targeting prote-
ases has been performed using P947. This gadolinium 
chelate is coupled to a peptide, which binds MMPs 
[143, 144]. These pilot results are encouraging; and 
suggest that a non-invasive imaging approach may be 

clinically applicable at identifying vulnerable plaques. 

The dusk of inflammation: Apoptosis 
The three major characteristics of vulnerable 

plaques are a high degree of inflammation, thinning 
of the protective fibrous cap and a lipid rich ‘necrotic’ 
core. Lipid-laden foam cells are prone to undergo 
apoptosis [145]. Cell debris further promotes inflam-
mation, secretion of proteases, and thus progressive 
destabilization of the plaque, ultimately resulting in 
rupture and thrombosis. During apoptosis, activated 
flippases rapidly externalize phosphaditylserine (PS) 
chains from the inner membrane of the lipid double 
layer to the outer layer of the membrane. The exter-
nalized PS are recognized by the 35kD plasma protein 
Annexin V (A5) [146]. A5 has been used for various 
molecular imaging approaches both in preclinical 
atherosclerosis models as well as in human cardio-
vascular disease. It can be coupled to nuclear tracers, 
NIRF fluorochromes or iron-oxide nanoparticles for 
MR imaging. For plaque imaging A5 labeled with 
99mTc proved most suitable both in experimental as 
well as in first human trials [147]. In atherosclerotic 
mice, rabbits and swine 99mTc labeled A5 showed focal 
tracer accumulation in inflammatory plaques in vivo, 
which correlated with immunohistochemistry of cell 
death and high macrophage load [148-150]. A pilot 
report of four patients with symptomatic carotid ar-
tery disease revealed high tracer accumulation at the 
affected carotid bifurcation, and post-endarterectomy 
histology evaluation confirmed high macrophage 
load as well as intraplaque hemorrhage [151]. Simi-
larly, SPECT imaging of apoptosis can detect thera-
peutic effects of anti-inflammatory as well an-
ti-apoptotic regimens in hypercholesterolemic rabbits 
[152]. 

An A5 conjugated micellar nanoparticle carrying 
multiple Gd-labeled lipids for MRI as well as fluo-
rescent lipids for optical imaging was able report on 
apoptosis and macrophage accumulation in athero-
sclerotic aortas of apoE-/- mice [153]. Coupling of 
Annexin V to the dextran shell of superparamagnetic 
iron-oxide nanoparticles enabled apoptosis imaging 
by T2* weighted MRI in various models of cardio-
vascular disease [154, 155]. 

Yet, PS externalization is not specific to apopto-
sis but also occurs in activated macrophages and 
stressed cells in general [146, 149]. This has to be taken 
into account when evaluating anti-apoptotic therapies 
by A5-based molecular imaging [152]. Nevertheless, 
cell stress and macrophage activation are likewise 
hallmarks of vulnerable plaques, so that cumulative 
targeting of these aspects of vascular inflammation 
may in fact enhance probe accumulation and increase 
contrast in biomedical imaging. Oligo-targeted mo-
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lecular imaging that visualizes apoptosis and protease 
activity may thus enhance in vivo imaging signals and 
study interlinked processes of inflammation in car-
diovascular disease [135]. 

Extracellular Matrix and Vascular Remodeling 
following active inflammation 

During inflammation, increased proteolysis as 
described above is responsible for the degradation of 
ECM proteins and subsequent vascular remodeling. 
Molecular Imaging of ECM proteins has been 
achieved by MRI using Gadofluorine, a Gd-based 
contrast agent targeting collagen, proteoglycans and 
tenascin[156-158]. The ECM protein elastin has been 
shown to be crucial for arterial remodeling in athero-
sclerosis. Human atheroma and macrophage-rich 
plaque regions display a high content of immature 
disorganized tropoelastin but lack stabilizing 
cross-linked, mature elastin. Recently an elas-
tin-targeted molecular MR agent (ESMA) has been 
introduced and showed promising results for 
non-invasive imaging of the vessel wall (Figure 7). 
ESMA was able to visualize and quantify plaque 
burden in atherosclerotic apoE-/- mice [159] and de-

pict stent induced coronary injury in a swine model 
[160, 161]. Also paramagnetic micelles (CNA35) tar-
geting collagen were able to detect murine athero-
sclerosis by molecular MRI [162]. 

The end stage of vascular remodeling is the 
formation of microcalcifications and sclerosis [163], 
and there is clear evidence that both inflammation 
and calcification are closely related to each other[42, 
43]. Molecular targeting of vessel wall calcifications 
has been achieved by fluorescence imaging and hy-
droxylapatite-targeted PET [42, 43, 164, 165]. Together 
with high-resolution CT hydroxlyapatite targeted PET 
may give rise to a more comprehensive evaluation of 
plaque phenotype, integrating morphology, plaque 
composition, degree of the resulting vessel obstruc-
tion, and stage of plaque progression. Already today, 
coronary CT is able to distinguish between stable and 
vulnerable plaques based on the existence and pattern 
of calcifications. While large calcifications are charac-
teristic of stable plaques, both non-calcified plaques as 
well as spotty calcifications are more frequently ob-
served in patients presenting with an acute coronary 
syndrome [166]. 

 
 

 
Fig 7. Imaging of Vascular Remodeling. Vascular remodeling can be assessed with an Elastin-targeted Magnetic Resonance Agent (=ESMA). Panels A 
and B show ESMA-enhanced MR images of the aortic arch and supraaortic vessels in swine wit increased SNR and CNR compared to non-targeted 
Gd-DTPA (Panel C and D). A similar approach is able to detect vascular injury following coronary stent implantation. Magnetic Resonance Angiography 
(MRA, Panel E), delayed-enhancement MRI after injection of ESMA (Panel F) and fusion of E and F (Panel G). Quantification of Elastin by MRI yields good 
correlation with Histology (Panel H). Images courtesy of Marcus Makowski and René M. Botnar, Kings College London and Christian von Bary, Universität 
Regensburg. 
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Rupture of the inflamed atherosclerotic plaque 
and thrombus formation 

Rupture of the inflamed atherosclerotic plaque 
leads to exposure of a variety of prothrombotic plaque 
constituents to the circulation, initiating athero-
thrombosis and sequelae such as the development of 
stroke or myocardial infarction. Selective targeting of 
clot-bound platelets has been achieved using peptides 
or antibodies with high affinity for the glycoprotein 
IIb/IIIa[167, 168]. 

Fibrin-targeted MRI has vast potential in 
thrombus imaging and has already passed Phase I 
and II clinical studies after promising results in ani-
mal models [169-172]. EP-2104R is a Gd-based MR 
imaging agent functionalized with a short peptide 
with high affinity to fibrin [173-175]. A novel 64Cu 

labeled EP-2104R showed promising results in de-
picting arterial thrombi by hybrid MR-PET in a rat 
model [176]. Quantification of intraplaque and endo-
thelial fibrin has been achieved by applying novel T1 
mapping techniques of the injected EP2104R [177]. An 
example of this approach is shown in Figure 8. 

Another preclinical approach uses peptide sub-
strates for factor XIII, an important factor in 
cross-linking fibrin monomers for thrombus stabiliza-
tion. Fluorescent nanosensors were able to reveal 
factor XIII activity in experimental models of throm-
bosis and may enable to differentiate acute versus 
chronic thrombi in vivo [178]. Similar approaches us-
ing MRI showed feasible factor XIII detection in pre-
clinical animal models [179]. 

 

 
Fig 8. Fibrin-targeted molecular MRI of thrombus formation. 3D TOF images of the aortic arch in a control (Panel A) and ApoE-/- mice (Panel C). 
The subsequently performed imaging sequences (delayed enhancement and T1 mapping sequences) were aligned perpendicular to the brachiocephalic 
artery. Atherosclerotic plaques were imaged prior to FTCA in control (B1) and 12 week HFD ApoE-/- mice (D1), and 2 hours after an injection of FTCA 
(B2-3, D2-3). Delayed enhancement (white arrows) is seen selectively as a white hotspot on the post-contrast images (D2) whilst the signal from the 
surrounding blood and tissues is suppressed. Fusion of the TOF and late enhancement images confirm signal localization in the vessel wall of the BCA (D3, 
E). Transmission electron microscopy (F) and mapping of gadolinium distribution (G) in an engineered thrombus. For colocalization experiments thrombus 
samples were incubated with FTCA. Good colocalization of signal from Gd with the fibrin mesh was found (H). aA: ascending aorta, dA: descending aorta, 
BC: brachiocephalic artery, IR: inversion recovery, SC: subclavian artery, CA: carotid artery, FTCA: Fibrin targeted contrast agent. Images courtesy of René 
M. Botnar, King’s College London. 

 

Target selection for clinical molecular 
imaging 

As outlined above, a variety of molecular targets 
have so far been successfully employed in preclinical 

models of cardiovascular disease. However, the 
translation of imaging agents and technologies into 
the clinic has been much slower than anticipated. 
When selecting potential targets for molecular imag-
ing of patients, the target has to fulfill a set of criteria 
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to be suitable for non-invasive detection: The expres-
sion and kinetics of a potential molecular target 
should be known in the course of the disease, and the 
target density at the region of interest should be high 
enough to be captured with a high contrast-to-noise 
ratio. Above all, an imaging agent has to be available 
that is able to detect the target with high sensitivity 
and specificity, is non-toxic, and preferably available 
at low costs. Currently, there is no consensus on the 
best target for imaging in the clinical setting. In hu-
mans, our knowledge about the expression of molec-
ular markers within the vasculature is mostly limited 
to one-time snap shots, for example when analyzing a 
carotid plaque after a patient had undergone 
endarterectomy. The kinetics of inflammatory pro-
cesses in atherosclerosis and in particular the course 
of expression of potential molecular markers within 
the inflamed vessel, are yet to be defined. To date, 
targets that may be most promising for clinical imag-
ing applications comprise adhesion molecules and 
monocytes/macrophages, as hallmarks of inflamma-
tions. Integrins and cell adhesion molecules are not 
only expressed on the activated endothelium, but also 
on inflammatory macrophages within the plaque, 
which should to enable imaging with a good con-
trast-to noise ratio. Similarly, macrophages are highly 
abundant within the vulnerable plaque and their 
presence is moreover clearly associated with the risk 
of plaque rupture. Macrophages are therefore attrac-
tive imaging targets. 

Perspectives on Clinical Translation 
Our understanding of the inflammatory nature 

and molecular processes involved in atherosclerosis 
has substantially advanced over the last 30 years, and 
it is now widely accepted that inflammation plays a 
key role in plaque development, maturation and 
rupture [134]. Molecular imaging, unlike anatomic 
imaging, is able to elucidate the immunobiological 
processes inside the vessel wall, otherwise invisible 
by x-ray, coronary angiography or established intra-
vascular imaging methods. While traditional ana-
tomic imaging modalities have failed to identify the 
vulnerable plaque that is prone to rupture, it is the 
aim of ongoing experimental efforts to define imaging 
modalities that enable the detection and quantifica-
tion of parameters that can reliably be integrated into 
clinical diagnostic and therapeutic decision making. 
In particular, it remains a pressing question in the 
clinic, which lesion to treat in order to prevent poten-
tially life-threatening complications, such as myocar-
dial infarction and stroke [180, 181]. Molecular imag-
ing is able to translate our advanced knowledge in 
vascular biology towards these applications. Yet, 
many hurdles remain to be solved before molecular 

imaging platforms can be implemented in routine 
clinical practice. The lack of probe specificity needs to 
be overcome by more specific sensors targeting dis-
tinct cellular or subcellular processes, and more sen-
sitive detection technologies. Some obstacles, such as 
the low spatial resolution of nuclear imaging or the 
restricted penetration depths of near-infrared light, 
are rooted in physical principles that may not be sig-
nificantly improved. Modification of the application 
of these technologies, e.g. imaging via the intravas-
cular route, however, may have the potential to fur-
ther improve these imaging technologies. First appli-
cations of fluorescence imaging in surgical oncology 
have proven promising when used in cytoreductive 
surgery [182]. As more and more selective molecular 
sensors will undergo FDA approval, molecular im-
aging approaches that have been successful in pre-
clinical animal models will soon be tested in the clin-
ical setting. When the discussed novel imaging plat-
forms are considered for clinical translation, radiation 
exposure will become a key issue. Although costs of 
these new imaging technologies are still immense, 
these may still be modest when compared to the gen-
eral healthcare costs that arise from the treatment of 
vascular complications such as myocardial infarction 
or stroke. Identifying these previously silent culprit 
lesions before myocardial infarction or stroke occur is 
a major task for molecular imaging. 

When envisioning successful implementation of 
molecular imaging into daily patient care in the fu-
ture, one could imagine the following scenario: A pa-
tient presents to the emergency room with acute chest 
pain. The laboratory values as well as the echocardi-
ographic findings point toward an acute coronary 
syndrome. The patient is therefore brought to the 
catheterization laboratory for invasive angiography. 
In addition to the regular x-ray angiogram for de-
tecting vessel obstructions, intravascular fluorescence 
imaging is performed to screen the entire coronary 
vascular tree for possible vulnerable plaques, which 
are not identified by conventional coronary angi-
ography but may nevertheless cause subsequent in-
farctions within the near future. After angioplasty of 
an obstructed artery segment the patient is placed on 
an anti-inflammatory therapeutic regimen. The 
treatment success can be subsequently monitored 
non-invasively, either by hybrid PET-CT/PET-MRI or 
by molecular MRI alone and can guide further thera-
peutic triage. One could imagine that in parallel, pa-
tients would be subjected to genomic risk analysis to 
guide the aggressiveness of the anti-inflammatory 
regimen and determine the frequency of follow-up 
examinations by molecular imaging. Although such 
implementation of molecular imaging in the clinical 
routine is appealing, many hurdles, as outlined above, 
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still need to be overcome [45]. 
As a concluding remark, the cardiovascular field 

may benefit from the cancer community where im-
aging of biomarkers has found its ways into standard 
daily patient care and is utilized in large clinical trials 
[45]. In our pursuit of establishing personalized med-
icine for improving patient care, molecular imaging 
tools will be of great value for helping physicians to 
identify vulnerable plaques and triage tailored treat-
ment approaches in individual patients with the aim 
to avert serious complications of atherosclerosis.  
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