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Abstract

development of antibacterial compounds.

activities included in the E. coli K12 metabolic network.

Background: The growing discipline of structural systems pharmacology is applied prospectively in this study to
predict pharmacological outcomes of antibacterial compounds in Escherichia coli K12. This work builds upon
previously established methods for structural prediction of ligand binding pockets on protein molecules and utilizes
and expands upon the previously developed genome scale model of metabolism integrated with protein structures
(GEM-PRO) for E. coli, structurally accounting for protein complexes. Carefully selected case studies are
demonstrated to display the potential for this structural systems pharmacology framework in discovery and

Results: The prediction framework for antibacterial activity of compounds was validated for a control set of
well-studied compounds, recapitulating experimentally-determined protein binding interactions and deleterious
growth phenotypes resulting from these interactions. The antibacterial activity of fosfomycin, sulfathiazole, and
trimethoprim were accurately predicted, and as a negative control glucose was found to have no predicted
antibacterial activity. Previously uncharacterized mechanisms of action were predicted for compounds with known
antibacterial properties, including (1-hydroxyheptane-1,1-diyl)bis(phosphonic acid) and cholesteryl oleate. Five
candidate inhibitors were predicted for a desirable target protein without any known inhibitors, tryptophan
synthase (3 subunit (TrpB). In addition to the predictions presented, this effort also included significant expansion of
the previously developed GEM-PRO to account for physiological assemblies of protein complex structures with

Conclusions: The structural systems pharmacology framework presented in this study was shown to be effective in the
prediction of molecular mechanisms of antibacterial compounds. The study provides a promising proof of principle for
such an approach to antibacterial development and raises specific molecular and systemic hypotheses about
antibacterials that are amenable to experimental testing. This framework, and perhaps also the specific predictions of
antibacterials, is extensible to developing antibacterial treatments for pathogenic E. coli and other bacterial pathogens.

Keywords: Structural systems pharmacology, Antibacterial, Metabolic model, Ligand binding, Escherichia coli

Background

Structural systems pharmacology [1] is the study of drug
action through characterization of proteome-wide drug-
target interactions and their systemic consequences. A
previously developed local structure homology-based ap-
proach to predicting ligand binding pockets (SMAP) [2-4]
has been applied efficaciously in multiple contexts to study
pharmacological phenomena [5-8]. The recent develop-
ment of a structural biology resource with which to study
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physiological stresses upon the proteome of Escherichia coli
K12 MG1655 metabolism [9] has enabled a diversity of
potential applications. Thus, we applied the SMAP meth-
odology and the E. coli metabolic genome-scale model inte-
grated with protein structures (GEM-PRO), to analyze and
predict antibacterial effects of chemical compounds. E. coli
K12, although not pathogenic under normal circumstances,
is a well-characterized laboratory model for enteropatho-
genic bacteria that infect humans. Thus methods, and per-
haps even some specific predictions of antibacterial
properties made in this study, are extensible to pathogenic
E. coli and other bacterial pathogens. In addition to the in-
tegrative framework presented in this study for structural

© 2013 Chang et al, licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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systems pharmacology, this effort also included significant
expansion of the previously developed GEM-PRO to ac-
count for physiological assemblies of protein complex
structures with activities accounted for in the E. coli K12
metabolic network JO1366 [10]. Results from this study
show promising proof of principle for such an analysis
framework and raise specific molecular and systemic hy-
pothesis about antibacterials that are amenable to experi-
mental testing.

Results

Expansion of GEM-PRO to include protein complexes
Many proteins do not act as monomers in the cell but
as part of multimeric protein complexes that may in-
clude proteins encoded by one or several distinct genes.
The previously constructed Escherichia coli genome-
scale model integrated with protein structures (GEM-
PRO) [9] considered proteins solely as single-peptide
chains. As a result, we sought to expand the scope of
GEM-PRO to account for the structure of protein com-
plexes. The structures of protein complexes are comple-
mentary to the existing single-peptide chain structures
already included in the E. coli GEM-PRO. The objective
was to best represent the physiological assemblies of
metabolic enzyme complexes, that is, the best structural
representation of the active form of enzyme complexes
in vivo. A conceptual representation of this expansion
with respect to the example reaction of glucosamine-1-
phosphate N-acetyltransferase (G1PACT) is displayed in
Figure 1A; in this case, the physiologically active form of
the GImU enzyme is a homotrimer.

There are 1106 functional enzymatic complexes [11]
known to form among the proteins accounted for in
iJO1366 [10]. The overall coverage of complexes in this
GEM-PRO is 519 out of the 1106 known complexes
(Figure 1B); Of these 519 complexes, 426 are completely
represented with accurate subunit stoichiometry by a single
structure in the expanded GEM-PRO, and another 93 com-
plexes are partially represented by structures, which may
not include all distinct polypeptide subunits of the complex
or may have incomplete subunit stoichiometry. This effort
yielded 527 individual protein structure files, 149 of which
were redundant with structures contained in the previously
developed GEM-PRO [9]. As is clear from Figure 1B, a
slight majority of known complexes are not represented at
all in the complex expansion to the GEM-PRO. A combin-
ation of the EcoCyc database [11], PDB structure curation
[12], computational assessment of symmetry operations on
the asymmetric unit of protein crystals [13], and literature
review were used to identify a consensus for the most
physiologically accurate assemblies currently possible (see
Additional file 1: Table S1). These assemblies were distrib-
uted among different classes of oligomeric states: mono-
mers, homomultimers, and heteromultimers (Figure 1C).
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The monomers directly overlap with contents previously
reconstructed [9].

Structure-based prediction of protein targets of
antibacterials

The expanded E. coli GEM-PRO was employed pro-
spectively to explore possible currently unknown anti-
bacterial properties. Two pipelines were established to
screen for different types of antibacterial associations
(Figure 2). Protein targets for antibacterials with un-
known mechanisms of action, compounds known to
have antibacterial effects but without known molecular
targets, were predicted (Figure 2A), and anti-metabolite
compounds were also predicted as novel antibacterials
to target orphan protein targets without known inhibi-
tors (Figure 2B). Protein-ligand targeting was predicted
using the previously developed SMAP method [4].
Some negative and positive control antibacterial com-
pounds were also screened, for which there is existing
data on antibacterial properties and established mecha-
nisms of action within metabolism.

A subset of the results of these screens are summa-
rized in Table 1, including novel predicted compound
targets and those that displayed antibacterial properties
through simulation of inhibition in the metabolic model
(described later); the full set of SMAP predictions is
presented in Additional file 2: Table S2.

In the negative control screen for glucose (BGC) SMAP
predicted that glucose significantly binds to 7 individual
metabolic E. coli proteins and 2 protein complexes, one of
which is a known target (MglB). Using less stringent sig-
nificance criteria for the SMAP p-value revealed a second
known target (Glk). Some of these targets are expected be-
cause glucose is a known substrate of these proteins. Al-
though SMAP does not predict significant binding of
glucose to glycogen phosphorylase (GlgP), for which it is a
known inhibitor, this protein does rank 4 of 3234 struc-
tures for one screen (p-value = 9.55 x 10%). Because we as-
sume that glucose binding targets are the most extensively
characterized of all compounds included in this study,
these negative control screens were also used to examine
the false positive rate of SMAP predictions of ligand bind-
ing. Using stated significance criteria (see methods), 9 false
positive and 3207 true negative predictions resulted, corre-
sponding to a false positive rate of 0.0028.

Of the positive antibacterial controls, the top SMAP
hit for the sulfonamide 4-amino-N-(1,3-thiazol-2-yl)
benzenesulfonamide (YTZ) is the known primary target,
dihydropteroate synthase (FolP). Two other positive con-
trols, fosfomycin (FCN) and trimethoprim (TOP), were
predicted by SMAP to bind significantly to a number of
proteins (Table 1), none of which were known targets,
leaving these predictions as unresolved but nevertheless
putative targets defining unknown mechanisms leading to
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Figure 1 Complex expansion of E. coli GEM-PRO. (A) This expansion of the E. coli GEM-PRO provides structural coverage of protein complexes
included in iJO1366. An example is depicted for the GImU protein catalyzing the G1PACT reaction. (B) Complete and partial coverage of each
protein complex by at least one structure is categorized. (C) The oligomeric states of complexes for which there is complete coverage in this
GEM-PRO are distributed across monomers, homomultimers, and heteromultimers.

\

an antibacterial effect, described further below. The positive The antibacterial 4-(aminomethyl)benzoic acid (4AZ),
control 2,2’-methanediylbis(3,4,6-trichlorophenol) (H3P)  with unknown action mechanism, was not predicted to
was not predicted by SMAP to significantly bind any pro-  significantly bind to any metabolic proteins. Intriguingly,
teins; although the known primary target (Fabl) was ranked  the two other antibacterials with unknown mechanisms of
122" out of 3233 protein structures. The experimentally-  action screened in this study, (1-hydroxyheptane-1,1-diyl)
characterized binding mode of H3P co-crystalized with bo-  bis(phosphonic acid) (028) and cholesteryl oleate (20B),
vine glutamate dehydrogenase (GDH) is as a ring consisting ~ were both predicted as significant binders by SMAP to
of six H3P molecules [14], each molecule interacting both  multiple metabolic proteins (Table 1), suggesting possible
with the GDH homohexamer and with two other neighbor-  mechanisms for their antibacterial activity.

ing H3P molecules. This complex binding mode may ex- Of the three screens aiming to identify anti-meta-
plain the lower than expected significance of SMAP hits for ~ bolite inhibitors of known essential genes in E. coli,
known H3P targets, as the template for the binding site SMAP predicted 5 candidate inhibitors for the trypto-
used for the SMAP screen did not capture the six-molecule  phan synthase [ subunit (TrpB). Predicted TrpB inhi-
ring binding mode. bitors include 2-{[4-(trifluoromethoxy)benzoyl]amino}
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Figure 2 Antibacterial prediction pipelines. (A) Screening causal targets for antibacterial activity of input compounds. Seeded with at least one
structure of the compound of interest bound to a known target and the GEM-PRO to represent the functional proteome, SMAP is run to predict
binding partners within the GEM-PRO. The potential for these predicted binding events to inhibit protein activity is then evaluated based on binding
site overlap with native functional sites annotated in the GEM-PRO. Targets exhibiting overlap of antibacterial binding sites and functional sites are then
evaluated for their inhibition growth phenotype in the GEM-PRO using the COBRA Toolbox. The inhibitable protein targets leading to deleterious
growth phenotypes comprise predictions of causal targets for antibacterial activity. (B) Screening inhibitors of desired antibacterial target protein(s).
Seeded with the GEM-PRO, metabolic simulations may be performed using the COBRA Toolbox to predict phenotypic impacts of protein inhibition to
identify potential antibacterial target protein(s); alternatively, desirable targets may be chosen based on experimental results, such as gene-knockout
phenotypes. To search for inhibitors of the chosen targets, the native functional sites of the proteins are identified, as in the GEM-PRO, and passed to
SMAP to screen ligand-binding pockets of structures included in the PDB, searching for significant local structural matches. Significant matches
comprise potential inhibitors of the chosen target proteins, expected to hold antibacterial properties.
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ethyl dihydrogen phosphate (F6F), [3-hydroxy-2-methyl-5-
phosphonooxymethyl-pyridin-4-ylmethyl]-L-ryptophane
(PLT), (Z)-N-[(1E)-1-carboxy-2-(2,3-dihydro-1H-indol-1-yl)
ethylidene]{3-hydroxy-2-methyl-5-[(phosphonooxy)

methyl]pyridin-4(1H)-ylidene}methanaminium (7MN),
indoline (IDM), and pyridoxyl-serine-5-monophosphate
(PLS). Criteria supporting the potential inhibitors of TrpB
are listed in Table 1. SMAP screens for inhibitors of
erythronate-4-phosphate dehydrogenase (PdxB) and
orotate phosphoribosyltransferase (PyrE) failed to pre-
dict any significant candidate inhibitors.

Several other known metabolic targets of the control
compounds were not predicted by SMAP. In our pre-
liminary control screens, it was hypothesized that there
may exist distinct binding pocket motifs for an individ-
ual compound such that using a single protein tem-
plate to search for other targets may not identify all
true targets of a compound. Expanding the number of
search templates for a single compound, as was done
for BGC, FCN, and TOP, indeed identified more sig-
nificant known targets, supporting this hypothesis.

To assess the relative accuracy of SMAP in predicting
true positive protein-ligand interactions, we performed
statistical analysis of the entire set of SMAP results,

including insignificant calls. Mann Whitney U-tests
were run on the ranked lists of SMAP predictions with
respect to each template protein structure, yielding in-
consistently statistically significant p-values for some
compounds (Figure 3). This result too supports that
different binding motifs may exist for an individual
compound, as is most apparent for BGC and TOP,
which show the widest range of p-values. To highlight
the overall efficacy of SMAP in predicting true positives,
the results from all screens for a particular compound
were combined by considering only the top rank num-
ber for each protein structure, whether a known target
or not. It is apparent from Figure 3 that the examples
BGC, ECN, TOP, and H3P all noticeably support
SMAP’s predictive accuracy; however, the stringency of
significance criteria used may obscure this ability for
many protein-ligand interactions. Because there is no
obvious a priori approach to choosing a single structural
template for screening a compound that may bind to
multiple distinct motifs, our results suggest that using
as wide an array of diverse templates as appropriate
should be considered when running SMAP screens.
This phenomenon may explain some of the false nega-
tive SMAP predictions for controls in this study.
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Table 1 Summary of in silico antibacterial predictions

Ligand SMAP prediction Antibacterial Functional site

Screen ID Target name (significant) simulation overlap
Negative control BGC - - - -
Positive control: PEP analogue FCN BtuC X X -
Positive control: sulfonamide Y17 FolP X X -
Positve control: trimethoprim TOP RibD X X X
Positve control: trimethoprim TOP IspU X X X
Positve control: trimethoprim TOP EntA X X X
Positve control: trimethoprim TOP FabG X X X
Positve control: trimethoprim TOP KdtA X X -
Positve control: trimethoprim TOP Mur)J X X -
Positve control: trimethoprim TOP WaaB X X -
Positve control: trimethoprim TOP MenH X X -
Positve control: trimethoprim TOP WaaQ X X -
Positve control: trimethoprim TOP MoeA X X -
Positve control: trimethoprim TOP TyrA X X -
Positve control: chlorophenol H3P - - - -
Antlbact'erla\s of unknown 028 IspA N % %
mechanism
Antlbacﬁerla\s of unknown 028 IspB N % %
mechanism
Antibacterials of unknown 1A7 . ) . .
mechanism
Antlbacper|a\s of unknown 0B PheA y % %
mechanism
Annbac‘;ena\s of unknown 208 AcpP y % %
mechanism
Antlbact'ena\s of unknown >0B EntA « % %
mechanism
Antlbact'erla\s of unknown 0B AtpB « % %
mechanism
Amlbact_erla\s of unknown 0B CyoB N % %
mechanism
Antibacterials of unknown Cytochrome bo terminal

. 20B . X X X
mechanism oxidase
Antlbacper|a\s of unknown 20B Succinate dehydrogenase X X X
mechanism
Antibacterials of unknown 208 Mur) y % )
mechanism
Antibacterials of unknown 208 ProC % % )
mechanism
Amlbact'erla\s of unknown 508 ArgA « % )
mechanism
Amlbact_erla\s of unknown 0B IspU N % .
mechanism
Antlbacﬁerla\s of unknown 0B NUOB « « .
mechanism
Antibacterials of unknown 0B CyoC « « }
mechanism
Antibacterials of unknown >0B GdhA % % )

mechanism
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Table 1 Summary of in silico antibacterial predictions (Continued)

Antibacterials of unknown

mechanism 208 PpK
Antibac‘;eria\s of unknown >0B FadE
mechanism

Novel target: TrpB F6F TrpB
Novel target: TrpB PLT TrpB
Novel target: TrpB 7MN TrpB
Novel target: TrpB IDM TrpB
Novel target: TrpB PLS TrpB
Novel target: PdxB - PdxB
Novel target: PyrE - PyrE

X X -
X X -
X X X
X X X
X X X
X X X
X X X
. X -
- X -

Antibacterial binding site and protein functional

site analysis

Next, we utilized the residue-resolution functional annota-
tion of the previously generated E. coli GEM-PRO to iden-
tify whether the SMAP-predicted ligand binding sites
overlapped with known functional sites, such as catalytic
and substrate binding sites. Such interactions could be
expected to exhibit competitive inhibitory effects. For
cases where an SMAP prediction was made on the basis
of a protein complex structure, we also identified pre-
dicted ligand binding sites at the interface between sub-
units, which may lead to disruption or prevention of

protein complex formation in vivo and therefore have a
deleterious impact on enzyme function. Overlap between
predicted TOP binding sites and native nucleotide and
substrate binding sites occurred on RibD, partial overlap
with the catalytic site of IspU, and almost complete over-
lap with the catalytic sites of both EntA and FabG. The
predicted binding sites for 028 completely overlapped with
the catalytic site of IspA and overlapped with the substrate
binding site and Mg>* ion binding site of IspB. In the case
of 20B, predicted binding sites showed at least partial
overlap with the catalytic sites of PheA, CyoB, EntA, AtpB,
and AcpP. Predicted 20B binding sites also had

0.004 <p<0.810 0.187 <p<0.976
n=4
FCN

p=0.372 0.0183 <p <0.652 p =0.007
n=1 n=7 n=1
YTz TOP H3P

500 [

) - -
o (4] o
o o o
o o o
T T T

Lowest rank of true positives

N

a

o

o
T

3000

Figure 3 SMAP performance in recalling true positives. The lowest rank for each protein structure predicted as an SMAP hit is displayed for
the set of known protein targets for the five control compounds. Blue lines indicate the rank position (out of 3237) of a known target for a given
compound. n =the number of screens using different protein structure templates performed for each compound. p = the p-value resulting from
Mann Whitney statistical tests for individual SMAP results with respect to an individual template screen. BGC: beta-D-glucose; FCN: fosfomycin;
YTZ: 4-amino-N-(1,3-thiazol-2-yl)benzenesulfonamide; TOP: trimethoprim; H3P: 2,2’-methanediylbis(3,4,6-trichlorophenol).
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implications with respect to two protein complexes, not
exhibited with respect to the complex subunits in isola-
tion. The predicted 20B binding site on the cytochrome
bo terminal oxidase appears at the interaction site between
CyoB and CyoC. The 20B binding site also overlapped
with the heme binding sites of the SdhC and SdhD sub-
units of the succinate dehydrogenase complex as well as
the protein-protein interaction region between these sub-
units. These last few predictions speak to the importance
of the complex expansion of the GEM-PRO, without
which such molecular predictions involving multiple sub-
unit interfaces would not have been possible.

Simulation of phenotypes from antibacterial
target inhibition
Finally, we turned to the metabolic network portion of the
E. coli GEM-PRO, iJO1366 [10], to simulate the outcomes
of known and predicted binding events leading to inhib-
ition of protein activity and determine whether or not
these events may be detrimental to growth. First, we tested
the ability of the model to accurately predict the pheno-
typic impact caused by inhibition of known targets of all
control compounds (Table 2). Inhibition of all known and
predicted binding targets of BGC led to no decrease in
growth phenotype, accurately predicting the known out-
come of the negative control. Inhibition of positive control
targets led to no growth or reduced growth rates in the
model. In combination, the collective inhibition of all
known targets for each positive control compound led to
complete growth inhibition, but remarkably, most of these
targets individually also led to complete loss of growth if
inhibited, only failing to predict deleterious growth pheno-
types upon inhibition of FbaA, TolC, and FolA individually.
The effects of inhibition of SMAP-predicted targets
were then evaluated in the model. Each of the individual
predicted protein targets reported in Table 1 exhibited de-
creased or no growth upon full inhibition in simulation.
These predictions helped to pare down the list of signifi-
cant SMAP predictions to those that satisfy both lines of
evidence for antibacterial effects. With the exception of
the FolP-YTZ binding interaction, all of the interactions
reported in Table 1 are previously unknown, which
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suggests that in the case of positive control compounds,
we may have uncovered previously unknown antibacterial
targets. For the antibacterial compounds with unknown
mechanisms of action, we predicted that inhibition of IspA
and IspB by 028 leads to decreased growth rate and that
inhibition of 14 individual proteins and 2 protein com-
plexes by 20B leads to decreased growth rate. Further
details of the specific pathways impacted by these inhibi-
tory activities were investigated in the flux balance model.
The mechanistic models of antibacterial activity of 028,
20B, and potential inhibitors of TrpB are summarized in
Figure 4, with more detailed network flux maps provided
in Additional file 3: Figure S1. In the mechanistic model
for 028 (Figure 4A), IspA and IspB are inhibited leading to
decreased isoprenoid synthesis activity and ultimately no
model growth. The mechanistic model for 20B (Figure 4B)
includes inhibition of several proteins (PheA, AcpP, EntA,
and AtpB) and protein complexes (cytochrome bo ter-
minal oxidase and succinate dehydrogenase) participating
in a variety of metabolic pathways (amino acid synthesis,
lipid synthesis, enterochelin metabolism, and oxidative
phosphorylation) ultimately leading to no model growth.

We also tested if inhibition of the individual protein tar-
gets predicted by gene-knockout phenotypes to be effective
antibacterial targets leads to growth deficits in the model
and found that all three individual inhibitions lead to no
growth in the model (Table 1). However, as previously
mentioned, our SMAP screens only predicted potential in-
hibitors of TrpB. The mechanistic model for antibacterial
activity of these compounds is presented in Figure 4B,
where any of F6F, PLT, 7MN, IDM, or PLS are expected to
inhibit TrpB activity, thereby inhibiting tryptophan synthe-
sis and leading to no growth in simulation.

Discussion

In this study, we have demonstrated the first structural sys-
tems pharmacology antibacterial screens for the model bac-
terium E. coli. This effort was enabled in part through the
expansion of the E. coli GEM-PRO to include protein com-
plexes. In this attempt at reconstruction of metabolic pro-
tein complexes, we chose to utilize only those structures
supported by strong experimental evidence; however, the

Table 2 Metabolic model performance in predicting antibacterial effects

Negative control

Positive controls

BGC FCN YTZ TOP H3P
AcpP FabB FolC
Gmk ISpA IspB
No growth upon inhibition - FolP ThyA Fabl
MurA MurE PgsA
PlsC
GalP GlgY Glk
No effect upon inhibition FbaA TolC FolA FolA -
MglB XylA YlaD
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Figure 4 Predicted antibacterial mechanisms. (A) Inhibition of predicted binding targets (IspA and IspB) of 028 impacted simulated growth
through decreased flux through isoprenoid synthesis pathways, leading to no growth under complete inhibition. (B) Through simulated
inhibition of predicted binding targets of 20B, critical metabolic pathways were impacted leading to decreased growth: PheA impacting amino
acid synthesis, AcpP impacting lipid synthesis, EntA impacting enterochelin metabolism, and AtpB, cytochrome bo terminal oxidase, and
succinate dehydrogenase all impacting oxidative phosphorylation. (C) Five compounds (F6F, PLT, 7MN, IDM, and PLS) were predicted to bind and

scope of this reconstruction could be further expanded
through modeling of protein complex structures, as has
been attempted by others recently [15]. Our previous and
current efforts at reconstructing the E. coli metabolic
GEM-PRO have enabled in silico exploration of diverse
forms of physicochemical stress, but much broader expan-
sions are likely to emerge and enable still more diverse ave-
nues of investigation.

One important lesson learned from this study is that
availability of only a few static structures to represent pro-
teins may limit the sensitivity of ligand binding prediction.
Prospectively, molecular dynamics simulations could be
used to generate ensembles of structures [16] for each pro-
tein to perhaps include the conformations necessary to

uncover more binding interactions, lending greater sensi-
tivity to the prediction approach. Generating such ensem-
bles for the proteins included in this study would be a
substantial effort given the high number of protein struc-
tures included in this GEM-PRO and the long simulation
time scales necessary to model the large conformational
changes often important for ligand binding [17]. The
expected resultant increase in query database size would
also dramatically increase SMAP runtime. Nevertheless,
such an undertaking would likely provide a very useful ex-
tension of the GEM-PRO as a resource for such screens.
The limiting step of the overall approach is the SMAP
runtime, which if implemented on a similar computing re-
source to that used in this study (see methods) would be
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limited to the order of hundreds of compounds screened
against the E. coli GEM-PRO or tens of protein inhibitor
screens against the ligand-bound PDB structures. There-
fore, orders-of-magnitude more powerful computing re-
sources would be necessary for massively parallel screens.

This study builds upon previous examples [6,9,15,18-20]
illustrating how structural and systems biology may com-
bine to have an effect greater than they are capable of in
isolation. For example, some of the SMAP predictions of
lesser quantitative significance showed promise as antibac-
terial targets in simulation, sometimes accounting for
known antibacterial targets that otherwise would have
been called as false negatives by SMAP alone. Conversely,
although metabolic model predictions have previously
been shown to accurately predict the effects of many
targeted gene knockouts [10] and have been applied to se-
lect individual and multiple antibacterial targets [21,22],
these metabolic models have not yet been capable of
pairing these targets with compounds. Not only does the
expansion from the GEM to GEM-PRO framework enable
prediction of candidate compounds, it enables prediction
of specific molecular mechanisms (e.g., competitive inhib-
ition or complex disruption) that explain how the candi-
date compounds may affect the function of their targets.

In addition to providing a promising proof of principle
that such a structural systems biology strategy can be used
to understand antibacterial mechanisms, we have made
specific predictions of chemical inhibitors of a protein cur-
rently unutilized for antibacterial applications (TrpB) and
previously unknown mechanisms of existing antibacterial
compounds, both those with and without established
mechanisms. These predictions represent experimentally
testable hypotheses and were generated entirely in silico.
Therefore, Structural systems pharmacology may seed
rapid discovery in the area of antibacterials.

Conclusions

In this study, we developed an approach that can be used
to predict and characterize antibacterial mechanisms ei-
ther 1) by proteome-wide ligand binding target prediction
and subsequent simulation of the effects of such interac-
tions on growth or 2) by metabolic simulation of lethal
protein loss of function and subsequent inhibitor predic-
tion. This in silico approach bridges the gap between
structural and systems pharmacology, linking molecular
interactions with phenotypic outcomes. The GEM-PRO in
this study enables proteome-wide binding site prediction
specifically for E. coli metabolism, covering protein con-
formations in the physiological context of multimeric
complexes including potential binding sites at protein-
protein interfaces. This is a foundational resource for anti-
bacterial development for pathogenic E. coli and related
species. The GEM-PRO was utilized to predict binding
sites on protein targets for known antibacterials with
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unknown mechanisms (028 and 20B), binding sites on
previously uncharacterized targets of well-studied antibac-
terials (FCN and TOP), and potential inhibitors of TrpB.
Furthermore, metabolic model simulations predicted
specific essential processes by which these binding in-
teractions would lead to antibacterial effects. These rep-
resent experimentally-testable hypotheses, and this
study as a whole serves as a useful proof of principle for
the structural systems pharmacology analysis of
antibacterials.

Methods

Complex expansion of the E. coli GEM-PRO

Enzyme complexes included in the metabolic network
iJO1366 [10] were reviewed as annotated in EcoCyc [11].
The annotation from EcoCyc includes protein subunit
compositions, which served as a starting point for this re-
construction. The EcoCyc subunit compositions were eval-
uated from a structural perspective based on biological
units of crystal structures in the PDB [12] and through
thermodynamic analysis of possible physiological assem-
blies using the PDBePISA software [13]. The most thermo-
dynamically feasible PISA assembly for each complex,
based on computed AG of dissociation, was compared to
PDB biological units and EcoCyc composition annotation
for each complex. In many cases, these three sources were
in perfect agreement, in which case the PDB biological unit
was chosen as the structure to represent the physiological
assembly of the complex. However, many discrepancies
were also found among the compositions assigned by these
sources, including protein membership in complexes but
missing stoichiometry in EcoCyc. To reconcile these dis-
crepancies, the scientific literature was reviewed to find ex-
perimental evidence supporting the correct physiological
assembly for a complex. These references reported data
from a variety of experiments including: X-ray crystallog-
raphy, gel filtration, size-exclusion chromatography, ultra-
centrifugation, functional assays, substrate binding assays,
cooperative analysis, and mutant studies. A few studies also
provided evidence from bioinformatics analysis such as
kinetic assembly, molecular docking, and orthology-based
inference. The consensus of these experimental results
and the three preliminary sources was taken to determine
the most likely physiological assembly. If the PDB bio-
logical unit agreed with the consensus, that structure was
taken as the physiological assembly structure. If not, then
the PISA structure that best agreed with the consensus
was taken as the physiological assembly. In some cases, no
PDB structure or PISA assembly completely accounted for
the consensus complex assembly. In such cases, multiple
structures were taken to represent as many sub-parts of the
physiological complex assembly as possible. This resulted
in some overlap with single-peptide chain structures in-
cluded in the previously developed E. coli GEM-PRO.
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SMAP implementation

SMAP was installed and run on a Linux server with 48-
core 1.9 GHz Opteron processor. For all results reported in
this study, SMAP was run with default numerical parame-
ters. The first SMAP run against a given query database
and parameter set takes substantially longer than subse-
quent runs in order to define possible binding pockets (~55
h for the GEM-PRO and ~629 h for all ligand-bound pro-
tein structures in the PDB). Average runtimes for subse-
quent screens in this study were ~4 h and ~49 h against
the GEM-PRO and ligand-bound protein structures in the
PDB, respectively.

Protein-ligand interaction predictions

Different types of SMAP screens were run to answer three
different types of questions: 1) positive and negative con-
trols for antibacterials with known effective mechanisms in
wild type E. coli K12 through known metabolic protein tar-
gets; 2) antibacterials known to be effective against E. coli
K12 but with unknown mechanisms of action, seeking to
answer the question of whether those compounds may tar-
get metabolic functions; 3) searches for potential novel an-
tibacterials that are competitive inhibitors of metabolic
proteins known to hinder growth of E. coli K12 if subjected
to gene knockout. These are all open-ended questions, and
candidate compounds and protein targets to be selected
for these purposes are non-obvious. Also because SMAP is
a method requiring substantial computational resources,
the number of screens that could be performed was lim-
ited. For these reasons, filtering the wealth of candidate
compounds and targets to choose candidates for the
screens was necessary. Therefore, large data sources were
filtered to pick most promising candidates to test these
three types of questions.

Selecting antibacterial controls for screen

As of September 24, 2012, there are 12,785 chemically dis-
tinct ligand molecules represented in at least one PDB
structure. Given that SMAP performs best when starting
with a well-defined ligand binding site for the search tem-
plate, we chose only to use experimentally-determined
binding sites for this type of screen. The collection of all
known antibacterials and their known targets were col-
lected from KEGG [23], EcoCyc [11], DrugBank [24], and
ChEMBL [25], and the overlapping set of these and the
PDB ligands found. Antibiotic classifications were derived
from KEGG, EcoCyc, and DrugBank. All PDB ligands
were clustered by their chemical similarity using their ca-
nonical SMILES [26] and the EI-Clustering software [27].
The distance matrix output by EI-Clustering was used to
form the clusters by hierarchical clustering and a cutoff of
1.15 was determined such that the classified antibiotics
were clustered together and not in the same clusters with
antibiotics of other classes. Thus, functionally and
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chemically distinct groups of antibacterials were identified
from which to choose positive controls. All curated data
used for compound selection is presented in Additional
file 4: Table S3. Positive controls were chosen from these
groupings such that they represented a breadth of antibac-
terial classes and chemical clusters and only if they had at
least one known metabolic protein target in E. coli.

Glucose was chosen as a negative control for this study
due to multiple advantageous properties. Glucose is a mol-
ecule well known to cross the E. coli cellular membrane
and not to exhibit negative effects on growth, as it is a pri-
mary carbon source for WT E. coli. Therefore, negative
phenotypic effects would be completely unexpected in an
accurate model. Glucose has many well-characterized
binding sites, supported by a high number (> 400) of PDB
structures in which it is co-crystalized with diverse pro-
teins (representatives from >200 protein clusters, with a
50% sequence identity threshold). Known binding targets
for glucose in the E. coli GEM-PRO include five enzyme
catalytic sites for which it is a known substrate and also as
a competitive inhibitor of GIgP [28], providing test cases
for ligand binding prediction as well as growth phenotype
simulation upon target inhibition. As a small molecule
(180 Da) within a standard deviation of the mean molecu-
lar mass of crystalized ligands in the PDB (376+/-196 Da),
glucose is a reasonable representative of characterized li-
gands in terms of size. Glucose also satisfies Lipinski’s rule
of five [29], indicative of its drug-like chemistry. These fac-
tors taken together make glucose a good negative control
for all steps of our predictive approach.

Selecting antibacterials with unknown mechanisms of
action for screening

The ChEMBL database [25] was reviewed to find bio-
logical assays in which antibacterial activity of compounds
was identified in E. coli. This set of compounds was
searched for those with no known binding partners in WT
E. coli according to KEGG, EcoCyc, DrugBank, ChREMBL,
or the PDB. We then prioritized for those compounds that
are ligands in PDB structures of only non-bacterial pro-
teins. Small compounds consisting only of C, H, N, O, P,
and S elements were chosen from this set as the orphan
antibacterials of interest for this study. This data is also
contained in Additional file 4: Table S3.

Selecting orphan protein targets for screening

Previously published essentiality screens and simulations
of the E. coli K12 single-gene knockout library grown on
glucose minimal medium [10] were analyzed to choose
novel antibacterial protein targets to search for anti-
metabolites to inhibit. Phenotypes with very low growth at
the end of the experiment (ODgy < 0.26) were selected.
Priority was given to proteins without known inhibitors in
EcoCyc, DrugBank, or ChEMBL. From this set, three
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target proteins were chosen that bind to a high number of
ligands in the PDB, have a low number of native metabolic
substrates as annotated in {§JO1366, and for which there is
structural coverage in the GEM-PRO of the individual
proteins, protein complexes, and catalytic sites. The cu-
rated data used for orphan protein target selection is
presented in Additional file 5: Table S4.

Prediction of antibacterial targets

In searching for possible metabolic protein targets for
known antibacterial compounds, template structures were
chosen from PDB crystal structures that included the com-
pound bound to a protein. These structures were used with
SMAP to search for potential binding pockets for these
antibacterial compounds within both the previously pub-
lished E. coli GEM-PRO and also the newly-generated
physiological complex assemblies. The entire set of PDB
proteins was clustered using a 50% sequence identity cutoff.
The best resolution structure from each cluster that
contained the ligand of interest was chosen as an alternative
template for SMAP screens. SMAP was used to screen each
template in turn across the database of proteins comprising
the GEM-PRO structures. SMAP hits were considered sig-
nificant for a p-value < 1.0 x 10* and Tanimoto coefficient
>0.5. A secondary tier of lesser significance was determined
using just the aforementioned p-value criterion.

Prediction of anti-metabolite protein inhibitors

Searching for possible inhibitors of predicted antibacterial
metabolic protein targets was performed by taking the
structure of the protein target of interest from the E. coli
GEM-PRO, docking [30] the primary native metabolic sub-
strate into the known catalytic site (as annotated in the
GEM-PRO), and using the resulting structure as a template
for SMAP screens. SMAP was then used to search across
all ligand-bound protein structures in the PDB, excluding
structures that only bind metal ions or metabolites in-
cluded in iJO1366, to find ligands that bind to structurally
similar sites. The query database contained 51,608 PDB
structures. SMAP was run specifying that only ligand bind-
ing sites be considered. SMAP hits were considered signifi-
cant with p-value < 1.0 x 10* and Tanimoto coefficient >
0.5. A secondary tier of lesser significance was determined
using just the aforementioned p-value criterion.

Simulating protein inhibitory effects

The E. coli metabolic network {JO1366 [10] was loaded
into the COBRA toolbox [31] from the published SBML
model using Matlab. Since the time of publication of
iJO1366 a thermodynamic constraint error was discovered
in the published model; as a result, the malate oxidase,
“MOX,” reaction was set as irreversible. The superoxide
dismutase, “SPODM,” reaction was set with an initial
upper bound of 1000 as well. The objective function was
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set as the complete wild type biomass reaction
“Ec_biomass_iJO1366_WT_53p95M.” Default exchange
reaction constraints were used, except for a glucose uptake
lower bound of -8 mmol/gDW/h and an oxygen uptake
lower bound of -18.5 mmol/gDW/h, representing aerobic
growth on glucose. These basic constraints were used for
all reported simulations in this study.

The combined sets of known targets and predicted tar-
gets were first tested for antibacterial effects by constraining
all associated reactions to 0 flux and then maximizing bio-
mass using flux balance analysis (FBA) [32]. Individual tar-
gets were tested in the same manner to determine causal
targets from the broader sets. Resulting biomass fluxes were
compared to a simulated untreated condition where just
the basic constraints were imposed and biomass was max-
imized; any decrease in biomass flux relative to the
untreated condition was considered a prediction of anti-
bacterial effect by degree of decrease.

Analysis of impact of protein-ligand binding on

molecular function

The specific amino acid residues comprising the ligand
binding sites predicted by SMAP were compared to
residue-resolution functional annotation contained in the
original GEM-PRO [9]. If precise residues overlapped be-
tween these sets, we flagged these proteins as having pre-
dicted binding sites for the given ligand that should be
seen as competitively inhibitory since they would bind to
the same location as substrates required for normal func-
tion. Functional features included in this analysis consisted
of catalytic sites and substrate binding sites. For SMAP
query structures that were protein complexes containing
multiple subunits, if the predicted ligand binding site in-
cluded residues from distinct subunits, we flagged these as
possible ligand binding events that could prevent or dis-
rupt complex formation and therefore function.

Additional files

<
Additional file 1: Table S1. Excel file containing indices providing details
about the protein complex structures contained in the GEM-PRO. GEM-PRO
file naming convention: (1) The PDB ID is given separated from the
concatenated chain IDs by an underscore. (2) The stoichiometric presence of
each chain is annotated in parentheses following each chain ID. No
parenthetic number indicates a stoichiometry of 1. (3) Suffixes for PDB
biological units are retained, such as “pdb1”, “pdb2”, or “pdb3". (4) The
suffixes “pisal.pdb”, “pisa2.pdb’, “pisa3.pdb’, and “pisa4.pdb’, indicate that the
structure is an output of PDBePISA. The number following “pisa” indicates the
rank within the list of possible structures returned by PDBePISA.

Additional file 2: Table S2. Excel file containing summary results from
all SMAP screens.

Additional file 3: Figure S1. Sub-networks of JO1366 affected by
simulated inhibition of predicted targets of 028, 20B, and TrpB inhibition by
F6F, PLT, 7MN, IDM, or PLS. Reactions in green, red, and yellow are those
directly affected by predicted target inhibition by 028, 20B, and one of the
predicted TrpB inhibitors, respectively. Reactions with thicker lines represent

those with lower magnitude flux upon simulated exposure to these
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compounds. Colored dashed lines are drawn from each compound to their
predicted causal targets following the same color scheme described above.

Additional file 4: Table S3. Excel file containing all curated data used
to select ligands for antibacterial mechanism screens.

Additional file 5: Table S4. Excel file containing all curated data used
to select orphan protein targets to screen for inhibitors.
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