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ABSTRACT

Motivation: The exponential growth of protein sequence databases

has increasingly made the fundamental question of searching for

homologs a computational bottleneck. The amount of unique data,

however, is not growing nearly as fast; we can exploit this fact to

greatly accelerate homology search. Acceleration of programs in the

popular PSI/DELTA-BLAST family of tools will not only speed-up hom-

ology search directly but also the huge collection of other current

programs that primarily interact with large protein databases via pre-

cisely these tools.

Results: We introduce a suite of homology search tools, powered by

compressively accelerated protein BLAST (CaBLASTP), which are sig-

nificantly faster than and comparably accurate with all known state-of-

the-art tools, including HHblits, DELTA-BLAST and PSI-BLAST.

Further, our tools are implemented in a manner that allows direct sub-

stitution into existing analysis pipelines. The key idea is that we intro-

duce a local similarity-based compression scheme that allows us to

operate directly on the compressed data. Importantly, CaBLASTP’s

runtime scales almost linearly in the amount of unique data, as

opposed to current BLASTP variants, which scale linearly in the size

of the full protein database being searched. Our compressive algo-

rithms will speed-up many tasks, such as protein structure prediction

and orthology mapping, which rely heavily on homology search.

Availability: CaBLASTP is available under the GNU Public License at

http://cablastp.csail.mit.edu/

Contact: bab@mit.edu

1 INTRODUCTION

Identification of homologous sequences is of fundamental im-

portance in computational biology. Sequence search tools, such

as BLASTP and PSI-BLAST (Altschul et al., 1997), have played

important roles in various tasks arising in protein science, includ-
ing secondary and tertiary structure prediction (Rost et al., 2004;

Söding et al., 2005), functional annotation (Kosloff and

Kolodny, 2008; Loewenstein et al., 2009) and orthology mapping
(Singh et al., 2008; Tatusov et al., 2000). The runtimes of the

most popular methods [e.g. BLASTP, PSI-BLAST and DELTA-

BLAST (Boratyn et al., 2012)] scale nearly linearly in the size of

protein databases. With the exponential increase in protein se-
quence data, this is becoming a major bottleneck to computa-

tion. Thus, it is imperative to design algorithms that scale sub-

linearly in the size of the databases.
The recent exponential growth in genomic sequence data

(Kahn, 2011; Kircher and Kelso, 2010), which is outpacing

growth of computing power (Gross, 2011; Huttenhower and

Hofmann, 2010; Kahn, 2011; Schatz et al., 2010), has spurred

an interest in compressive genomics (Loh et al., 2012) and the

need to compress sequence data for efficient storage (Brandon

et al., 2009; Cameron et al., 2007; Chen et al., 2002). Protein

sequence data, although on a slower growth curve than genomic

data, nonetheless increase at an exponential rate (Fig. A1), dou-

bling roughly every 2 years, for now just keeping pace with

Moore’s law for computational power.
A key observation from compressive genomics is that much of

the new data are actually similar to existing data, which was used

to accelerate nucleotide sequence search without loss of accuracy

(Loh et al., 2012).
Despite its name, even NCBI’s non-redundant protein se-

quence database (NR) contains a great deal of redundancy; it

is non-redundant only at the level of entire sequences; highly

similar sequences are represented separately. Thus, even NR

lends itself to a compression scheme that takes advantage of

this redundancy. Although NR has already eliminated exact du-

plicates at the global sequence level, we take advantage of local

sequence similarity to achieve compression.
We introduce a compressive algorithm, CaBLASTP, along

with an implementation that allows direct computation on the

compressed data. CaBLASTP boosts the runtime performance

of any search tool in the protein BLAST (Altschul et al., 1997)

family, while maintaining accuracy. Specifically, we show that

compressive versions of BLASTP, PSI-BLAST (Altschul et al.,

1997) and DELTA-BLAST (Boratyn et al., 2012) scale nearly

linearly in the size of the unique data, as well as sub-linearly in

the size of the complete protein database.
Notably, any program that relies on protein BLAST can

take advantage of our compressive software with virtually no

effort. Thus, we expect CaBLASTP to be of great use to the

community.

2 METHODS

We introduce a framework for compressing protein sequences and per-

forming a variety of homology search techniques in compressed space.

We have designed this ‘CaBLASTP’ framework primarily to be compat-

ible with the NCBI-BLAST family of software (Altschul et al., 1997).

The key observation underlying CaBLASTP is that when sequences

are sufficiently similar—yet not necessarily identical—tasks such as ap-

proximate search can initially operate on just one representative of the

similar set. The remainder of the set need only be analyzed if a represen-

tative sequence is found to be of interest.

The basic approach of CaBLASTP thus consists of two phases. First, a

pre-processing (or compression) phase identifies similarities among se-

quences in a protein database. This phase is computationally intensive,

yet it need be done only once for a given database. After compression is*To whom correspondence should be addressed.
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complete, CaBLASTP can then translate the decreased redundancy of the

database into a speed-up when performing search, which is the second

phase.

CaBLASTP compresses a protein sequence database to identify re-

gions of high similarity (Fig. 1a). This is done by first scanning through

the database and categorizing sequences as either new or redundant.

Owing to both the amino acid alphabet size and the sheer database

size, to become tractable, this step required the development of new com-

putationally efficient methods (detailed later in the text).

Novel sequences are stored in a ‘coarse’ database, whereas sequence

segments that align well to previously seen sequences are not. The coarse

database essentially represents only the unique data from the original

database. Instead, records for these alignments are added to a link

index. Our approach can be viewed as a hybrid between traditional

data-compression algorithms, which create a dictionary for exact se-

quences encountered in the data, and sequence alignment algorithms,

such as BLAST (Altschul et al., 1997).

The search phase applies a two-stage approach (Fig. 1b). First, the

query is searched against the coarse database. To maintain accuracy, this

‘coarse search’ uses a more permissive E-value threshold than the thresh-

old specified for final results. For each hit from the coarse search,

CaBLASTP then reconstructs any additional hit candidates by following

the links in the link index. Final results are then obtained by a ‘fine

search’ against these candidate sequences.

We have implemented a compression tool, which converts a protein

sequence database to a CaBLASTP compressed database, as well as three

compressive search tools that operate on this database, implementing

compression-space versions of NCBI-BLAST, PSI-BLAST and the re-

cently released DELTA-BLAST (Boratyn et al., 2012). Our software is

written in the publicly available Go programming language (Griesemer,

2009; Kortschak, 2011).

2.1 Compression

The compressive phase takes a protein sequence database and produces a

compressed data structure amenable to the search step described in

Section 2.2. This pipeline is illustrated in Figure 1a. This is implemented

in the program cablastp-compress, which takes a standard FASTA file as

input.

Given an input sequence database, compression proceeds as follows:

(1) First, initialize a table of all possible k-mer ‘seeds’ of amino acids,

and a ‘coarse’ database of amino acid sequences, initially contain-

ing the first sequence in the input database (empirically, the best

compression runtime performance occurs with k set to 4).

(2) For each k-mer of the first sequence, then create a pointer from the

corresponding entry in the seed table to the position of that k-mer

in the first sequence.

(3) For each sequence s in the input after the first, slide a window of

size kþ k0, where k0 may be zero (empirically, best performance is

achieved with k0 set to 2).

(4) Low-complexity regions (single-residue repeats) of length410 are

skipped.

(5) Look up the first k residues of this window in the seed table. For

every pointer corresponding to that k-mer in the seed table, follow

it to a subsequence in the coarse database. If a resulting subse-

quence s0 in the coarse database further matches the window by the

additional k0 residues, then attempt extension (see below). If no

subsequences from this window can be extended, move the

window by one residue. The separation of the window size into k

and k0 is simply an optimization to reduce the memory footprint of

compression; it allows, for example, an effective window size of 6

while only requiring a seed table with 204 rather than 206 entries.

(6) If a match was found via extension, move the k-mer window to the

first k-mer in s after the match, and the extension process repeats

with this new seed.

Extension. Given a kþ k0 match between the sequence s and subse-

quence s0 pointed to by the seed table, first attempt ungapped extension:

(1) Greedily extend the match into an ungapped alignment as far as

possible.

(2) Within each window of 10 residues, if identical 4mers in s and s0

can be found, and at least two additional matching residues can be

(a)

(b)

Fig. 1. (a) Novel sequences are stored in a ‘coarse’ database, whereas

sequence segments that align well to previously seen sequences are not.

Instead, records for these alignments are added to a link index. Our ap-

proach can be viewed as a hybrid between traditional data-compression

algorithms, which create a dictionary for exact sequences encountered in

the data and sequence alignment algorithms, such as BLAST. Links point

from entries in the seed table to entries in the coarse database. Blue text

indicates matching subsequences; red indicates differences. (b) The search

phase applies a two-stage approach. First, the query is searched against

the coarse database. To maintain accuracy, this ‘coarse search’ uses a

more permissive E-value threshold than the threshold specified for final

results. For each hit from the coarse search, CaBLASTP then recon-

structs any additional candidate hits by following the links in the link

index. Final results are then obtained by a ‘fine search’ against these

candidate sequences
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found, then there is an ungapped match within that 10mer window

between s and s0 that exhibits at least 60% sequence identity.

(3) Continue ungapped matching using 10mer windows until no more

60% identity 10mers are found.

(4) The result of ungapped extension is that there is an alignment

between sequences s and s0 with no insertions or deletions, only

matches and substitutions, and at least 60% of the positions con-

tain exact matches.

When ungapped extension can no longer proceed, switch to gapped

extension. From the end of the ungapped alignment, align 25mer win-

dows of both s and s0 using the Needleman–Wunsch (Needleman and

Wunsch, 1970) algorithm with BLOSUM62 as a cost matrix. We use a

variant of Needleman–Wunsch, implementing constrained dynamic pro-

gramming, prohibiting more than six gaps in the alignment, reducing the

search space by a factor of �4. Global alignment is chosen because we

wish to attempt to align the entire 25mer from each sequence. After

gapped extension on a window length of 25, attempt ungapped extension

again.

When neither gapped nor ungapped extension can continue, terminate

extension. Realign the resulting extension of s and s0, again using

Needleman–Wunsch. If the resulting alignment has570% sequence iden-

tity or is540 residues, discard it, instead attempt extension on the next

link in the seed table for the original k-mer; if there are no more links for

that k-mer, then consider the next k-mer. If, however, the resulting align-

ment has at least 70% sequence identity and is at least 40 residues long,

then create a link from the entry for s0 in the coarse database to the

subsequence of s beginning with the original k-mer and corresponding

to the extended region. If there are ‘dangling’ ends to s530 residues that

did not satisfy the extension criteria, append them to the match. Longer

‘dangling’ ends that did not match any subsequences reachable from the

seed table are added into the coarse database themselves, with links from

the relevant seeds in the seed table to their constituent k-mers. The re-

quirement to deal with protein sequences being discrete represents a dif-

ference from Loh et al. (2012).

Any sequence or subsequence in the input that cannot be matched to

earlier sequences in the coarse database will itself become an entry in the

coarse database, with pointers from the k-mer seed table linking to it, and

similar sequences seen later in the input may be matched to it.

In addition, a difference script is associated with this link. The differ-

ence script is simply a representation of the insertions, deletions and

substitutions resulting from the overall Needleman–Wunsch alignment.

Applying the difference script to a representative sequence in the coarse

database (s0 above) will return the sequence s; it is effectively decom-

pressed. Similarly, applying the difference script to s will return its rep-

resentative s0.

After all sequences have been compressed, the sequences in the coarse

database are written out in FASTA format; the resulting coarse FASTA

file, which is smaller than the original input file, is used by all search

implementations described later in the text. In addition, the set of links

between coarse sequences and original sequence identifiers and their dif-

ference scripts is written to disk in a binary format. An index file is also

produced, which maps the sequence identifiers from the coarse database

to entries in the compressed database. These formats are documented in

the Go source code for CaBLASTP. It is worth noting that the compres-

sion format is lossless and completely invertible; it is possible to exactly

reconstruct the original FASTA source from the compressed database.

When compressing a large amino acid data set such as NCBI’s ‘NR’,

memory usage can grow large. As a memory and runtime performance

optimization, the seed table can be reset when it reaches a user-specified

size, 8 GB by default. For our experiments, we used a maximum seed

table size of 20 GB. When no limit was imposed, the seed table could

grow to440 GB on NR, but we saw negligible difference in compression

ratio between these two limits.

On the compressed database described here, we have implemented

three search techniques, BLASTP, PSI-BLAST and DELTA-BLAST.

All three follow the same basic two-step technique (Fig. 1b): first, they

search the compressed database with a relaxed threshold to find candi-

date matches, and then the closely related sequences to the candidate hits

are more closely examined. The fundamental speed-up introduced by this

two-step approach is that the initial step rules out the vast majority of the

original database without ever having to examine it.

2.2 Search

2.2.1 Compressive BLASTP Compressive accelerated BLASTP, or

cablastp-search, requires a compressed database produced by our com-

pression method as described earlier in the text. Given a query sequence

and a compressed database, this search method calls the BLASTP pro-

gram to search the coarse FASTA file, which is typically much smaller

than the original FASTA file. This step is called coarse search, as sug-

gested by Loh et al. (2012). Coarse search uses a relaxed E-value thresh-

old compared with what would be desired if the entire original database

was searched using standard BLASTP. The idea behind coarse search is

to identify possible hits, which may be rejected by the later fine search.

Because the coarse FASTA file is a subset of the original, uncompressed

FASTA file, potential hits may be subsequences that are shorter than or

slightly different from the original sequences they represent. Thus, a more

permissive E-value must be used. Command-line arguments to be passed

to BLASTP itself may be specified by the user. The results of the coarse

search are sequences from the coarse FASTA file; thus, they are actually

sequences or subsequences from the original FASTA file. Based on the

compressed database’s search index, each of these sequences is then re-

constructed into all corresponding sequences from the original database,

by following the links to original sequence matches, and applying their

difference scripts. Note that the coarse FASTA file need not ever be

decompressed in its entirety, although it is possible to do so. The resulting

set of sequences, larger than the resulting set from the coarse search, is

then provided to BLASTP as the subject for a second query, which again

uses the query sequence provided to cablastp-search. This step is called

fine search, and it produces a set of final results, based on an E-value

threshold specified by the user (or the BLASTP default). These results are

provided in an identical format to BLASTP. This implementation of

cablastp-search relies on the BLASTþ implementation (developed and

tested against BLASTþ 2.2.6 and 2.2.7).

2.2.2 Compressive PSI-BLAST Compressively accelerated PSI-

BLAST, or cablastp-psisearch, operates much like compressively acceler-

ated BLASTP. PSI-BLAST builds a position-specific scoring matrix, or

PSSM, iteratively, by running BLAST searches for a query against a

database. Instead of just using the BLOSUM-62 matrix to compute align-

ment scores, PSI-BLAST computes substitution scores column-by-

column, based on an initial alignment and subsequent refinements.

cablastp-psisearch takes advantage of the PSI-BLAST program’s ability

to save a checkpoint of its PSSM to a file. Given a user-specified number

of iterations, the program performs both a coarse and a fine search for

each iteration. Every iteration, except the first, relies on a PSSM file

output by the previous iteration, whereas every iteration, except the

final, writes a PSSM file for the next iteration to use. Each iteration

comprises a coarse and a fine search identical to cablastp-search, but

using the PSI-BLAST executable.

2.2.3 Compressive DELTA-BLAST Domain-enhanced look up

time accelerated BLAST, or DELTA-BLAST (Boratyn et al., 2012),

uses a library of pre-computed PSSMs based on NCBI’s Conserved

Domain Database. The DELTA-BLAST executable is included with

BLASTþ 2.2.6 and later versions. Compressively accelerated DELTA-

BLAST, or cablastp-deltasearch, operates similarly to compressively

accelerated BLASTP, performing a single iteration of search comprising
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a coarse and a fine search step. We did not implement an iterative version

of this algorithm, as Boratyn et al. (2012) showed decreased accuracy

with iteration.

2.3 Accuracy validation

To verify that compressive acceleration does not significantly harm the

accuracy of BLASTP, PSI-BLAST and DELTA-BLAST, we performed

100 random searches against the NR database, for each of these three

tools. For each tool, we treated the results from the standard version (e.g.

BLASTP) as a gold standard, and computed the true positive rate and

false positive rate for compressive versions of the same search (e.g.

cablastp-search) with respect to this gold standard. We performed this

search with an E-value threshold of 10�3, for both the coarse and fine

threshold for the compressive versions of each search, and for

CaBLASTP, PSI-BLAST and DELTA-BLAST. Because of the design

of the algorithm, false positives with respect to the non-compressively

accelerated tools are not possible.

We were also interested in homology detection performance of our

compressive implementations of PSI-BLAST and DELTA-BLAST with

respect to HHblits (McDonnell et al., 2006). We identified all 1123 se-

quences from the ASTRAL subset of release 1.75A of the Structural

Classifications of Proteins (SCOP) (Murzin et al., 1995) database that

were not present in HHblits’ ‘NR20’ database or the August 2010

NCBI NR database, but whose SCOP families contained other homolo-

gous sequences that were present in those databases. We chose the

August 2010 NCBI NR database to more fairly compare with the

August 2011 HHblits NR20, which is the most recent available. We

then performed searches using one iteration of HHblits, one iteration

of cablastp-deltasearch and two iterations of cablastp-psisearch against

these databases. We chose these numbers of iterations because a single

iteration of PSI-BLAST is effectively just BLASTP, whereas Boratyn

et al. (2012) showed decreased accuracy with more than one iteration

of DELTA-BLAST. Multiple iterations of HHblits would have resulted

in slower runtime performance. We considered results from the same

SCOP superfamily (and by extension, the same SCOP family) as the

query to be true positives, and results from different SCOP folds to be

false positives. We removed results from the same SCOP fold but differ-

ent superfamilies, as it is not consistent across the SCOP fold classifica-

tions whether those sequences are homologs. We also removed results

that were not identifiable in SCOP. We plotted ROC curves based on

these homology predictions. We also report the mean running times of

these searches.

3 RESULTS

3.1 Scalability on simulated data

We first compared the performance of our compressive
accelerated versions of BLAST with their original implementa-
tions. We constructed a simulated dataset to mimic the expected
growth of a protein sequence database into the future, to

demonstrate CaBLASTP’s ability to scale to large datasets. We
began with all known and putative proteins in the Saccharomyces
Genome Database (Cherry et al., 2012), which contains the

proteomes of 21 strains of yeast. To simulate clades of recently
diverged species, we used a tool for simulating protein mutation
(Daniels et al., 2012; Kumar and Cowen, 2009, 2010). For each

original sequence in the database, we added 5, 10, 20, 30 or 40
similar sequences by substituting residues with a mutation rate of
20%, based on the BLOSUM62 substitution matrix. The original

dataset contained 6717 sequences; with 40 mutated copies of
each sequence, the database contained 275 397 sequences. In
this way, we essentially ‘simulate’ an evolutionary process to

build a number of ‘putative’ proteomes from Saccharomyces

proteomes. Performance of sequence search on these augmented

databases should be comparable with the performance on future

databases where closely related species have now been

sequenced, producing increasing numbers of orthologous se-

quences. We benchmarked sequence search on these augmented

databases.
Figure 2a demonstrates the superior runtime of CaBLASTP

over BLASTP for large datasets. The results are averaged over

all sequences from the native Saccharomyces proteome. The

runtime of BLASTP increases almost linearly in the number of

‘simulated’ proteomes, or the size of the full database. In

contrast, CaBLASTP scales sub-linearly with database size,

even when there are 40 times as many proteomes. Notably,

CaBLASTP achieves roughly constant runtime regardless of

database size. These results show that our compressive scheme

is able to exploit data redundancy, thereby avoiding redundant

searches. Finally, we have performed similar comparisons on

datasets with different mutation rates (e.g. 5, 10 and 30%),

and the results are similar. This benchmark was performed on

a quad-core Intel Core i7 with 16 GB random access memory

and a solid-state disk.

3.2 Homology search on real data

3.2.1 Speed We evaluated the homology-search performance of

both the original and our compressive BLAST versions on the

widely used NR database. We randomly chose 100 sequences

from the December 2012 NR database. Five runs for each

query sequence were performed on three early versions of NR

built on June 2010, July 2012 and December 2012, with a coarse

E-value of 10�5 and a fine E-value of 10�10 (we selected these

three NR datasets because we do not have access to any other

versions). The average runtime for each method is shown in

Figure 2b. This benchmark was run on a system with dual six-

core AMD Opteron 2427 processors and 32 GB random access

memory, equipped with a RAID-10 disk array.

Although on each NR dataset, BLASTP takes 120, 200 and

240 s, respectively, CaBLASTP takes only 50, 70 and 75 s, re-

spectively. Given that the NR datasets each contain 11.6, 19.1

and 22 million sequences, BLASTP scales almost exactly linearly

in database size, whereas the runtime of CaBLASTP grows much

more slowly. CaBLASTP is faster than BLASTP by factors of

2.4, 2.7 and 3.1 on these NR datasets, respectively. These results

fit with the observation that the uncompressed NR databases are

6.1, 11 and 13 GB in size, respectively, whereas their compressed

counterparts are 1.4, 2.4 and 2.7 GB in size. Considering that the

NR databases already have 100% global sequence-identity re-

dundancy removed, CaBLASTP takes advantage of the local

similarity within the databases to speed-up homology search.

It is worth noting that on the NR databases, the ‘coarse’

search step of CaBLASTP dominates the running time; the

‘fine’ step requires51 s in all cases.
Similar to the comparison between BLASTP and CaBLASTP,

the compressive accelerated versions of both PSI-BLAST and

DELTA-BLAST are much faster than their original versions.

We performed two iterations of PSI-BLAST and one iteration

of DELTA-BLAST, as suggested in the latter’s original article.

The acceleration ratio increases as the size of NR grows (Fig. 2b).
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3.2.2 Accuracy To verify that compressive acceleration does
not decrease the accuracy of BLASTP, PSI-BLAST and

DELTA-BLAST, we also compared the differences between

the sequence hits from the above random query searches with

the NR databases for each tool. Specifically, we compared the

overlap between the sequence hits found by the compression-

accelerated versions and those identified by the original versions.

It is worth noting that because of the boosting compressive

scheme we have designed, our algorithms will not find any se-

quences that do not appear in the hits of their original counter-

parts. We then calculated the overlap between the alignments

generated by our compression-accelerated tools and their ori-

ginal versions. Table 1 depicts that the overlap of sequence hits

is499% and that of alignments is 100%. In other words, when a

(a) (b)

(c) (d)

Fig. 2. (a) Runtime of CaBLASTP versus BLASTP as datasets grow because of simulated mutation. Below 20% mutation rate, CaBLASTP run time is

virtually constant. (b) Runtime of cablastp-search versus BLASTP on three historical versions of NCBI’s ‘NR’ database. Times are the mean of five runs

each for 100 randomly chosen queries. (c) Runtime of cablastp-deltasearch versus cablastp-psisearch (two iterations) on NR from August 2010 and

HHblits on NR20 from August 2011. Times are the mean of five runs each for 100 queries from NR from December 2012. (d) Relative speed-up of

cablastp-deltasearch and cablastp-psisearch (two iterations) versus HHblits (one iteration) on NR from August 2010 and HHblits on NR20 from

August 2011
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hit is found, the alignment perfectly matches the standard
BLASTP alignment. An analysis of the differences in the

search results suggests that short query sequences (540 residues)
may in some cases return no hits in the coarse search. Changing
the minimum match length in the compression phase would

likely address this issue, yet likely at the expense of a significant
fraction of the runtime performance gains.
To better gauge the impact of coarse search E-value on accur-

acy, we performed 1000 random queries against the yeast data-
base, with a fine E-value of 10�5 and three different coarse

E-values: 10�1, 10�3 and 10�5. We compared these results with
standard BLASTP queries with an E-value of 10�5. Figure 3
illustrates the results of this analysis; CaBLASTP is robust to

choice of coarse E-value, as long as the coarse E-value is more
permissive than the fine E-value.

3.2.3 Comparison with HHblits Finally, we compared the per-
formance of homology detection of our compressively acceler-
ated implementations of PSI-BLAST and DELTA-BLAST with

a recently introduced profile-based search tool, HHblits
(Remmert et al., 2012). By partitioning sequences into clusters
based on global sequence similarity, HHblits pre-computes dis-

cretized hidden Markov models (HMMs) on each cluster and

only searches a query against those HMMs. In contrast, our

compression-accelerated algorithms take the local similarity

into account to speed-up sequence search. For comparison, we

identified all 1123 sequences from the ASTRAL subset of release

1.75A of the SCOP (Murzin et al., 1995) database that are not

present in HHblits’ ‘NR20’ database or the August 2010 NCBI

NR database, and which were in SCOP families that did contain

other non-identical sequences in those older NR databases. We

chose the August 2010 NCBI NR database to more fairly com-

pare with the August 2011 HHblits NR20, which is the most

recent available. We then performed searches using one iteration

of HHblits, one iteration of cablastp-deltasearch and two iter-

ations of cablastp-psisearch. The numbers of iterations were

chosen to ensure the performance of these tools is similar accord-

ing to previous reports (Boratyn et al., 2012; Remmert et al.,

2012). We considered top sequence hits from the same SCOP

superfamily (and by extension, the same SCOP family) as the

query to be true positives, and hits from different SCOP folds

to be false positives. We removed sequence hits from the same

SCOP fold but different superfamilies, as it is questionable

whether those sequences are homologous. We also removed re-

sults that were not identifiable in SCOP. We reported the mean

running times of these searches and plotted ROC curves based

on the homology predictions. Figure 2c illustrates these results.

Finally, we reported the speed-up of cablastp-deltasearch and

cablastp-psisearch with respect to HHblits. Speed-up is calcu-

lated as the mean, over all queries, of the mean HHblits time

for a given query divided by the mean time for the specified

search for that query. Error bars represent a 95% confidence

interval based on the distribution of search times for each

query sequence. Figure 2d illustrates these results.

HHblits takes an average of 102 s for one iteration. cablastp-

deltasearch takes an average of 51 s for one iteration. cablastp-

psisearch needs 52 s for one iteration and 106 s for two iterations.

Compression-accelerated DELTA-BLAST is twice as fast as

HHblits on this test; CaBLASTP-PSI-search is slightly slower

than HHblits. The result is notable considering that the clustered

NR20 by HHblits is much smaller than the NR database we

used. Moreover, as shown in Figure 4, compressive DELTA-

Fig. 3. Analysis of missed BLASTP hits. One thousand queries were run

on the yeast genome database at three different coarse E-values and a fine

E-value of 1E-5. The majority of misses are at the margin; in total, these

represent50.5% of the hits

Fig. 4. Accuracy: ROC curves for homology detection performance of

cablastp-psisearch versus cablastp-deltasearch and HHblits, as well as

standard PSI-BLAST and DELTA-BLAST

Table 1. Accuracy of compressive tools

Program TPR

(%)

FPR

(%)

Alignment

accuracy (%)

Compressive BLASTP 99.4 0 100

Compressive PSI-BLAST 99.3 0 100

Compressive DELTA-BLAST 99.4 0 100

Note: TPR is the fraction of hits from standard versions of each tool that were also

found by the compressive versions. FPR is the fraction of hits from the compressive

versions that were not found by the standard versions. Note: because of the algo-

rithm design, false positives with respect to the standard uncompressed tools are not

possible.
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BLAST achieves an area under the ROC curve of 0.76, com-
pared with 0.75 for HHblits and 0.69 for compressive PSI-
BLAST. In a ROC5 analysis (Fig. A2), where only the area

under the curve up to the fifth false positive is considered, and
the area is normalized, compressive DELTA-BLAST achieves a
ROC5 score of 0.82, compared with 0.71 for HHblits and 0.63 for

compressive PSI-BLAST.
We also ran the original versions of DELTA-BLAST and PSI-

BLAST on the same set of query sequences. Their results are

identical to our compression-accelerated versions, but their run-
times are roughly three times slower.

4 DISCUSSION

We have introduced a compression-accelerated search algorithm

that boosts the speed while maintaining accuracy of tools in the
protein BLAST family. Our approach scales sub-linearly with
the size of the database being searched, and linearly with the

size of the unique data. We expect that as the NR database con-
tinues to grow exponentially, the benefits of this compressive
approach will become more pronounced.

In contrast to genomic sequence compression (Loh et al.,
2012), which appears on its surface to be similar, subtle differ-
ences make protein sequence compression a different problem.

The primary difference is that proteins have a larger alphabet,
and thus, random sequences will have less similarity. This results

in different parameters and compression ratios, but it also
increases the computational complexity of compression, as the
number of k-mers is exponential in the alphabet size. Another

difference is that protein sequences are discrete; therefore,
our compression algorithm must handle sequence beginnings
and ends.

We have demonstrated that our compressive approach pro-
vides significant gains as the redundancy of the data increases,
but we also see future challenges. As the NCBI’s NR database

continues to grow in the coming years, the size of each cluster of
similar subsequences will also grow. We expect that for compres-
sion to remain tractable, further algorithmic and software-engin-

eering improvements, for example, a hierarchical compression
scheme, will be required.
Many sophisticated homology search and protein structure

prediction tools require BLAST searches of one type or another
to incorporate sequence profiles or structural information to im-
prove performance (Moult et al., 2011). For example, when we

introduced the BetaWrapPro method (McDonnell et al., 2006),
which requires a BLASTP search at query time, NCBI’s NR

database contained 54.5 million sequences; today it contains
422 million sequences; thus, search requires approximately five
times the running time.

Although the original motivation for developing our compres-
sive approach was the growing running time of BLASTP
searches on NR, the results described in Figure 2a suggest that

our approach may also be useful for orthology mapping across
organisms, performing an all-against-all search between a query
proteome and a set of well-studied proteomes (Chen et al., 2007;

Hachiya et al., 2009; Moreno-Hagelsieb,G. and Latimer, 2008),
which takes an inordinate amount of time.
Our tools can be readily incorporated into these applications

to accelerate their search, pre-processing or library construction.

Our software can be easily interfaced with any programs that

use protein BLAST search tools. Another important advantage

of our methods is that the compressed database can be incremen-

tally maintained to keep current with new proteomic sequence

data.
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APPENDIX

Fig. A1. Number of sequences in NCBI’s ‘NR’ non-redundant protein

sequence database from 2002 to 2012. The y-axis is logarithmic; doubling

time is �2 years

Fig. A2. ROC5 analysis of homology detection performance
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