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Abstract

Cooperative behavior, where one individual incurs a cost to help another, is a wide spread phenomenon. Here we study
direct reciprocity in the context of the alternating Prisoner’s Dilemma. We consider all strategies that can be implemented
by one and two-state automata. We calculate the payoff matrix of all pairwise encounters in the presence of noise. We
explore deterministic selection dynamics with and without mutation. Using different error rates and payoff values, we
observe convergence to a small number of distinct equilibria. Two of them are uncooperative strict Nash equilibria
representing always-defect (ALLD) and Grim. The third equilibrium is mixed and represents a cooperative alliance of several
strategies, dominated by a strategy which we call Forgiver. Forgiver cooperates whenever the opponent has cooperated; it
defects once when the opponent has defected, but subsequently Forgiver attempts to re-establish cooperation even if the
opponent has defected again. Forgiver is not an evolutionarily stable strategy, but the alliance, which it rules, is
asymptotically stable. For a wide range of parameter values the most commonly observed outcome is convergence to the
mixed equilibrium, dominated by Forgiver. Our results show that although forgiving might incur a short-term loss it can
lead to a long-term gain. Forgiveness facilitates stable cooperation in the presence of exploitation and noise.
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Introduction

A cooperative dilemma arises when two cooperators receive a

higher payoff than two defectors and yet there is an incentive to

defect [1,2]. The Prisoner’s Dilemma [3–9] is the strongest form of

a cooperative dilemma, where cooperation requires a mechanism

for its evolution [10]. A mechanism is an interaction structure that

specifies how individuals interact to receive payoff and how they

compete for reproduction. Direct reciprocity is a mechanism for

the evolution of cooperation. Direct reciprocity means there are

repeated encounters between the same two individuals [11–37].

The decision whether or not to cooperate depends on previous

interactions between the two individuals. Thus, a strategy for the

repeated Prisoner’s Dilemma (or other repeated games) is a

mapping from any history of the game into what to do next. The

standard theory assumes that both players decide simultaneously

what do for the next round. But another possibility is that the

players take turns when making their moves [38–40]. This

implementation can lead to a strictly alternating game, where

the players always choose their moves in turns, or to a

stochastically alternating game, where in each round the player

to move is chosen at randomnext is selected probabilistically. Here

we investigate the strictly alternating game.

We consider the following scenario. In each round a player can

pay a cost, c, for the other player to receive a benefit, b, where

bwcw0. If both players cooperate in two consecutive moves, each

one gets a payoff, b{c, which is greater than the zero payoff they

would receive for mutual defection. But if one player defects, while

the other cooperates, then the defector gets payoff, b, while the

cooperator gets the lowest payoff, {c. Therefore, over two

consecutive moves the payoff structure is the same as in a

Prisoner’s Dilemma: bwb{cw0w{c. Thus, this game is called

‘‘alternating Prisoner’s Dilemma’’ [29,39].

We study the strictly alternating Prisoner’s Dilemma in the

presence of noise. In each round, a player makes a mistake with

probability e leading to the opposite move. We consider all

strategies that can be implemented by deterministic finite state

automata [41] with one or two states. These automata define how

a player behaves in response to the last move of the other player.

Thus we consider a limited strategy set with short-term memory.

Finite-state automata have been used extensively to study repeated

games [42–45] including the simultaneous Prisoner’s Dilemma. In

our case, each state of the automaton is labeled by C or D. In state

C the player will cooperate in the next move; in state D the player

will defect. Each strategy starts in one of those two states. Each

state has two outgoing transitions (either to the same or to the

other state): one transition specifies what happens if the opponent

has cooperated (labeled with c) and one if the opponent has

defected (labeled with d). There are 26 automata encoding unique

strategies (Fig. 1). These strategies include ALLC, ALLD, Grim,

tit-for-tat (TFT), and win-stay lose-shift (WSLS).

ALLC (S26) and ALLD (S1) are unconditional strategies (see

Fig. 1 and Supporting File S1 for strategy names and their

indexing). ALLC always cooperates while ALLD always defects.
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Figure 1. Deterministic strategies in the Prisoner’s Dilemma. Each automaton defines a different strategy for how a player behaves during
the game. If a player is in state C, she will cooperate in the next move; if she is in state D, then she will defect. The outgoing transitions of a state
define how the state of an automaton will change in response to cooperating (label c) or defecting (label d) of the opponent. The left state with the
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Both strategies are implemented by a one-state automaton (Fig. 1).

The strategy Grim starts and stays in state C as long as the

opponent cooperates. If the opponent defects, Grim permanently

moves to state D with no possibility to return. TFT (S15) starts in

state C and subsequently does whatever the opponent did in the

last round [5]. This simple strategy is very successful in an error-

free environment as it promotes cooperative behavior but also

avoids exploitation by defectors. However, in a noisy environment

TFT achieves a very low payoff against itself since it can only

recover from a single error by another error [46]. WSLS (S16) has

the ability to correct errors in the simultaneous Prisoner’s

Dilemma [47]. This strategy also starts in state C and moves to

state D whenever the opponent defects. From state D strategy

WSLS switches back to cooperation only if another defection

occurs. In other words, WSLS stays in the current state whenever

it has received a high payoff, but moves to the other state, if it has

received a low payoff.

We can divide these 26 strategies into four categories: (i) sink-

state C (ssC) strategies, (ii) sink-state D (ssD) strategies, (iii)

suspicious dynamic strategies, and (iv) hopeful dynamic strategies.

Sink-state strategies always-cooperate or always-defect either from

the beginning or after some condition is met. They include ALLC,

ALLD, Grim and variations of them. There are eight sink-state

strategies in total. Suspicious dynamic strategies start with

defection and then move between their defective and cooperative

state depending on the other player’s decision. Hopeful dynamic

strategies do the same, but start with cooperation. There are nine

strategies in each of these two categories. For each suspicious

dynamic strategy there is a hopeful counterpart.

Some of the dynamic strategies do little to optimize their score.

For example, Alternator (S22) switches between cooperation and

defection on each move. But a subset of dynamic strategies are of

particular interest: Forgiver (S14), TFT, WSLS, and their

suspicious counterparts (S4, S8, and S12). These strategies have

the design element to stay in state C if the opponent has

cooperated in the last round but move to state D if the opponent

has defected; we call this element the conditional cooperation

element (see Fig. S1 in File S1). In state D, TFT then requires the

opponent to cooperate again in order to move back to the

cooperative state. WSLS in contrast requires the opponent to

defect in order to move back to the cooperative state. But Forgiver

moves back to the cooperative state irrespective of the opponents

move (Fig. 1: hopeful dynamic strategies).

Neither TFT nor WSLS are error correcting in the alternating

game [29,39]. In a game between two TFT players, if by mistake

one of them starts to defect, they will continue to defect until

another mistake happens. The same is true for WSLS in the

alternating game. Thus WSLS, which is known to be a strong

strategy in the simultaneous game, is not expected to do well in the

alternating game. Forgiver, on the other hand, is error correcting

in the alternating game. It recovers from an accidental defection in

three rounds (Fig. 2).

A stochastic variant of Forgiver is already described in [39]. In

this study, strategies are defined by a quadruple (p1,p2,p3,p4)
where pi denotes the probability to cooperate after each of the four

outcomes CC, CD, DC, and DD. This stochastic strategy set is

studied in the setting of the infinitely-repeated alternating game.

The initial move is irrelevant. In [39] a strategy close to

(1,0,1,2=3) is victorious in computer simulations of the strictly

alternating Prisoner’s Dilemma. For further discussions see also

pp. 78–80 in [29]; there the stochastic variant of Forgiver is called

‘Firm but Fair’.

Results

We calculate the payoff for all pairwise encounters in games of

L moves of both strategies, thereby obtaining a 26|26 payoff

matrix. We average over which strategy goes first. Without loss of

generality we set c~1. At first we study the case b~3 with error

rate E~0:05 and an average game length of L~100. Table 1

shows a part of the calculated payoff matrix for six relevant

strategies. We find that ALLD (S1) and Grim (S17) are the only

strict Nash equilibria among the 26 pure strategies. ALLC (S26) vs

ALLC receives a high payoff, but so does Forgiver vs Forgiver.

The payoffs of WSLS vs WSLS and TFT vs TFT are low, because

small incoming arrow corresponds to the initial state of a strategy. The 26 distinct strategies (automata) are classified into four categories: (i) sink-
state C strategies, (ii) sink-state D strategies, (iii) suspicious dynamic strategies, and (iv) hopeful dynamic strategies. The automata with the blue
background shading contain a conditional cooperation element (Fig. S1 in File S1) which ensures the benefit of mutual cooperation but also avoids
being exploited by defection-heavy strategies.
doi:10.1371/journal.pone.0080814.g001

Figure 2. Performance of the conditional cooperators in the
presence of noise. An asterisk after a move indicates that this move
was caused by an error. When the conditional cooperators are playing
against a copy of themselves, Forgiver performs very well as it can
recover from an accidental defection within three rounds. Against
defection-heavy strategies like Grim and ALLD, Forgiver gets exploited
in each second round. Both TFT and WSLS are not error correcting as
they are unable to recover back to cooperation after an unintentional
mistake. Only another mistake can enable them to return to
cooperative behavior. When Grim plays against itself and a single
defection occurs, it moves to the defection state with no possibility of
returning to cooperation.
doi:10.1371/journal.pone.0080814.g002
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neither strategy is error correcting (Fig. 2). Interestingly TFT vs

WSLS yields good payoff for both strategies, because their

interaction is error correcting.

In the following, we study evolutionary game dynamics [48–50]

with the replicator equation. The frequency of strategy Si is

denoted by xi. At any one time we have
Pn

i~1 xi~1, where n~26

is the number of strategies. The frequency xi changes according to

the relative payoff of strategy Si. We evaluate evolutionary

trajectories for many different initial frequencies. The trajectories

start from 104 uniformly distributed random points in the 26-

simplex.

Typically, we do not find convergence to one of the strict Nash

equilibria (Fig. 3 b). In only 5% of the cases the trajectories converge

to the pure ALLD equilibrium and in 18% of the cases the

trajectories converge to the pure Grim equilibrium. However, in

77% of the cases we observe convergence to a mixed equilibrium of

several strategies, dominated by Forgiver with a population share of

82.6% (Fig. 3 b). The other six strategies present in this cooperative

alliance are Paradoxic Grateful (S5; population share of 3.2%),

Grateful (S9; 5.6%), Suspicious ALLC (S13; 3.8%), and ALLC (S26;

0.3%), all of which have a sink-state C, and TFT (S15; 4.1%) and

WSLS (S16; 0.4%), which are the remaining two dynamic strategies

with the conditional cooperation element.

When increasing the benefit value to b~4 and b~5, we

observe convergence to a very similar alliance (Fig. 3 c and 3 d).

For b~2, however, the ssC (sink-state C) strategies (S5, S9, S13,

S26) and WSLS are replaced by Grim and the mixed equilibrium

is formed by Forgiver, TFT, and Grim (Fig. 3 a). Very rarely we

observe convergence to a cooperative alliance led by Suspicious

Forgiver (S12; for short, sForgiver). It turns out that for some

parameter values the Suspicious Forgiver alliance is an equilibrium

(Fig. S5 and S7 in File S1).

From the 104 random initial frequencies, the four equilibria

were reached in the proportions shown in Table 2 (using E~0:05
and L~100; for other values of E and L see Tables S9 and S10 in

File S1). The mixed Forgiver equilibrium is the most commonly

observed outcome. Note that in the case of b~2 the mixed

Forgiver equilibrium has a very different composition than in the

cases of b~3, b~4, b~5. Changing the error rate,

E~0:01,0:05,0:1 and the average number of rounds per game,

L~10, 100,1000, we find very similar behavior. Only the

frequencies of the strategies within the mixed equilibria change

marginally but not the general equilibrium composition (Fig. 4).

Though, there is one exception. When the probability for multiple

errors within an entire match becomes very low (e.g., L~10 and

E~0:05 or L~100 and E~0:01) and bw2, the payoff of ALLC

against Grim can become higher than the payoff of Grim against

itself. In other words, Grim can be invaded by ALLC. Hence,

instead of the pure Grim equilibrium we observe a mixed

equilibrium between Grim and ALLC (Fig. S4b–d in File S1).

We check the robustness of the observed equilibria by

incorporating mutation to the replicator equation. We find that

both the ALLD and the rare Suspicious Forgiver equilibrium are

unstable. In the presence of mutation the evolutionary trajectories

lead away from ALLD to Grim and from Suspicious Forgiver to

Forgiver (see Fig. S6 and S7 in File S1). The Grim equilibrium and

the Forgiver equilibrium remain stable. We note that this

asymptotic stability is also due to the restricted strategy space. In

[51] it has been shown that in the simultaneous Prisoner’s

Dilemma with an unrestricted strategy space, no strategy is robust

against indirect invasions and hence, no evolutionarily stable

strategy can exist.

Essential for the stability in our model is that Forgiver can resist

invasion by ssD strategies (S1, S17, S21, S25), because Forgiver does

better against itself than the ssD strategies do against Forgiver

(Table 1). However, Forgiver can be invaded by ssC strategies and

TFT. But, since TFT performs poorly against itself and ssC

strategies are exploited by WSLS (Table 1), all these strategies can

coexist in the Forgiver equilibrium. Stable alliances of cooperative

strategies have also been found in the context of the Public Goods

Game [52] and indirect reciprocity [53]. More detailed results and

equilibrium analysis for a wide range of parameter values for E and

L are provided in File S1 (Tables S1–S14 and Figures S2–S7).

In the limit of infinitely many rounds per game, we cancase of

an infinitely repeated game, and we derive analytical results for the

average payoff per round for the most relevant strategy pairs

(Table 3; for the calculations see File S1: Section 2 and Fig. S8–

S10). From these results we obtain that ALLD (or ssD strategies)

cannot invade Forgiver if

b

c
w

2zE{E2

1{2E
: ð1Þ

This result holds for any error rate, E, between 0 and 1/2 (Fig. 4 d).

Discussion

Our results imply an indisputable strength of the strategy

Forgiver in the alternating Prisoner’s Dilemma in the presence of

noise. For a wide range of parameter values, Forgiver is the

dominating strategy of the cooperative equilibrium, having a

population share of more than half in all investigated scenarios.

Essential for the success of a cooperative strategy in the presence

of noise is how fast it can recover back to cooperation after a

mistake, but at the same time, also avoid excessive exploitation by

defectors. The conditional cooperation element is crucial for the

triumph of Forgiver. Even though, also TFT and WSLS contain

this element, which allows them to cooperate against cooperative

strategies without getting excessively exploited by defectors, these

strategies are not as successful as Forgiver, because of their

inability to correct errors. Grim also possesses this conditional

cooperation element. However, noise on the part of Grim’s

opponent will inevitably cause Grim to switch to always-defect. It

is Grim’s ability to conditionally cooperate for the first handful of

turns that provides a competitive advantage over pure ALLD such

that the strict Nash equilibrium ALLD can only rarely arise.

The other strategies appearing in the Forgiver equilibrium for

the cases of b~3, b~4, and b~5 are Paradoxic Grateful (S5),

Grateful (S9), Suspicious ALLC (S13), and ALLC (S26). All of them

are ssC strategies that, in the presence of noise, behave like ALLC

Table 1. Payoff matrix for the most relevant strategies.

ALLD Forgiver TFT WSLS Grim ALLC

ALLD 10.0 148.4 24.8 144.9 11.5 280.0

Forgiver 236.1 174.8 163.5 166.9 212.7 194.3

TFT 5.1 178.1 104.5 176.7 24.5 194.5

WSLS 235.0 169.1 162.3 106.5 212.0 230.9

Grim 9.5 152.0 40.5 148.8 28.1 262.9

ALLC 280.0 177.2 176.6 67.3 228.8 190.0

Excerpt of the payoff matrix with the most relevant strategies when the benefit
value b~3 (c~1), the error rate E~5%, and the number of rounds in each game
L~100. There are two pure Nash equilibria in the full payoff matrix: ALLD (S1)
and Grim (S17), both denoted in bold.
doi:10.1371/journal.pone.0080814.t001
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after the first few moves. The strategy ALLC does very well in

combination with Forgiver. Nevertheless, ALLC itself appears

rarely. Perhaps because of Paradoxic Grateful, which defects

against ALLC for many moves in the beginning, whereas

Suspicious ALLC puts Paradoxic Grateful into its cooperating

state immediately. One might ask why these ssC strategies do not

occupy a larger population share in the cooperative equilibrium.

The reason is the presence of exploitative strategies like WSLS

which itself is a weak strategy in this domain. If only Forgiver was

present, WSLS would be quickly driven to extinction; WSLS does

worse against itself and Forgiver than Forgiver does against WSLS

and itself (see Table 1). But WSLS remains in the Forgiver

equilibrium because it exploits the ssC strategies. Interestingly,

higher error rates increase the population share of unconditional

cooperators (ssC strategies) in the cooperative equilibrium (Fig. 4c).

Simultaneously, the higher error rates can decrease the probability

to converge to the cooperative equilibrium dramatically and hence

prevent the evolution of any cooperative behavior (Fig. 4a).

Grim and Forgiver are similar strategies, the difference being, in

the face of a defection, Forgiver quickly returns to cooperation

whereas Grim never returns. An interesting interpretation of the

relationship is that Grim never forgives while Forgiver always

does. Thus, the clash between Grim and Forgiver is actually a test

of the viability of forgiveness under various conditions. On the one

hand, the presence of noise makes forgiveness powerful and

essential. On the other hand, if cooperation is not valuable

enough, forgiveness can be exploited. Moreover, even when

cooperation is valuable, but the population is ruled by exploiters,

forgiveness is not a successful strategy. Given the right conditions,

forgiveness makes cooperation possible in the face of both

exploitation and noise.

These results demonstrate a game-theoretic foundation for

forgiveness as a means of promoting cooperation. If cooperation is

valuable enough, it can be worth forgiving others for past wrongs

in order to gain future benefit. Forgiving incurs a short-term loss

but ensures a greater long-term gain. Given all the (intentional or

unintentional) misbehavior in the real world, forgiveness is

essential for maintaining healthy, cooperative relationships.

Methods

Strategy space
We consider deterministic finite automata [41] (DFA) with one

and two states. There are two one-state automata which encode

Figure 3. The evolution of strategies in the alternating Prisoner’s Dilemma. In all panels, the simulations start from a randomly chosensome
random point in the 26-simplex. In the cases of b~3, b~4, and b~5, the evolutionary trajectories converge to a cooperative alliance of many
strategies dominated by the strategy Forgiver. In the case of b~2, the evolutionary trajectories converge to a mixed equilibrium of Forgiver, TFT, and
Grim. The error rate E is set to 5%, the number of rounds per game is L~100, and the mutation rate is u~0.
doi:10.1371/journal.pone.0080814.g003
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the strategies always-defect (ALLD) and always-cooperate (ALLC).

In total, there are 32 two-state automata encoding strategies in our

game: two possible arrangements of states (CD, DC) and 16

possible arrangements of transitions per arrangement of states. For

8 of these 32 automata, the second state is not reachable, making

them indistinguishable from a one-state automata. Since we

already added the one-state automata to our strategy space, these

8 can be ignored. The remaining 24 two-state automata encode

Figure 4. Robustness of results across various benefit values and error rates. a | Convergence probability to the Forgiver equilibrium of a
uniform-random point in the 26-simplex. Note that for higher error rates (increasing noise-level), the probability to converge to the cooperative
equilibrium is much lower. b | Population share of Forgiver (S14) in the Forgiver equilibrium. Observe the relationship between the higher error rates
and the lower population share of Forgiver. c | Population share of sink-state C strategies (S5 , S9 , S13, S26) in the Forgiver equilibrium. Higher error
rates lead to higher proportions of unconditional cooperators. d | In the infinitely repeated game, for all value pairs of b=c and E in the blue shaded
area, ALLD cannot invade Forgiver since the average payoff of Forgiver playing against itself is higher than the average payoff of ALLD against
Forgiver (see Inequality (1)).
doi:10.1371/journal.pone.0080814.g004

Table 2. Equilibrium frequencies.

ALLD Grim Forgiver sForgiver

b = 2 15% 52% 33% ,1%

b = 3 5% 18% 77% 0%

b = 4 2% 7% 90% 1%

b = 5 1% 3% 93% 3%.

Proportions in which the four equilibria were reached from 104 uniformly
distributed random points in the 26-simplex. In the case of b~2, the mixed
Forgiver equilibrium has a different composition than in the cases of b~3, b~4,
b~5. Parameter values: costs c~1, error rate E~0:05, number of rounds per
game L~100.
doi:10.1371/journal.pone.0080814.t002

Table 3. Analytical results in the infinitely alternating
Prisoner’s Dilemma.

ALLD Forgiver ALLC

ALLD E:(b{c)
b:

1{E2

2{E
{E:c

b{E:(bzc)

Forgiver
E:b{c:

1{E2

2{E
(b{c):

1zE2:(1{E)
1z3E{E2

b:(1{E){c:
1{E:(1{E)

1zE

ALLC E:b{c:(1{E)
b:

1{EzE2

1zE
{c:(1{E)

(b{c)(1{E)

Analytical results of the average payoff per round in the infinitely alternating
Prisoner’s Dilemma for ALLD (S1), Forgiver (S14), and ALLC (S26) playing against
each other. Derivations are provided in File S1 (section 2).
doi:10.1371/journal.pone.0080814.t003
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distinct strategies in our game. Hence, in total we have 26

deterministic strategies in the alternating Prisoner’s Dilemma

(Fig. 1).

Generation of the payoff matrix
In each round of the game a player can either cooperate or

defect. Cooperation means paying a cost, c, for the other player to

receive a benefit, b. Defection means paying no cost and

distributing no benefit. If bwcw0 and we sum over two

consecutive moves (equivalent to one round), the game is a

Prisoner’s Dilemma since the following inequality is satisfied:

bwb{cw0w{c. In other words, in a single round it is best to

defect, but cooperation might be fruitful when playing over

multiple rounds. Furthermore also 2(b{c)wb{c holds, and

hence mutual cooperation results in a higher payoff than

alternating between cooperation and defection.The second

inequality ensures that sustained cooperation results in a higher

payoff than alternation between cooperation and defection.

For each set of parameters (number of rounds L, error rate E,
benefit value b, and costs c), we generate a 26|26 payoff matrix A

where each of the 26 distinct strategies is paired with each other.

The entry aij in the payoff matrix A gives the payoff of strategy Si

playing against strategy Sj . Based on the average of which strategy

(player) goes first, we define the initial state distribution of both

players as a row vector QSi|Sj
. Since the players do not observe

when they have made a mistake (i.e., the faulty player does not

move to the corresponding state of the erroneous action which he

has accidentally played), the state space consists of sixteen states

namely CC, CD, DC, DD, D�C, D�D, C�C, C�D, CD�, � � �
C�C�. The star after a state indicates that the player accidentally

played the opposite move as intended by her current state.

Each game consists of L moves of both player. In each move, a

player makes a mistake with probability E and thus implements the

opposite move of what is specified by her strategy (automaton). We

denote 1{E by �EE. Although, the players do not observe their

mistakes, the payoffs depend on the actual moves. This setting

relates to imperceptive implementation errors [16,18,29,45] (see

section 3 in File S1 for a discussion on error types). The payoffs

corresponding to their moves in the different states are given by

the column vector U .

Next, we define a 16|16 transition matrix MSi|Sj
for each pair

of strategies Si, Sj . The entries of the transition matrix are given

by the probabilities to move from eachone state of the sixteen

states (defined above) to the next:

MSi |Sj
~

p1p1
’�EE2 p1(1{p1’)�EE2 (1{p1)p’1�EE2 (1{p1)(1{p’1)�EE2 p1Ep’2�EE � � � (1{p1)(1{p’1)E2

p2p’3�EE2
P

..

.

p3p’2�EE2

..

.
P

..

.

p3p’3�EE2 � � � � � � (1{p3)(1{p’3)E2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð2Þ

where the quadruple [39] (p1,p2,p3,p4) defines the probabilities of

strategy Si to cooperate in the observed states CC, CD, DC, and

DD (errors remain undetected by the players). Respectively, the

quadruple (p’1,p’2,p’3,p’4) encodes the strategy Sj . For example,

(1{p4)Ep3�EE is the probability to move from state DD to state C�C.

A deterministic strategy is represented as a quadruple where each

pl[f0,1g.

Using the initial state distribution QSi|Sj
, the transition matrix

MSi|Sj
, and the payoff vector U , we calculate the payoff aij of

strategy Si playing against strategy Sj via a Markov Chain:

aij~QSi|Sj
|
XL{1

k~0

Mk
Si|Sj

|U : ð3Þ

Applying equation (3) to each pair of strategies, we obtain the

entire payoff matrix A for a given set of parameter values.

Although we use deterministic strategies, the presence of noise

implies that the game that unfolds between any two strategies is

described by a stochastic process. Payoff matrices for benefit values

of b~2, b~3, b~4, and b~5, for error rates of E~0:01, E~0:05,

and E~0:1, and for game length of L~10, L~100, and L~1000
are provided in File S1 (Tables S1–S8).

Evolution of strategies. The strategy space spans a 26-

simplex which we explore via the replicator equation [48–50] with

and without mutations. The frequency of strategy Si is given by xi.

At any time
Pn

i~1 xi~1 holds where n~26 is the number of

strategies. The average payoff (fitness) for strategy Si is given by

fi~
Xn

j~1

aijxj : ð4Þ

The frequency of strategy Si changes according to the differential

equation

_xxi~xi(fi{�ff )zu
1

n
{xi

� �
ð5Þ

where the average population payoff is �ff ~
Pn

i~1 fixi and u is the

mutation rate. Mutations to each strategy are equally likely; for

non-uniform mutation structures see [54]. Using the differential

equation (5), defined on the n-simplex (here, n~26), we study the

evolutionary dynamics in the alternating Prisoner’s Dilemma for

many different initial conditions (i.e., random initial frequencies of

the strategies). We generate a uniform-random point in the n-

simplex by taking the negative logarithm of n random numbers in

(0,1), then normalizing these numbers such that they sum to 1,

and using the normalized values as the initial frequencies of the n
strategies [55].

Computer simulations. Our computer simulations are

implemented in Python and split into three programs. The first

program generates the 26|26 payoff matrix for each set of

parameters. The second program simulates the deterministic

selection dynamics starting from uniform-random points in the 26-

simplex. The third program performs statistical analysis on the

results of the second program. The code is available at http://pub.

ist.ac.at/,jreiter upon request [56].

Supporting Information

File S1 Detailed description of the model and the
strategies; Simulation results and equilibrium analysis
for a wide range of parameter values; Calculations for
the infinitely-repeated game; Implementation of errors;
Includes Tables S1–S14 and Figures S1–S10.
(PDF)
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