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Abstract: Experimental evidence and ecologic studies suggest a protective role of vitamin D 

in ovarian carcinogenesis. However, epidemiologic studies using individual level data have 

been inconsistent. We evaluated ultraviolet (UV)-B radiation, vitamin D intake, and predicted 

plasma 25-hydroxyvitamin D [25(OH)D] levels as long-term surrogates of vitamin D exposure 

within the Nurses’ Health Study (NHS) and NHSII. We estimated incidence rate ratios 

(RRs) and 95% confidence intervals (CIs) for risk of overall ovarian cancer and by histologic 

subtype using Cox proportional hazards models. Between 1976 and 2010 in NHS and 1989 

and 2011 in NHSII, we identified a total of 1,225 incident epithelial ovarian cancer cases 

(NHS: 970, NHSII: 255) over 4,628,648 person-years of follow-up. Cumulative average UV-B 

exposure was not associated with ovarian cancer risk in NHS (Ptrend = 0.08), but was 

associated with reduced risk in NHSII (highest vs. lowest category RR = 0.67; 95% CI: 0.50, 

0.89; Ptrend < 0.01). When stratified by histologic subtype, UV-B flux was positively 

associated with risk of serous tumors in NHS (Ptrend < 0.01), but inversely associated in 

NHSII (Ptrend = 0.01). Adjusted for confounders, ovarian cancer risk was not associated 

with vitamin D intake from food or supplements or with predicted 25(OH)D levels. Our 

study does not strongly support a protective role for vitamin D in ovarian cancer risk. 
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1. Introduction 

Ovarian cancer, a relatively rare but lethal disease, is the fifth leading cause of cancer death among 

U.S. women [1]. Several factors that influence ovarian cancer risk have been established (e.g., parity, 

oral contraceptive use, family history of ovarian cancer), but most are not easily modifiable [2], 

making prevention a challenge. Current etiologic hypotheses suggest that ovarian cancer risk may 

increase with greater number of lifetime ovulations. Ovulation-induced trauma to the ovarian surface 

epithelium generates a local inflammatory response and stimulates proliferation, leading to an accumulation 

of genetic errors that may augment ovarian cancer risk [3]. Thus, identifying modifiable factors that 

mitigate genotoxic stress to the ovarian surface epithelium may provide alternate prevention strategies.  

Vitamin D, best known for its role in normal bone development [4,5], has nonclassical roles in 

immune response, differentiation, and anti-proliferative capability [6]. The vitamin D receptor, which 

binds to the biologically active form of vitamin D (1,25-dihydroxyvitamin D [1,25(OH)D]), is expressed 

within normal and malignant ovarian surface epithelium [7–9]. Experimental studies have demonstrated 

that 1,25(OH)D promotes wound healing through recruitment of immune cells, and may limit tissue 

damage by suppressing pro-inflammatory cytokines [10]. Furthermore, treatment of human ovarian 

cancer cell lines with 1,25(OH)D inhibited cell proliferation [7,11–13] and induced apoptosis [13]. 

Although several ecological studies suggest that women who live in more northern latitudes have 

higher rates of ovarian cancer incidence and/or mortality [14–18], the overall epidemiologic evidence 

linking the vitamin D pathway to ovarian cancer has been inconsistent. A recent systematic review of 

the literature concluded that individual-level epidemiologic studies have not been successful in clarifying 

the relationship between vitamin D exposure and ovarian cancer risk in part due to variability in study 

design, exposure assessment or range, and outcome definition [19]. Etiologic heterogeneity by ovarian 

cancer histologic subtypes [20] or tumor invasiveness [21] also may contribute to the inconsistent 

results, or the association between vitamin D exposures and ovarian cancer risk may be limited to 

subgroups of the population [20,22].  

Given the need for additional rigorous epidemiologic studies, we assessed the risk of overall ovarian 

cancer and ovarian cancer histologic subtypes using multiple surrogates of long-term vitamin D exposure 

in the prospective Nurses’ Health Study (NHS) cohort, in which most women who developed ovarian 

cancer over follow-up were postmenopausal at diagnosis, and the prospective NHSII cohort, where the 

majority of ovarian cancer cases were premenopausal at diagnosis. 

2. Results 

Characteristics of women according to category of UV-B flux at the midpoint of follow-up 

(1998/1999) are shown in Table 1. Known differences between the two cohorts are the older age, 

larger percentage of postmenopausal women, and lower proportion of nulliparity and oral contraceptive 

(OC) use among women in NHS compared to NHSII. Although participants of both cohorts were 

initially recruited from U.S. states that covered the same range of UV-B flux exposure [100 to 180 

Robertson-Berger (R-B) units], a higher proportion of NHSII participants (47%) lived in areas of high 

UV-B flux (>113 R-B units) compared to NHS (30%). Among NHSII women, those residing in areas 

of higher estimated UV-B flux were more likely to have ever used OCs and for longer duration. 
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Among parous NHS women, those living in areas of higher UV-B flux tended to have fewer children. 

Postmenopausal women in both cohorts who lived in areas of higher UV-B flux were more likely to 

have ever used postmenopausal hormones. Age, body mass index (BMI), and dietary sources of 

vitamin D were similar across areas with different UV-B flux levels within each cohort. 

Over the course of 2,646,148 person-years of follow-up, 970 NHS women developed incident 

ovarian cancer. In NHSII, 225 women were diagnosed over 1,982,500 person-years of follow-up. With 

the exception of average annual UV-B flux exposure at age 30, UV-B flux exposure was not 

significantly associated with ovarian cancer risk among NHS women (Ptrend ≥ 0.08; Table 2) after 

adjusting for known ovarian cancer risk factors. Compared to NHS women in the lowest category of 

exposure, incidence rate ratios (RR) for the highest category of UV-B flux ranged from 1.13 [95% 

confidence interval (CI): 0.96, 1.33] for UV-B exposure at the time of the baseline questionnaire to 

1.35 (95% CI: 1.07, 1.71; Ptrend < 0.01) for UV-B flux at age 30 years. In a sensitivity analysis, results 

were similar when 1986 was used as the baseline year instead of 1976 (data not shown). In contrast, a 

general inverse pattern of association was observed between UV-B flux exposure at different times of 

life and ovarian cancer risk among NHSII participants. NHSII women in the highest category of 

cumulative average UV-B flux from 1989–2011 had a RR = 0.67 (95% CI: 0.50, 0.89; Ptrend < 0.01) of 

developing ovarian cancer compared to women with the lowest estimated UV-B flux exposure. 

Heterogeneity between cohorts was apparent at virtually every time point (Pheterogeneity ≤ 0.06).  

An important difference between the cohorts is the higher proportion of postmenopausal women in 

NHS compared to NHSII (Table 1). As a result, the majority of NHS women who developed ovarian 

cancer were postmenopausal at diagnosis (185 premenopausal, 732 postmenopausal, 53 unknown 

menopausal status), whereas NHSII ovarian cancer cases were largely premenopausal (190 premenopausal, 

46 postmenopausal, 19 unknown menopausal status). Upon stratifying analyses by menopausal status 

at diagnosis, heterogeneity in UV-B flux associations between cohorts was no longer significant 

(Pheterogeneity ≥ 0.13). Meta-analysis revealed 20% to 40% decreased risk of ovarian cancer among 

premenopausal women living in areas of high UV-B flux (>113 R-B units) compared to those residing 

in areas of low UV-B flux (<113 R-B units) at various times of life (Table 3). In contrast, exposure to 

high UV-B flux at these time points either was not associated or was associated with 20% to 40% 

increased risk of postmenopausal ovarian cancer (Pinteraction ≤ 0.06). Heterogeneity by menopausal 

status was not observed in either cohort individually (Pinteraction ≥ 0.11), although power was limited. 

Additionally, we did not observe heterogeneity in the association between cumulative average UV-B flux 

and ovarian cancer risk by age, BMI, or OC use within NHS (Pinteraction ≥ 0.12) or NHSII (Pinteraction ≥ 0.14). 
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Table 1. Age-standardized characteristics of NHS and NHSII participants by category of UV-B flux at the midpoint of follow-up. 

Characteristics 

NHS in 1998  NHSII in 1999 

Categories of UV-B flux (R-B × 10
−4

) 

Low (<113) 

(n = 27,408) 

Medium (113) 

(n = 25,197) 

High (>113) 

(n = 23,008)  

Low (<113) 

(n = 31,679) 

Medium (113) 

(n = 22,903) 

High (>113) 

(n = 48,322) 

Age, years a 61.6 (7.1) 61.6 (7.1) 63.0 (7.2)  42.2 (4.7) 42.7 (4.5) 42.4 (4.6) 

Cumulative average UV-B flux, R-B × 10−4 105 (3) 113 (0) 149 (22)  104 (3) 113 (0) 145 (21) 

UV-B flux at birth, R-B × 10−4 107 (9) 114 (7) 126 (25)  107 (11) 114 (9) 132 (24) 

UV-B flux at age 15, R-B × 10−4 107 (8) 113 (6) 128 (26)  106 (9) 113 (6) 135 (24) 

UV-B flux at age 30, R-B × 10−4 106 (8) 113 (6) 139 (28)  105 (10) 114 (7) 143 (23) 

UV-B flux at baseline, R-B × 10−4 105 (4) 113 (0) 143 (28)  104 (4) 113 (0) 145 (23) 

BMI, kg/m2 26.4 (5.2) 26.8 (5.4) 25.9 (5.2)  26.0 (6.0) 26.4 (6.1) 25.9 (5.9) 

Cumulative average total dietary vitamin D b, IU/day 351 (203) 339 (201) 359 (224)  388 (222) 364 (217) 369 (224) 

Cumulative average energy-adjusted food vitamin D b, IU/day 213 (87) 199 (82) 203 (87)  253 (110) 234 (105) 236 (110) 

Cumulative average supplemental vitamin D b, IU/day 125 (163) 128 (164) 148 (192)  133 (168) 128 (164) 135 (171) 

Age at menarche, years 12.5 (1.4) 12.6 (1.4) 12.6 (1.4)  12.4 (1.4) 12.4 (1.4) 12.4 (1.4) 

Ever use of oral contraceptives, % 49 46 56  82 83 89 

Duration of OC use, years c 4.1 (3.8) 4.0 (3.7) 4.4 (4.0)  4.7 (4.2) 5.0 (4.4) 5.6 (4.7) 

Ever parous, % 95 95 93  81 82 78 

Number of children among parous women 3.4 (1.6) 3.2 (1.5) 3.0 (1.4)  2.3 (1.0) 2.3 (1.0) 2.2 (0.9) 

Tubal ligation, % 19 22 19  22 28 25 

Family history of ovarian cancer, % 3 3 3  2 2 2 

Postmenopausal, % 86 85 85  4 5 4 

Ever use of postmenopausal hormones d, % 50 52 67  68 71 76 

Values are means (SD) or percentages and are standardized to the age distribution of the study population. UV-B = ultraviolet B; R-B × 10−4 = Robertson-

Berger units; BMI = body mass index; IU = international units; OC = oral contraceptives; a Value is not age adjusted; b Starting with baseline dietary 

questionnaire (1980 in NHS, 1991 in NHSII); c Among ever OC users; d Among postmenopausal women. 
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Table 2. Associations between surrogates of vitamin D exposure and epithelial ovarian cancer risk in the NHS and NHS II. 

Exposure 

Nurses’ Health Study Nurses’ Health Study II 

 
Cases, N Person-years 

Multivariable-

adjusted RR 
a
 

95% CI P-trend 
b
 Cases, N Person-years 

Multivariable-

adjusted RR 
a
 

95% CI P-trend 
b
 P-het 

c
 

UV-B flux at birth, R-B × 10−4 

         Low (<113) 166 329,536 1.00 ref 0.11 83 535,110 1.00 ref 0.14 0.06 

Medium (113) 158 314,502 0.95 0.76–1.18 

 

55 413,614 0.88 0.62–1.24 

  High (>113) 97 142,714 1.21 0.93–1.56 

 

68 587,015 0.78 0.56–1.07 

  UV-B flux at age 15, R-B × 10−4 

         Low 168 330,546 1.00 ref 0.12 73 412,386 1.00 ref 0.06 0.02 

Medium 167 323,148 0.98 0.79–1.21 

 

49 326,486 0.86 0.59–1.23 

  High 95 140,306 1.20 0.93–1.56 

 

56 460,142 0.71 0.50–1.00 

  UV-B flux at age 30, R-B × 10−4 

         Low 160 325,939 1.00 ref <0.01 69 370,470 1.00 ref 0.05 <0.01 

Medium 151 303,456 0.98 0.79–1.23 

 

42 291,105 0.78 0.53–1.15 

  High 132 178,182 1.35 1.07–1.71 

 

66 515,274 0.69 0.49–0.96 

  UV-B flux at baseline, R-B × 10−4 

        Low 351 1,040,302 1.00 ref 0.15 96 629,292 1.00 ref 0.02 0.01 

Medium 366 1,020,194 1.04 0.90–1.21 

 

63 476,575 0.86 0.62–1.18 

  High 253 585,652 1.13 0.96–1.33 

 

96 876,633 0.70 0.53–0.93 
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Table 2. Cont. 

Exposure 

 Nurses’ Health Study Nurses’ Health Study II  

Cases, N Person-years 
Multivariable-

adjusted RR 
a
 

95% CI P-trend 
b Cases, N Person-years 

Multivariable-

adjusted RR 
a
 

95% CI P-trend 
b
 P-het 

c
 

UV-B flux cumulative updated average from baseline questionnaire, R-B × 10−4
 

       
Low 326 986,280 1.00 ref 0.08 95 613,895 1.00 ref <0.01 <0.01 

Medium 317 927,286 1.02 0.87–1.19 

 

60 444,825 0.87 0.63–1.21 

  High 327 732,582 1.14 0.97–1.33 

 

100 923,780 0.67 0.50–0.89 

  Cumulative average vitamin D intake from food, IU/day d
   

       
<200 406 952,357 1.00 ref 0.61 77 597,819 1.00 ref 0.74 0.36 

200–299 234 533,531 0.96 0.81–1.13 

 

78 480,302 1.26 0.92–1.72 

  300+ 91 217,913 0.96 0.76–1.20 

 

45 352,606 1.03 0.71–1.50 

  Cumulative average supplemental vitamin D intake, IU/day 
       

None 266 751,728 1.00 ref 0.71 58 539,404 1.00 ref 0.43 0.25 

<200 238 463,540 1.15 0.95–1.39 
 

83 396,170 1.78 1.24–2.56 
  

200+ 227 488,533 1.07 0.89–1.29 
 

59 495,153 1.05 0.72–1.52 
  

Cumulative average predicted 25(OH)D score 
        

Lowest tertile 139 300,915 1.00 ref 0.07 60 357,464 1.00 ref 0.05 <0.01 

Intermetdiate tertile 148 330,632 0.91 0.72–1.15 
 

70 454,709 0.98 0.69–1.38 
  

Highest tertile 154 230,673 1.27 1.00–1.61 
 

51 470,741 0.68 0.48–1.00 
  

a Adjusted for age (as the time scale), duration of oral contraceptive use, number of pregnancies, tubal ligation, menopausal status, ever use of postmenopausal hormones, and first-degree 

family history of ovarian cancer; b Trend test based on median of the category; c Heterogeneity between cohorts assessed using trend variables; d Additionally adjusted for total caloric intake. 
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Table 3. Risk of ovarian cancer by menopausal status at diagnosis 
a
. 

Exposure 

Premenopausal Postmenopausal 
 

Cases, N Person-years 
Multivariable-

adjusted RR 
b
 

95% CI P-trend 
c
 Cases, N Person-years 

Multivariable-

adjusted RR 
b
 

95% CI P-trend 
c
 P-int 

d
 

UV-B flux at birth, R-B × 10−4 
         

Low (<113) 70 470,702 1.00 ref 0.21 167 360,834 1.00 ref 0.59 0.06 

Medium (113) 44 365,110 0.80 0.55–1.17 
 

165 331,549 1.01 0.82–1.26 
  

High (>113) 53 498,500 0.77 0.53–1.11 
 

107 195,134 1.21 0.89–1.64 
  

UV-B flux at age 15, R-B × 10−4 
         

Low 59 350,076 1.00 ref 0.04 170 360,316 1.00 ref 0.49 0.02 

Medium 41 277,252 0.85 0.57–1.27 
 

172 339,988 1.02 0.82–1.26 
  

High 38 369,923 0.66 0.43–1.00 
 

105 193,486 1.13 0.76–1.69 
  

UV-B flux at age 30, R-B × 10−4 
         

Low 57 313,749 1.00 ref 0.02 160 351,564 1.00 ref <0.01 <0.01 

Medium 35 248,444 0.76 0.50–1.16 
 

156 316,438 1.04 0.83–1.29 
  

High 43 409,234 0.61 0.40–0.91 
 

146 241,551 1.37 1.09–1.73 
  

UV-B flux at baseline, R-B × 10−4 
         

Low 148 902,035 1.00 ref 0.03 270 661,894 1.00 ref 0.05 <0.01 

Medium 126 759,919 0.98 0.77–1.25 
 

283 626,680 1.07 0.91–1.27 
  

High 101 902,447 0.75 0.58–0.98 
 

225 448,003 1.21 1.01–1.45 
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Table 3. Cont. 

Exposure 

Premenopausal Postmenopausal 
 

Cases, N Person-years 
Multivariable-

adjusted RR 
b
 

95% CI P-trend 
c
 Cases, N Person-years 

Multivariable-

adjusted RR 
b
 

95% CI P-trend 
c
 P-int 

d
 

UV-B flux cumulative updated average from baseline questionnaire, R-B × 10−4 
      

Low 145 884,813 1.00 ref 0.07 248 614,338 1.00 ref 0.87 <0.01 

Medium 117 718,793 0.97 0.76–1.24 
 

241 552,788 1.04 0.87–1.24 
  

High 113 960,795 0.78 0.59–1.03 
 

289 569,449 1.11 0.77–1.60 
  

Cumulative average vitamin D intake from food, IU/day e 
       

<200 119 748,511 1.00 ref 0.20 341 695,347 1.00 ref 0.31 0.05 

200–299 96 523,242 1.27 0.91.67 
 

206 431,725 0.94 0.79–1.12 
  

300+ 57 358,610 1.22 0.81.69 
 

71 180,409 0.66 0.27–1.62 
  

Cumulative average supplemental vitamin D intake, IU/day 
       

None 128 741,436 1.00 ref 0.18 181 459,440 1.00 ref 0.91 0.19 

<200 74 379,762 1.13 f 0.51–2.50 
 

233 431,678 1.25 1.02–1.54 
  

200+ 70 509,165 0.87 0.64–1.18 
 

204 416,361 1.15 0.93–1.41 
  

Cumulative average predicted 25(OH)D score 
        

Lowest tertile 65 360,441 1.00 ref 0.99 f 134 297,939 1.00 ref 0.72 0.18 

Intermediate tertile 68 457,829 0.90 0.64–1.27 
 

150 327,512 1.07 0.61–1.87 
  

Highest tertile 58 443,145 1.00f 0.43–2.35 
 

147 258,269 1.05 0.61–1.80 
  

a DerSimonian-Laird estimators for random effects models were used to combine cohort results; b Adjusted for age (as the time scale), duration of oral contraceptive use, 

number of pregnancies, tubal ligation, ever use of postmenopausal hormones (among postmenopausal women), and first-degree family history of ovarian cancer; c Trend 

test based on median of the category; d Interaction by menopausal status assessed using trend variables; e Additionally adjusted for total caloric intake; f Significant 

heterogeneity in estimates between cohort. 
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Rates of mucinous, endometrioid, and clear cell tumors peak at earlier ages than serous tumors. 

Additionally, younger women are more likely to be diagnosed with early stage disease and have a 

more favorable prognosis than older women [2]. Therefore, we examined whether ovarian cancer risk 

associated with UV-B flux differed by histologic subtype (serous, mucinous, endometrioid/clear cell), 

tumor invasiveness (invasive vs. borderline) or aggressiveness (death from invasive ovarian cancer 

within 3 years of diagnosis vs. less aggressive invasive disease; Table 4). Similar to the overall results, 

significant heterogeneity was observed between cohorts among women who developed serous tumors 

(Pheterogeneity < 0.01). NHS women residing in areas of high versus low UV-B flux (>113 versus <  

113 R-B units) were at increased risk of serous ovarian cancer (RR = 1.34; 95% CI: 1.10, 1.64). In 

contrast, within NHSII, the comparable RR for serous ovarian tumors was 0.59 (95% CI: 0.39, 0.89). 

Residing in areas of higher UV-B flux was not associated with mucinous or endometrioid/clear cell 

tumors in either cohort (Ptrend ≥ 0.14), although case numbers were low. Whereas UV-B flux was not 

associated with borderline tumors, a similar heterogeneous pattern between cohorts was observed for 

invasive disease (Pheterogeneity < 0.01), which may be driven by the large proportion of serous tumors 

within this group (65.8% in NHS, 44.7% in NHSII). UV-B flux was not associated with risk of 

developing an aggressive invasive tumor, but was associated with less aggressive invasive tumors, 

again with opposing directions of association between the cohorts (Pheterogeneity < 0.01). Considering the 

lack of a biological rationale for etiologic differences in serous tumor development or tumor aggressiveness 

by menopausal status, we explored additional known dissimilarities between the cohorts [23] as potential 

confounders. Results were similar after adjusting for duration of estrogen-only postmenopausal 

hormone use, duration of breastfeeding, physical activity, or smoking status. 

Ovarian cancer risk was not associated with dietary vitamin D intake from food or supplements in 

either cohort (Table 2). We observed some evidence of heterogeneity for food vitamin D intake with 

ovarian cancer risk by menopausal status (Pinteraction = 0.05; Table 3). However, in stratified analysis, 

food vitamin D was not significantly associated with risk of either pre- or postmenopausal ovarian 

cancer. With the exception of a reduced risk of mucinous tumors observed among NHS women who 

consumed ≥200 IU of supplemental vitamin D per day versus none (RR = 0.47; 95% CI: 0.23, 0.99; 

Ptrend = 0.05), dietary sources of vitamin D intake were not associated with specific histologic subtypes, 

invasiveness, or aggressiveness of ovarian tumors in either cohort (data not shown). Tests for 

interaction suggested potential differences in ovarian cancer risk associated with vitamin D intake 

from food when stratified by ever use of OCs in NHS (Pinteraction = 0.04) and by menopausal status  

(Pinteraction = 0.03) or BMI (Pinteraction = 0.03) in NHSII. However, no clear patterns of association 

emerged within strata and are likely due to chance. Risk of ovarian cancer with supplemental vitamin D 

intake did not differ by age, menopausal status, BMI, or ever use of OCs in either cohort (Pinteraction ≥ 0.11). 
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Table 4. Cumulative average UV-B flux association with histologic subtypes of ovarian cancer in NHS and NHS II. 

Cumulative average UV-B flux, R-B × 10
−4

 

Person-years 

Nurses’ Health Study Nurses’ Health Study II 

P-het 
c Low Medium High 

P-trend 
b
 

Low Medium High 
P-trend 

b
 

986,280 927,286 732,582 613,895 444,825 923,780 

Serous, N 183 205 213 
 

46 30 42 
  

Multivariate-adjusted RR a 1.00 1.19 1.34 <0.01 1.00 0.90 0.59 0.01 <0.01 

(95% CI) (ref) (0.97–1.45) (1.10–1.64) 
 

(ref) (0.57–1.43) (0.39–0.89) 
  

Mucinous, N 33 25 17 
 

8 6 12 
  

Multivariate-adjusted RR a 1.00 0.79 0.62 0.14 1.00 1.04 0.95 0.87 0.47 

(95% CI) (ref) (0.47–1.32) (0.34–1.13) 
 

(ref) (0.36–3.01) (0.39–2.32) 
  

Endometrioid/clear cell, N 58 53 54 
 

25 15 33 
  

Multivariate-adjusted RR a 1.00 0.92 1.04 0.72 1.00 0.85 0.82 0.52 0.47 

(95% CI) (ref) (0.63–1.34) (0.71–1.51) 
 

(ref) (0.45–1.61) (0.49–1.38) 
  

Invasive tumors, N 272 274 282 
 

77 44 78 
  

Multivariate-adjusted RR a 1.00 1.06 1.17 0.06 1.00 0.79 0.65 0.01 <0.01 

(95% CI) (ref) (0.90–1.25) (0.99–1.39) 
 

(ref) (0.55–1.15) (0.47–0.89) 
  

Borderline tumors, N 37 30 25 
 

16 14 16 
  

Multivariate-adjusted RR a 1.00 0.83 0.86 0.66 1.00 1.26 0.65 0.11 0.33 

(95% CI) (ref) (0.51–1.35) (0.51–1.44) 
 

(ref) (0.61–2.58) (0.32–1.30) 
  

Rapidly fatal disease d, N 133 135 120 
 

16 7 18 
  

Multivariate-adjusted RR a 1.00 1.07 1.02 0.97 1.00 0.60 0.70 0.47 0.50 

(95% CI) (ref) (0.84–1.36) (0.79–1.31) 
 

(ref) (0.25–1.47) (0.36–1.38) 
  

Less aggressive disease d, N 130 130 142 
 

56 31 49 
  

Multivariate-adjusted RR a 1.00 1.04 1.26 0.04 1.00 0.76 0.55 <0.01 <0.01 

(95% CI) (ref) (0.82–1.33) (0.99–1.61) 
 

(ref) (0.49–1.18) (0.38–0.81) 
  

a Adjusted for age (as the time scale), duration of oral contraceptive use, number of pregnancies, tubal ligation, menopausal status, ever use of postmenopausal hormones, 

and first-degree family history of ovarian cancer; b Trend test based on median of the category; c Heterogeneity between cohorts assessed using trend variables; d Death 

from invasive ovarian cancer within 3 years of diagnosis was considered rapidly fatal. Women who did not die within 3 years from invasive ovarian cancer were 

considered to have less aggressive disease. 
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Predicted 25-dihydroxyvitamin D [25(OH)D] levels were marginally positively associated with 

ovarian cancer risk in the NHS. Participants in the highest predicted tertile of predicted 25(OH)D had a 

RR = 1.27 (95% CI: 1.00, 1.61; Ptrend = 0.07) compared to those in the lowest tertile. In contrast, 

NHSII women in the highest tertile of predicted 25(OH)D levels were at reduced risk of ovarian cancer 

(RR = 0.68; 95% CI: 0.48, 1.00; Ptrend = 0.05) compared to women in the lowest tertile (Table 2). 

Given that BMI is one of the strongest predictors of circulating 25(OH)D levels (Table A1) and has 

been suggestively associated with ovarian cancer risk in premenopausal women [24], we further 

adjusted for BMI as a potential confounder. Adding BMI to the model completely attenuated the 

association between the predicted 25(OH)D score and ovarian cancer risk in NHSII (highest vs. lowest 

tertile RR = 1.18; 95% CI: 0.71, 1.94; Ptrend = 0.61). In NHS, the association was slightly attenuated 

when BMI was included in the model. Given concerns about over-controlling for BMI, we conducted a 

sensitivity analysis where we removed the BMI component when calculating the predicted 25(OH)D 

score. The modified score was not associated with ovarian cancer risk in either cohort regardless of 

whether BMI was included in the model (Ptrend ≥ 0.39). Predicted 25(OH)D levels were not associated 

with ovarian cancer risk when stratified by menopausal status (Table 3). We also did not observe 

heterogeneous associations of predicted 25(OH)D levels with ovarian cancer risk in analyses stratified 

by age, BMI, or ever use of OCs within either cohort (Pinteraction ≥ 0.12). The predicted 25(OH)D score 

was not associated with risk of ovarian cancer histologic subtypes or tumor invasiveness in either 

cohort (data not shown). Predicted 25(OH)D levels were not associated with development of rapidly 

fatal ovarian tumors in NHS, but women in the highest versus lowest tertile of predicted 25(OH)D 

levels were at increased risk of less aggressive invasive tumors (RR = 1.46; 95% CI: 1.01, 2.11;  

Ptrend = 0.02). In NHSII, predicted 25(OH)D levels were not associated with risk of aggressive or less 

aggressive invasive tumors. 

3. Discussion 

In the current study, we used UV-B flux based on state of residence, dietary sources of vitamin D 

intake, and predicted 25(OH)D score as long-term surrogates of vitamin D exposure in two prospective 

cohorts. We did not observe consistent evidence linking the vitamin D pathway with reduced ovarian 

cancer risk. Among NHS women, these exposures were not associated with a lower risk of ovarian 

cancer, and in some instances were associated with an increased risk, particularly of serous and less 

aggressive invasive tumors. However, among NHSII women, living in areas of high UV-B flux 

generally was associated with a lower risk of ovarian cancer, including serous and less aggressive 

invasive tumors. The predicted 25(OH)D score also was associated with a lower risk in NHSII, 

although this association was attenuated when adjusted for BMI. Interestingly, BMI did not confound 

the association with UV-B flux.  

Divergent UV-B flux associations were observed for ovarian cancer between the two cohorts. We 

hypothesized that the observed associations with overall ovarian cancer differed because younger 

women tend to develop tumors with better prognosis than older women. Similar opposing relationships 

were observed when stratified by menopausal status, in which UV-B flux appeared associated with 

reduced premenopausal ovarian cancer risk, but a possibly increased postmenopausal ovarian cancer 

risk depending on timing of exposure. Interaction by menopausal status (Pinteraction ≥ 0.11) was not 
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observed in either cohort individually, although sample sizes within strata were small. Stratifying by 

subtypes of ovarian cancer revealed that discrepant associations between cohorts were particularly 

evident for risk of serous and less aggressive invasive tumors. While menopausal status may account 

for the discrepant results between cohorts, we cannot exclude the possibility of a cohort effect. By 

design, the oldest woman in NHSII is still younger than the youngest woman in NHS for any given 

year (i.e., no overlap in year of birth). Known differences between the cohorts with respect to duration 

of estrogen-only postmenopausal hormone use, duration of breastfeeding, total physical activity, or 

smoking status [23] did not account for the opposing relationships. The inconsistent results between 

the cohorts could potentially be due to temporal and geographic differences of an unmeasured confounder. 

A shift in reproductive behaviors is apparent among participants of the two cohorts, reflecting 

general population trends in the U.S. Oral contraceptives first became commercially widely available 

in 1960 and were quickly adopted by married women to regulate childbearing [25]. Most women born 

before 1945, a birth cohort to which ~94% of NHS participants belong, began using oral contraceptives 

after their first full term pregnancy. As social norms changed and younger and unmarried women gained 

increased access to oral contraceptives, age at first use declined with a concomitant increase in use 

prior to first pregnancy [26]. Some studies have suggested that age at first oral contraceptive use and/or 

formulation may influence ovarian cancer risk [27–31]. Therefore, regional differences in adopting 

oral contraceptive use, prescribed formulation type, and/or potency over time may account for the 

inconsistent UV-B flux associations observed between the two cohorts, although the proportional 

hazards assumption was not violated in either cohort (P ≥ 0.19). While we did not observe significant 

interactions by ever use or duration of OCs (Pinteraction ≥ 0.12), evidence of a positive association 

between UV-B flux and overall ovarian cancer risk was observed among NHS women who had ever 

used oral contraceptives (Ptrend = 0.05), but not among never users (Ptrend = 0.93). 

In general, the epidemiologic literature does not support a strong association between vitamin D 

exposure and ovarian cancer risk [19]. The hypothesis is supported mainly by ecological studies 

comparing latitude, regional solar irradiance, or skin cancer rates to ovarian cancer incidence and/or 

mortality rates [14–16,18]. UV-B radiation remained significantly associated with ovarian cancer incidence 

rates after adjusting for fertility rates at ages 15 to 19 in an ecological study of 175 countries [15]. 

However, fertility does not strongly correlate with oral contraceptive use [25], the rates of which vary 

by country [32]. Furthermore, not all ecological studies observed an association between residential 

UV irradiance or non-melanoma skin cancer rates with ovarian cancer incidence rates [17,33–35]. 

While ecological studies are useful in generating hypotheses, they are extremely sensitive to confounders 

and do not necessarily reflect associations on the individual level [35].  

A population-based case-control study in Australia observed reduced risk of ovarian cancer among 

women in the highest tertile of lifetime ambient UV radiation (multivariate-adjusted OR = 0.73; 95% 

CI: 0.57, 0.95). The association appeared stronger for women diagnosed with borderline tumors  

(OR = 0.51; 95% CI: 0.32, 0.81) and displayed similar ~25% to 30% decreased risks for invasive 

serous, mucinous, and endometrioid tumors [21]. While we observed a reduced risk of serous tumors 

in the younger NHSII cohort for women living in areas of higher UV-B flux, UV-B flux was not 

associated with mucinous or endometrioid/clear cell tumors. A 35% decreased risk of both invasive 

and borderline tumors was observed among NHSII women in areas of higher compared to lower UV-B 

flux. In contrast, increased risk of serous or invasive tumors was observed among women in the NHS 
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residing in areas of higher UV-B flux. Similar patterns of association were observed for risk of less 

aggressive invasive tumors. The Australian study used NASA’s Total Ozone Mapping Spectrometer 

(TOMS) satellite data, which correlates well with UV-B flux estimates on clear days [36]. UV 

radiation exposure based on TOMS satellite data, also was used in a population-based study of 1,334 

case and 1,679 control women from Western Washington state [37] and the prospective National 

Institutes of Health-AARP Diet and Health Study [38]. Overall ovarian cancer risk was not associated 

with UV radiation in these studies. The Western Washington state case-control study reported a weak 

increased risk of serous tumors among women with increasing estimated UV radiation exposure in the 

10 years prior to diagnosis, but not for lifetime exposure [37]. Overall, women in the Australian study 

resided in areas of higher UV-B flux than women in the U.S. studies. Thus, differences in the range of 

solar irradiation exposure may account for some of the discrepancy in results.  

Vitamin D intake from food or supplements was not associated with overall ovarian cancer risk in 

either NHS or NHSII. Our results are consistent with the majority of studies assessing dietary intake of 

vitamin D from food and/or supplements as a risk factor for ovarian cancer. Two population-based 

case-control [20,39] and two prospective [40,41] studies generally did not observe an association of 

total, food, and/or supplemental vitamin D with ovarian cancer risk overall or by histology, although 

two hospital-based studies reported a lower risk [42,43]. A pooled analysis of 2,132 ovarian cancer 

cases among 553,217 women from 12 prospective cohorts, including NHS and NHSII participants, 

observed a positive association between vitamin D intake from food and overall ovarian cancer risk 

among women who consumed ≥400 IU/day compared to women with <100 IU/day (Ptrend = 0.04) [44]. 

The lack of consistency suggests dietary sources of vitamin D intake are not related to ovarian cancer. 

Given that the hypothesized protective effect involves the vitamin D pathway, the lack of an 

association is not surprising given that ≥ 90% of circulating 25(OH)D is synthesized cutaneously in 

humans from UV radiation exposure [45]. Thus, vitamin D intake contributes to a relatively small 

proportion of vitamin D exposure in most populations. 

Similar inconsistencies in ovarian cancer risk have been observed in studies that measured 

circulating levels of 25(OH)D, which accounts for multiple determinants of overall vitamin D status 

(e.g., sun exposure, skin pigmentation, dietary intake) [46–48]. In two independent samples of women 

from the Finnish Maternity Cohort, ~3-fold increased risk of overall ovarian cancer was observed 

among women (who were necessarily premenopausal) who were insufficient for 25(OH)D levels  

(<75 nmol/L) compared to women who were sufficient [49,50]. In contrast, no association between 

circulating 25(OH)D and ovarian cancer risk was observed in a pooled analysis of mostly postmenopausal 

women from case-control studies nested within eight prospective cohorts, including the NHS, with the 

exception of a suggested reduced risk among women who were overweight or obese [22]. Together, 

the studies suggest that reduced risk of ovarian cancer associated with higher levels of circulating 

25(OH)D may be limited to premenopausal women, which coincides with the reduced risk of ovarian 

cancer associated with UV-B flux among NHSII participants or when analyses were stratified by 

menopausal status. A reduced risk of ovarian cancer also was observed among NHSII participants with 

higher levels of predicted 25(OH)D levels. However, the association was attenuated after adjustment 

for BMI. 

The use of two large prospective cohorts with detailed information on ovarian cancer risk factors 

collected and updated over 34 years of follow-up are major strengths of our study. The wealth of data 
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available allowed us to examine ovarian cancer risk associated with estimates of ambient UV exposure 

at various times of life as well as other surrogates for vitamin D exposure. We derived estimates of UV-B 

exposure based on the Robertson-Berger meter network, which is calibrated to provide measurements of 

solar UV-B irradiation that correspond with the human erythemal (sunburn) response [51] as an 

objective measure of ambient UV radiation exposure.  

Our study has several limitations that must be acknowledged. Participants within our cohorts are 

female registered nurses recruited from a small proportion of U.S. states. The target population was 

chosen to maximize internal validity through enhanced reporting accuracy of exposures and health 

outcomes and a high rate of follow-up, with the trade-off that the women would not be representative 

of the general U.S. population. Even so, as underlying biology is likely very similar across ethnic 

groups and social class, observations made in our cohorts may apply more broadly. Further, the states 

from which participants were recruited represent a large proportion (100 to 180 R-B units) of the 

average annual UV-B irradiation in the U.S. As participants moved over the course of follow-up, the 

distribution of average annual UV-B flux estimates expanded to cover the entire range of average 

annual UV-B flux (93 to 196 R-B units). The use of residence-based UV-B flux is limited by the fact 

that individual level exposure to solar irradiation may vary depending on actual time spent outdoors 

and sun-protective behaviors of participants, resulting in exposure misclassification. However, given 

the prospective study design and the 2-year time lag between exposure assessment and ovarian cancer 

diagnosis we incorporated into our analysis (see Experimental Section), any misclassification would 

have been non-differential with respect to disease, attenuating effect estimates. Although a single 

assessment may not fully reflect lifetime sun protective behaviors, our results were similar after we 

adjusted analyses for time spent outdoors and sunscreen use, which were asked on the 1980 

questionnaire in NHS and on the 1993 questionnaire in NHSII. Another limitation to consider is that 

while we adjusted for established ovarian cancer risk factors, confounding by potential unmeasured 

risk factors such as timing, formulation and/or potency of oral contraceptives, or unidentified 

environmental exposures cannot be ruled out. The positive association between UV-B flux and overall 

ovarian cancer risk observed among NHS women appeared limited to women who ever used oral 

contraceptives, indicating that unmeasured confounding may have influenced our results.  

4. Experimental 

4.1. Study Populations 

The NHS is an ongoing prospective cohort following 121,700 female registered nurses who were 

30–55 years of age and from 11 U.S. states (CA, CT, FL, MA, MI, MD, NJ, NY, OH, PA, TX) in 

1976. NHSII, a similar cohort begun in 1989, enrolled 116,430 female registered nurses aged  

25–42 years from 14 US states (CA, CT, IA, IN, KY, MA, MI, MO, NY, NC, OH, PA, SC, TX). At 

baseline and biennially thereafter, participants from each cohort completed self-administered 

questionnaires that were used to gather and update detailed information on anthropometric and lifestyle 

variables, menstrual and reproductive factors, and medical history, as well as identify newly diagnosed 

cancers and other diseases. Blood samples were collected during 1989 and 1990 from a subset of 

32,826 NHS participants and from 1996 to 1999 from 29,611 NHSII participants. Follow-up was high, 
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obtaining >90% of total possible person-years within each cohort. Vital status was ascertained through  

next-of-kin, the U.S. Postal Service, and the National Death Index; both methods have identified an 

estimated 98% of deaths in the cohort [52]. 

Completion of the self-administered questionnaire was considered to imply informed consent. The 

NHS and NHSII protocols were approved by the Institutional Review Board at the Brigham and 

Women’s Hospital, Boston, MA, USA. 

4.2. Case Ascertainment 

We identified women reporting a new ovarian cancer diagnosis on each questionnaire. For all 

reported cases and deaths due to ovarian cancer, we either asked permission from the participant or 

next of kin to obtain medical records pertaining to the ovarian cancer diagnosis or retrieved 

information about the case from the appropriate state or federal cancer registry. A gynecologic 

pathologist blinded to exposure status reviewed the medical records or registry data to confirm the 

diagnosis, as well as abstract stage, histology, and invasiveness. In a subset of 215 ovarian cancer 

cases, concordance between the medical records and the pathologist’s review was 98% for 

invasiveness and 83% for histologic type [53]. Our analysis includes all confirmed cases of epithelial 

ovarian cancer and primary peritoneal cancer diagnosed between the baseline questionnaire and end of 

follow-up (NHS: 1 June 2010; NHSII: 1 June 2011). 

4.3. Exposure Data 

Average annual UV-B flux is a composite measure of biologically effective UV radiation at the 

earth’s surface based on latitude, altitude, and cloud cover [36,54]. Weighted counts per 10,000 of  

UV-B radiation collected by the Robertson-Berger meter network across the U.S. [51] were used to 

estimate UV-B flux for participants at birth, age 15 years, age 30 years, at baseline, and every 2 years 

since 1986 in NHS and 1989 in NHSII according to state of residence. In the NHS, if a woman lived in 

the same state in 1976 as in 1986 (~90% of participants), we assumed she lived in the same state for 

the intervening years. If state of residence in 1976 and 1986 was different, we assumed that in 1978 

and 1980 she lived in the state listed in 1976, and in 1982 and 1984 she lived in the state listed in 1986. 

State of residence at birth, age 15, and age 30 were asked on the NHS 1992 questionnaire. In NHSII, 

state of residence at birth was ascertained on the 1989 questionnaire, while state of residence at ages 15 

and 30 was reported on the 1993 questionnaire. Throughout follow-up, current residence was obtained 

using available mailing addresses of participants. Although not a direct measure of sun exposure, UV-B 

flux is associated with melanoma risk [55], suggesting that it is a reasonable proxy. Moreover, it is an 

objective exposure metric that does not rely on personal recall of time spent outdoors.  

In 1980, a 61-item semi-quantitative food frequency questionnaire (FFQ) was sent to NHS participants 

to obtain dietary information. Expanded FFQs were subsequently sent approximately every 4 years. 

Dietary information was first collected from NHSII women in 1991 and every 4 years thereafter using 

a similar FFQ that asked about annual average intake of over 130 individual foods and 22 beverages. 

All FFQs inquired about how often, on average, participants consumed each food using standard 

portion sizes. Nine responses were possible, ranging from never or less than once per month to 6 or 

more times per day. Intake of dietary vitamin D and other nutrients was calculated by multiplying the 
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portion size of a single serving of each food by its reported frequency of intake, then multiplying the 

total amount consumed by the nutrient content of the food, and summing the nutrient contributions of 

all food items using U.S. Department of Agriculture food composition data [56], while also taking 

dietary supplements into account. The reproducibility of the FFQ has been reported elsewhere [57–59]. 

Vitamin D intake has been validated using plasma concentrations of 25(OH)D, a relatively stable 

indicator of vitamin D status [60], with a reported correlation of 0.25 (p < 0.01) [61,62]. 

Multivariable linear regression models to predict 25(OH)D levels within each cohort previously 

were developed and validated [63]. Based on these existing models, separate linear regression models 

were fit among premenopausal and postmenopausal women to create menopause status-specific predictor 

scores for this analysis. Plasma 25(OH)D measurements were available from 2,431 premenopausal and 

3,101 postmenopausal women who served as controls in previous nested case-control studies of 

chronic disease. Plasma 25(OH)D levels were determined by radioimmunoassay or chemiluminescence 

immunoassay, as previously described [64–66], between 1993 and 2012. Intra-assay coefficients of 

variation (CV) from blinded, replicate, quality-control samples were <15% for twenty-three out of 

thirty laboratory batches; the highest CV was 21.6%. Mean (standard deviation) plasma 25(OH)D 

concentrations were 26.0 (10.2) ng/mL in premenopausal women [26.1 (10.8) ng/mL in NHS,  

26.0 (10.0) ng/mL in NHSII] and 26.6 (10.6) ng/mL in postmenopausal women [26.8 (10.7) ng/mL in 

NHS, 24.5 (9.6) ng/mL in NHSII]. 

Predictors of plasma 25(OH)D levels were categorized as follows: race/ethnicity (white, black, 

Hispanic, Asian, and other; a proxy for skin pigmentation), BMI (<22.0, 22.0–24.9, 25.0–29.9, 30–34.9, 

35+ kg/m
2
), total leisure-time physical activity (<3, 3–8.9, 9–17.9, 18–26.9, 27+ METS/week; a proxy 

of outdoor sunlight exposure), energy-adjusted [67] vitamin D from food (<100, 100–199, 200–299, 

300–399, 400+ IU/day), supplemental vitamin D (0, 1–199, 200–399, 400+ IU/day), alcohol intake  

(0, 0.1–4.9, 5–9.9, 10+ grams/day), postmenopausal hormone use (never, past, current, unknown; for 

postmenopausal women only), and UV-B flux (<113, 113, >113 R-B units) (loading factors provided 

in Table A1). Covariate exposures reported closest to the time of blood draw were used to estimate 

regression coefficients. Age (years), season of blood draw (Summer, Fall, Winter, Spring), and 

laboratory batch were included in the regression models to account for known variation in 25(OH)D 

levels. Data on all components of the 25(OH)D predictor score were first available in 1986 for NHS 

and in 1991 for NHSII. Regression coefficients of predictors were used to calculate predicted 

25(OH)D levels for each questionnaire cycle using the appropriate score based on menopausal status at 

each cycle. A woman did not contribute person-time to analyses over follow-up periods in which her 

menopausal status was unknown (total of 110,480 person-years). 

4.4. Statistical Analysis 

Women with a cancer diagnosis (except non-melanoma skin cancer), bilateral oophorectomy, or 

menopause due to pelvic irradiation before the baseline year (i.e., 1976/1989 for the analysis of UV-B 

flux, 1980/1991 for the analysis of vitamin D intake, or 1986/1991 for the analysis of predicted 

25(OH)D in NHS/NHSII), or unknown date of birth were excluded. Person-time of follow-up was 

calculated for each eligible participant from the return date of the baseline questionnaire until the date 

of ovarian cancer diagnosis, diagnosis of another cancer (except non-melanoma skin cancer), bilateral 
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oophorectomy, pelvic irradiation, death, or end of follow-up (NHS: 1 June 2010; NHSII: 1 June 2011), 

which ever occurred first.  

To estimate long-term exposure to vitamin D, we calculated cumulative updated averages for UV-B 

flux, vitamin D intake, and predicted 25(OH)D to dampen variation due to measurement error [68]. 

Furthermore, we incorporated a 2-year time lag between exposure assessment and ovarian cancer 

diagnosis to reduce potential exposure changes resulting from preclinical disease. As an example to 

illustrate these methods, we used an average of predicted 25(OH)D levels from 1986 and 1988 to 

predict ovarian cancer risk from 1990 to 1992. Similarly, we averaged predicted 25(OH)D levels from 

1986, 1988, and 1990 to predict risk from 1992 to 1994. As predicted 25(OH)D levels were estimated 

separately by menopausal status, we calculated cumulative updated average predicted 25(OH)D scores 

for questionnaire cycles in which a woman was premenopausal followed by a separate cumulative 

average variable during postmenopause. Cumulative average predicted 25(OH)D scores were then 

categorized into menopause-specific quintiles. Cox proportional hazards regression models, with age 

in months and 2-year questionnaire cycle as the time scale, were used to estimate the RR and 95% CI 

of ovarian cancer for each category of cumulative average UV-B flux, vitamin D intake, or predicted 

25(OH)D compared to women in the lowest category of the respective exposure of interest. We 

assessed UV-B flux exposure at various ages (birth, age 15, age 30, study baseline) to explore whether 

exposure at specific times of life were more relevant to ovarian cancer risk. In secondary analyses, Cox 

proportional hazards competing risks models were used to investigate the associations of cumulative 

average exposures by major ovarian cancer histologic subtypes (serous invasive/poorly differentiated, 

endometrioid/clear cell, mucinous), tumor invasiveness (borderline, invasive), and tumor aggressiveness 

(death from invasive ovarian cancer within 3 years of diagnosis vs. less aggressive invasive disease).  

All multivariable models were adjusted for established ovarian cancer risk factors: number of 

pregnancies (continuous), duration of oral contraceptive use (never, <1 year, 1 to <5 years, 5 to <10 

years, 10+ years), tubal ligation (no, yes), menopausal status (premenopausal/unknown, postmenopausal), 

ever use of postmenopausal hormones (no/unknown, yes), and first-degree family history of ovarian 

cancer (no, yes). Models assessing ovarian cancer risk associated with vitamin D intake from food 

were additionally adjusted for total caloric intake (continuous). We evaluated duration of estrogen-only 

postmenopausal hormone use (never, past use <5 years, past use 5+ years, current use <5 years, current 

use 5+ years), duration of breastfeeding (continuous), smoking status (never, past, current), BMI 

(continuous), and total physical activity (<3, 3 to <9, 9 to <18, 18 to <27, 27+ METS/week) as 

potential confounders. With the exception of BMI, addition of these covariates did not substantially 

change RR estimates and, therefore, were not included in the final models. Tests for linear trend were 

conducted by assigning the median exposure value to each category and treating the variable as 

continuous to calculate Wald’s statistic. Heterogeneity in exposure associations between cohorts was 

calculated using the Q statistic and DerSimonian and Laird random effects meta-analysis [69] was 

used to combine cohort results where appropriate. Likelihood ratio tests assessed statistical interactions 

by age (≤50, >50), menopausal status (premenopausal, postmenopausal), OC use status (never, ever) or 

duration (continuous), and BMI (<25, ≥25 kg/m
2
). We tested the proportional hazards assumption by 

comparing the log likelihood of models with and without interaction terms between time and the main 

exposures. p-values were based on two-sided tests and considered statistically significant at p < 0.05. 

All analyses were conducted using SAS version 9.3 (SAS Institute Inc., Cary, NC, USA).  
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5. Conclusions 

In summary, our results do not support a role for vitamin D in ovarian carcinogenesis. We observed 

some evidence for reduced risk of ovarian cancer associated with UV-B flux exposure among 

premenopausal, but not postmenopausal women. A biological rationale for a heterogenous effect of 

vitamin D by menopausal status is unclear, but appears consistent with observations in biomarker 

studies [22,49,50]. Our observation of a statistically significant increased risk of serous and less 

aggressive invasive tumors associated with ambient UV-B exposure in the NHS contradicts the 

hypothesized relationship and may be due to chance or bias as a result of an unmeasured confounder. 

Likewise, chance and/or bias may have contributed to the reduced risk observed among NHSII 

participants. Further investigation incorporating individual level UV radiation exposure data (e.g., 

personal sun exposure behaviors) in ovarian cancer risk within large prospective cohorts, particularly 

among premenopausal women, is warranted. 
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Appendix 

Table A1. Loading factors of predictors of plasma 25(OH)D levels from multiple linear 

regression models for premenopausal and postmenopausal women from NHS and NHSII. 

 Premenopausal women Postmenopausal women 

Covariate N 2,431 N 3,101 

R2  0.27  0.28 

Intercept  24.32  18.53 

Race/ethnicity: Asian 85 0.15 9 −1.42 

Race/ethnicity: Hispanic 15 −2.59 19 −4.51 

Race/ethnicity: Other 36 0.98 99 −0.09 

Race/ethnicity: Black 74 −2.79 16 −10.20 

Race/ethnicity: White 2,221 Ref 2,958 Ref 

BMI 35+ kg/m2 118 −3.55 118 −5.09 

BMI 30–34.9 kg/m2 179 −2.37 321 −2.23 

BMI 25–29.9 kg/m2 565 Ref 935 Ref 

BMI 22–24.9 kg/m2 753 2.22 985 1.35 

BMI < 22 kg/m2 816 3.24 742 1.98 

≥400 IU/day food vitamin D 105 4.61 197 4.02 

300–399 IU/day food vitamin D 294 4.05 422 4.21 

200–299 IU/day food vitamin D 699 3.05 906 3.32 

100–199 IU/day food vitamin D 1,002 1.70 1,205 1.95 

<100 IU/day food vitamin D 331 Ref 371 Ref 

≥400 IU/day supplemental vitamin D 377 2.20 721 3.86 

200–399 IU/day supplemental vitamin D 487 1.51 403 2.55 

1–199 IU/day supplemental vitamin D 505 0.79 172 1.61 

0 IU/day supplemental vitamin D 1,062 Ref 1,805 Ref 

27+ mets/week 516 2.80 588 3.65 

18 to <27 mets/week 335 1.96 437 3.37 

9 to <18 mets/week 572 1.03 668 1.48 

3 to <9 mets/week 592 0.16 809 1.72 

<3 mets/week 416 Ref 599 Ref 

Never used postmenopausal hormones   -- 939 −1.60 

Past postmenopausal hormone user  -- 583 −1.10 

Current postmenopausal hormone user  -- 1,460 Ref 

Unknown postmenopausal hormone use status  -- 119 −0.24 
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Table A1. Cont. 

 Premenopausal women Postmenopausal women 

UV-B flux < 113 R-B × 10−4 826 −0.66 1,049 −1.09 

UV-B flux = 113 R-B × 10−4 649 −0.45 980 −1.65 

UV-B flux > 113 R-B × 10−4 956 Ref 1,072 Ref 

Alcohol: 10+ grams/day 311 2.72 574 2.09 

Alcohol: 5–9.9 grams/day 299 2.26 334 0.82 

Alcohol: 0.1–4.9 grams/day 1,020 1.09 1,046 0.79 

Alcohol: 0 grams/day 801 Ref 1,147 Ref 
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