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Abstract

Background: Computer simulation models can project long-term patient outcomes and inform health policy. We
internally validated and then calibrated a model of HIV disease in children before initiation of antiretroviral therapy to
provide a framework against which to compare the impact of pediatric HIV treatment strategies.
Methods: We developed a patient-level (Monte Carlo) model of HIV progression among untreated children <5 years
of age, using the Cost-Effectiveness of Preventing AIDS Complications model framework: the CEPAC-Pediatric
model. We populated the model with data on opportunistic infection and mortality risks from the International
Epidemiologic Database to Evaluate AIDS (IeDEA), with mean CD4% at birth (42%) and mean CD4% decline (1.4%/
month) from the Women and Infants’ Transmission Study (WITS). We internally validated the model by varying
WITS-derived CD4% data, comparing the corresponding model-generated survival curves to empirical survival
curves from IeDEA, and identifying best-fitting parameter sets as those with a root-mean square error (RMSE) <0.01.
We then calibrated the model to other African settings by systematically varying immunologic and HIV mortality-
related input parameters. Model-generated survival curves for children aged 0-60 months were compared, again
using RMSE, to UNAIDS data from >1,300 untreated, HIV-infected African children.
Results: In internal validation analyses, model-generated survival curves fit IeDEA data well; modeled and observed
survival at 16 months of age were 91.2% and 91.1%, respectively. RMSE varied widely with variations in CD4%
parameters; the best fitting parameter set (RMSE = 0.00423) resulted when CD4% was 45% at birth and declined by
6%/month (ages 0-3 months) and 0.3%/month (ages >3 months). In calibration analyses, increases in IeDEA-derived
mortality risks were necessary to fit UNAIDS survival data.
Conclusions: The CEPAC-Pediatric model performed well in internal validation analyses. Increases in modeled
mortality risks required to match UNAIDS data highlight the importance of pre-enrollment mortality in many pediatric
cohort studies.
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Introduction

Key clinical and operational research questions related to
prevention, diagnosis, and therapy for HIV-infected children
remain unanswered. For example, estimates of the long-term
outcomes of immediate versus deferred ART initiation
strategies for children 0-5 years of age, the cost-effectiveness
of alternative first-line ART regimens, and the relative value of
early infant diagnosis algorithms are needed to inform HIV care
guidelines [1–3].

While clinical trials and cohort studies will continue to
address these questions, computer simulation models
comprise important adjuncts to these more traditional research
methods. Models can integrate available data, project long-
term clinical and economic outcomes beyond study periods,
identify influential parameters for which additional data are
needed, and inform care and treatment guidelines [4–14]. To
date, three published analyses have reported on simulation
models of HIV-infected children: a Markov model used to
evaluate the cost-effectiveness of cotrimoxazole prophylaxis
and of laboratory monitoring of ART, and a decision-analytic
model of strategies for early infant diagnosis [15–17].

The Cost-Effectiveness of Preventing AIDS Complications
(CEPAC) model is a validated, individual patient-level (Monte
Carlo) simulation of HIV disease in adults that has informed
HIV testing and treatment policy in the United States and
internationally [4,5,18–22]. Building on the adult CEPAC model
platform, we developed a simulation model of HIV disease in
infants and children <5 years of age, the CEPAC-Pediatric
model, to address policy questions related to prevention,
diagnosis and treatment of pediatric HIV. The objectives of this
analysis were to internally validate the structure of the CEPAC-
Pediatric model; to calibrate the model to survival data from
untreated HIV-infected children in sub-Saharan Africa; and to
describe this work in an open-access forum using
recommended reporting practices [23–25].

Methods

Ethics
This work was approved by the Partners Healthcare IRB.

Analytic overview
We developed a microsimulation model of pediatric HIV

disease progression, the CEPAC-Pediatric model. As in the
adult CEPAC model, clinical events are first simulated and
validated in the absence of ART (a "natural history" model), in
order to describe disease progression in the absence of ART
and to provide a framework against which to compare the
impact of HIV treatment [4,5]. In collaboration with the

International Epidemiologic Databases to Evaluate AIDS
(IeDEA) consortium [26,27], we derived model input
parameters for the CEPAC-Pediatric model, reflecting
outcomes in HIV-infected children prior to the initiation of ART.
These model input data included rates of WHO Stage 3 and
Stage 4 clinical events, tuberculosis (TB), and mortality [28],
stratified by age and CD4%.

Internal model validation is a formal methodology to assess
the validity of model structure. In internal calibration, the
empiric data values used in the modeling analysis ("model
inputs") are compared to model-generated results ("model
outputs"), in order to assess model performance for analyses
related to a single data set [19,24,25,29–31]. We conducted
internal model validation by comparing model-generated
results to the clinical event and mortality risks observed in the
same IeDEA cohort that contributed model input data. For
internal validation, selected immunologic parameters that were
not available from IeDEA were based on data from the Women
and Infants' Transmission Study (WITS) [32–34].

Model calibration is a methodology distinct from validation. In
model calibration, sometimes referred to as “model fitting,”
investigators identify the values for key data parameters that
will allow model projections to match empiric observations.
Calibration seeks to explicitly modify model input parameters,
in order to make the model useful for predicting outcomes in
cohorts or datasets distinct from the dataset used in internal
validation [19,23–25,29]. The IeDEA East African cohort
represents a highly selected population of children with
excellent access to HIV care. In order to produce analyses
more generalizable to other African settings, we identified data
parameter sets that allowed model output to match published
survival curves from a pooled UNAIDS analysis of >1,300
untreated, perinatally HIV-infected children in eight sub-
Saharan African countries [30,35–38].

Model structure
The CEPAC-Pediatric model is a first-order, patient-level

Monte Carlo simulation model (Figure 1). Infants enter the
natural history model at birth, and are assumed to have been
HIV-infected either in utero or during delivery (intrapartum). A
random number generator is used to draw from user-specified
distributions of maternal HIV status (CD4 ≤350/μL or >350/μL;
receiving or not receiving ART), PMTCT exposure;
breastfeeding or replacement feeding; and infant CD4% at birth
(percentage of total lymphocytes that are CD4+ cells). We
modeled CD4% as the primary immunologic measure for
children <5 years of age because absolute CD4 count declines
dramatically with age, even in the absence of HIV infection,
and CD4% is therefore a more stable marker of immune
function as children age [3]. In the absence of ART, each
simulated child's CD4% declines monthly at a user-specified
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rate until they reach age five. Older children, adolescents, and
adults can be simulated in dedicated analyses using the
CEPAC adult model; in conjunction with the CEPAC-Pediatric
model, this permits projections over the lifetimes of HIV-
infected children [4–6].

Disease progression in the CEPAC-Pediatric model is
characterized by monthly transitions among health states,
including chronic HIV infection, acute clinical events, and death
(Figure 1). Transitions between these health states depend on
current age (0-2, 3-5, 6-8, 9-11, 12-17, 18-23, 24-35, 36-47,
and 48-59 months) and CD4% (<15%, 15-24%, and ≥25%)
during each month of the simulation. Simulated patients face
monthly risks of up to 10 types of acute "clinical events,"
including opportunistic infections and other HIV-related
illnesses. For this analysis, reflecting available IeDEA data, we
modeled 3 mutually exclusive categories of clinical events:
WHO Stage 3 events (WHO 3, excluding pulmonary and lymph
node tuberculosis (TB)), WHO Stage 4 events (WHO 4,
excluding extrapulmonary TB), and TB events (at any anatomic
site) [28].

The CEPAC-Pediatric model simulates three types of
mortality. First, children with no history of acute clinical event
face a monthly risk of HIV-related death ("chronic HIV
mortality"), stratified by current age and CD4%. Second,
children who experience a clinical event face "acute mortality"
risks in the first 30 days post-event, stratified by current age.
After this 30-day "acute mortality" period, children return to
“chronic HIV mortality,” though with increased monthly risks
compared to age/CD4%-matched children without a history of
clinical events. Third, in addition to HIV-related mortality, the
model includes a monthly risk of "non-AIDS death," derived
from UNAIDS age- and sex-adjusted, country-specific mortality
rates that exclude the impact of HIV [39].

For each simulated infant, the model tracks clinical events,
changes in CD4%, and the amount of time spent in each health

state. After an individual simulated patient has died, the next
infant enters the model. Large cohorts (often 1 million-10
million patients) are simulated in order to generate stable
model outcomes. Once the entire cohort has been simulated,
summary statistics are tallied, including number and type of
clinical events and the proportion alive each month. Additional
information about CEPAC-Pediatric model structure, data
sources, and procedures for initiating new collaborative
projects are available at web2.research.partners.org/cepac/
model.html.

IeDEA East Africa natural history model input data
(Tables 1 and 2)

IeDEA is an international consortium of AIDS care and
treatment centers [26,27,40]. In previous work, we estimated
incidence rates of first clinical event (WHO3, WHO4 and TB),
acute mortality (<30 days after clinical event), and chronic HIV
mortality among untreated, HIV-infected children at seven
clinical sites in the IeDEA East Africa region [28]. Additional
details about the IeDEA East Africa sites, as well as methods
for derivation of model input parameters, have previously been
described [28,41].

Baseline cohort characteristics and clinical event
risks.  In the IeDEA East African cohort, all children enrolled in
care prior to 12 months of age (median: 5 months); 52% were
female [28]. We translated observed IeDEA event rates into
monthly transition probabilities (risks), stratified by age and
CD4% (Table 1). In children <6 months old, clinical event risks
ranged from 5.2-7.8%/month for WHO3, 1.6-3.5%/month for
WHO4, and 0.5-1.1%/month for TB. For children ≥6 months of
age, clinical event risks ranged from 3.3-11.6%/month for
WHO3, 1.4-6.4%/month for WHO4, and 0.8-3.8%/month for TB
(Table 1). Modeled risks of subsequent clinical events were
assumed to be equal to risks of first events, within each age
and CD4% stratum.

Figure 1.  CEPAC-Pediatric model structure.  A schematic of the Cost-Effectiveness of Preventing AIDS Complications (CEPAC)-
Pediatric natural history model (see Methods for details).
doi: 10.1371/journal.pone.0083389.g001
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Mortality risks.  For children with no history of clinical
events, monthly risks of chronic HIV mortality ranged by CD4%
from 0.3-0.4%. For children with a clinical event, the 30-day
risk of acute mortality following a WHO3 or WHO4 event was
3.4%, and the risk following TB events was 2.8%. After the 30-
day period post-event, monthly risks of "chronic HIV mortality"
ranged by CD4% from 0.4-2.4%. Non-AIDS death risks
(reflecting age- and sex-adjusted mortality rates) were held at
zero for internal validation analyses, since all observed deaths
in the IeDEA cohort were coded as HIV-related and thus

Table 1. Selected model input parameters in the CEPAC-
Pediatric natural history model for internal validation
analyses.

Data from the IeDEA East Africa
cohort [28] Value  
Monthly risk of clinical events (%)
a Infants <6m of age Children ≥6m of age

WHO Stage 3 event 5.2-7.8 3.3-11.6  
WHO Stage 4 event 1.6-3.5 1.4-6.4  
Tuberculosis event 0.5-1.1 0.8-3.8  

Risk of death within 30 days of clinical event (%)  
After WHO Stage 3 or 4 event 3.4  
After TB event 2.8  

Monthly risk of death in infants and children with no history of clinical
event (%)

 

CD4% < 15 0.4  
CD4% 15-24 0.4  
CD4% ≥ 25 0.3  

Monthly risk of death in infants and children with history of clinical
event (%, occurring >30 days post-event))

 

CD4% < 15 2.4  
CD4% 15-24 0.8  
CD4% ≥ 25 0.4  

Data from WITS [33]b Value
Range evaluated in internal
validation analyses

Initial CD4%
distribution at birth
(mean, SD)

42.0% (9.4%) 42.0% - 50.0% c

Monthly rate of CD4%
decline

1.4% 0.3% - 8.0% c

IeDEA: International Epidemiologic Databases for the Evaluation of AIDS; WHO:

World Health Organization; TB: tuberculosis; WITS: Women and Infants
Transmission Study.
a. WHO Stage 4, Stage 4, and TB events defined according to WHO classifications
for HIV disease staging in children [3].
b. The publicly available WITS dataset includes 193 perinatally HIV-infected
children (positive HIV co-culture or PCR by 4-6 weeks of age), with a median of 5.2
months of follow-up prior to initiation of 3-drug ART (Interquartile Range (IQR):
2.1-12.1 months; AZT monotherapy was permitted during the follow-up period)
[33]. Of the 193 perinatally HIV-infected children included in the WITS dataset, 180
(93%) had at least one CD4% measurement before ART initiation, 152 (79%) had
at least two values, and 121 (63%) had at least three; the first recorded CD4% was
observed at a median age of 5.0 days (IQR: 1.0-29.0 days)
c. See derivation of ranges for sensitivity analyses in Methods.
doi: 10.1371/journal.pone.0083389.t001

Table 2. Selected model input parameters in the CEPAC-
Pediatric natural history model for calibration analyses.

Data from the IeDEA East
Africa cohort [28] Value

Range evaluated in
calibration analyses

Monthly risk of clinical events (%) a

Identical to data parameters used in internal validation
analyses, above

Not varied for
calibration analyses

Risk of death within 30 days of clinical event (%)
Range, 0.5-5 X
IeDEA risk

After WHO Stage 3 or 4 event 3.4 1.7-16.8
After TB event 2.8 1.4-13.9

Monthly risk of death in infants and children with no
history of clinical event (%)

Range, 0.2-20 X
IeDEA risk

CD4% < 15 0.4 0.08-8.3
CD4% 15-24 0.4 0.07-7.2
CD4% ≥ 25 0.3 0.06-6.2

Monthly risk of death in infants and children with
history of clinical event (%, occurring >30 days post-
event)

Range, 0.2-20 X
IeDEA risk

CD4% < 15 2.4 0.5-48.0
CD4% 15-24 0.8 0.2-16.7
CD4% ≥ 25 0.4 0.08-7.9

Data from WITS [33]b Value
Range evaluated in
calibration analyses

Initial CD4% distribution at birth
(mean, SD)

42.0% (9.4%) 42.0% - 50.0% c

Monthly rate of CD4% decline 1.4% 0.3% - 8.0% c

Data from UNAIDS [39] Value
Range evaluated in
calibration analyses

HIV-deleted mortality for Burkina Faso, Côte d'Ivoire,
Kenya, South Africa, Tanzania, and Uganda d (monthly
risks)

 

0-11 months 0.41-0.49%
Not varied for
calibration analyses

12-59 months 0.04-0.05%
Not varied for
calibration analyses

IeDEA: International Epidemiologic Databases for the Evaluation of AIDS; WHO:

World Health Organization; TB: tuberculosis; WITS: Women and Infants

Transmission Study.

a. WHO Stage 4, Stage 4, and TB events defined according to WHO classifications

for HIV disease staging in children [3].

b. The publicly available WITS dataset includes 193 perinatally HIV-infected

children (positive HIV co-culture or PCR by 4-6 weeks of age), with a median of 5.2

months of follow-up prior to initiation of 3-drug ART (Interquartile Range (IQR):

2.1-12.1 months; AZT monotherapy was permitted during the follow-up period)

[33]. Of the 193 perinatally HIV-infected children included in the WITS dataset, 180

(93%) had at least one CD4% measurement before ART initiation, 152 (79%) had

at least two values, and 121 (63%) had at least three; the first recorded CD4% was

observed at a median age of 5.0 days (IQR: 1.0-29.0 days)

c. See derivation of ranges for sensitivity analyses in Methods.

d. UNAIDS HIV-deleted mortality rates from these eight countries were weighted

by the proportion of children from each country included in the UNAIDS pooled

analysis used as a calibration target [35,36].

doi: 10.1371/journal.pone.0083389.t002
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considered either acute or chronic HIV-related mortality. For
calibration analyses, "non-AIDS" mortality rates were from
UNAIDS HIV-deleted life tables for the eight sub-Saharan
countries which were included in the study (Table 2) [35,36,39].

WITS natural history model input data (Tables 1 and 2)
Immunologic data.  Because IeDEA lacked adequate

longitudinal CD4 data, we derived CD4% at birth and rate of
monthly CD4% decline from the US-based WITS, a longitudinal
cohort study (1990-2006) of HIV-infected women and their
infants during pregnancy and the post-partum period [32–34].
Using a mixed effects model for the primary analysis, we
estimated a mean CD4% at birth of 42.0% (standard deviation,
9.4%), and a monthly CD4% decline of 1.4%/month prior to
ART initiation [42]. In a secondary analysis in which CD4% was
permitted to decline by different rates in months 0-2 and 3+ of
life, we estimated a mean CD4% of 50.0% at birth, monthly
decline of 6.4%/month for months 0-2, and 0.3%/month in
months 3+. Due to high variability around the point estimate for
this latter variable, likely due to small numbers of CD4% data in
older infants, we used these results to inform the ranges of
CD4% parameters for sensitivity analyses, rather than for the
primary analysis.

Internal model validation: Comparison of model-
generated results to empiric data from the IeDEA East
African region

Population and follow-up time.  For internal validation
analyses, we simulated a population of HIV-infected infants
from birth (assuming intrauterine or intrapartum infection), with
clinical characteristics of patients in the IeDEA cohort. To most
closely match the observed IeDEA data, we evaluated model-
generated results for children from 5-16 months of age,
reflecting a median age at enrollment in the IeDEA cohort of 5
months and a median of 11 months follow-up [28].

Internal validation: survival outcomes.  We compared
model-generated survival curves from 5 to 16 months after
birth to Kaplan-Meier survival curves directly from the IeDEA
East African regional data. We first assessed model results
using base-case parameter estimates. We then performed two-
way sensitivity analyses in which we simultaneously varied the
two parameters from WITS (CD4% at birth and monthly CD4%
decline). First, CD4% at birth was varied in 1.0% increments
from 42% (the result in the primary WITS analysis) to 50% (the
result from the secondary WITS analysis). This range includes
the value of 47%, which was the mean percentage recorded in
the first 1-2 days of life in a study in Durban, South Africa
[43,44]. Second, the monthly rate of CD4% decline was varied
from 0.3% (the lowest value from the secondary WITS
sensitivity analysis) to 8.0% (an average of published values in
the first three months of life [43–45]). To reflect observations
that CD4% may decline more rapidly in the first few months of
life [43,44], we permitted CD4% to decline at different rates for
"younger" and "older" infants. We defined "younger" and "older"
age groups using threshold values of 3, 6, or 12 months of age,
and examined all combinations of CD4% at birth and monthly
CD4% decline in which CD4% decline was faster in “younger”
compared to “older” children.

For each parameter set, we compared model-based survival
curves to the empiric IeDEA survival curves at each month of
the simulation using root-mean-square error (RMSE) [30].
RMSE was calculated as the square root of the average of the
squared difference between observed and projected survival
proportions at each month over the course of the simulation
(5-16 months). We defined the best-fitting survival curves as
those with a RMSE <0.01. This method was chosen because it
is intuitive, computationally feasible with complex models, and
appropriate for data drawn primarily from a single source
[23–25,30].

Internal validation: clinical event risks.  In addition to
examining survival results, we also compared the model-
generated rates of clinical events to the observed rates in the
IeDEA cohort. Because model-based analyses do not rely on a
single convention for comparing model results to data [24,25],
we defined a good-fitting result as one where model-projected
incidence rates were within 10-15% (relative) of observed data,
based on previous work [5]. To reflect as closely as possible
the IeDEA clinical cohort, simulated infants entered the model
at birth, with the initial CD4% distribution and rates of monthly
CD4% decline identified in the best-fitting parameter set in the
internal validation survival analyses described above. Model-
based incidence rates for first clinical events between 5 and 16
months of age were projected for infants. Number of events
and time at risk are not stratified by CD4% in the current model
output, because they were not anticipated for use in future
policy analyses. To directly compare model output with IeDEA
data, we re-analyzed IeDEA event rates for all children
(combining all CD4% strata) at ages <6 and ≥6 months of age.

Model calibration: Comparison of model-generated
results to published pre-ART survival curves

Calibration targets, modeled population, and follow-up
time.  Following internal validation of the CEPAC-Pediatric
model, we compared model-generated results to survival data
reported in a pooled UNAIDS analysis of perinatally HIV-
infected children in sub-Saharan Africa [35–38]. In this UNAIDS
analysis, data were from 12 PMTCT studies in Burkina Faso,
Côte d'Ivoire, Kenya, South Africa, Tanzania, Uganda,
Zimbabwe and Botswana, reflecting >1,300 perinatally infected
infants (defined by a positive PCR test before 6 weeks of age).
Among untreated infants, survival was estimated by Weibull
survival analysis to be 64% at 6 months, 49% at 12 months,
35% at 24 months, 25% at 36 months, 17% at 48 months, and
12% at 60 months [35–37]. To compare model-generated
results to these data, we used the CEPAC-Pediatric model to
simulate a cohort of infants with in utero or intrapartum HIV
infection from birth through 60 months of age.

Systematic variation in model input parameters.  We
anticipated that there would be substantial differences in the
CD4% at birth, rate of CD4% decline, and mortality risks
between children in the UNAIDS and IeDEA East Africa
cohorts. To calibrate the model against UNAIDS data, we
varied all CD4% and HIV-related mortality parameters,
individually and in combination, applying multipliers of 0.2 to 20
to the mortality risks observed in the IeDEA cohort (Tables 2
and 3). CD4% decline was modeled to be more rapid in the first
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3 months of life, based on results of the internal validation
analysis. Monthly risks for clinical events (WHO3, WHO4, and
TB) observed in the IeDEA cohort were similar to or greater
than those reported in the literature [45–50], and were
therefore not varied in calibration analyses. Non-AIDS mortality
rates were also held constant, using a weighted average of
UNAIDS HIV-deleted mortality data for the eight countries in
the UNAIDS analysis (Table 2) [35,36,39].

Model-generated results were compared to empiric data in a
step-wise fashion based on six key time points after birth (6,
12, 24, 36, 48, and 60 months). We first identified all
combinations of CD4% values and mortality risk multipliers
(Table 3) that led to model-generated mortality within 1% of the
UNAIDS mortality estimate at 6 months of age (63-65%). For
each of those parameter sets, multipliers were next applied to

Table 3. Systematic variations in model input parameters
for calibration of CEPAC-Pediatric model.

Parameter Values
Initial CD4% (mean % for cohort, SD = 9%)
All Ages 42, 45, 47, 50

Monthly CD4% decline at each age (%) a

0-3 months 3.0, 4.0, 6.4 or 8.0
4-60 months 0.3, 0.5 or 1.4

Monthly risks of clinical events (%)
All ages Held equal to IeDEA clinical event risks

HIV-deleted mortality risk
(%)

 

All ages
Held equal to weighted average of HIV-deleted
mortality rates from countries represented in
UNAIDS cohort

Acute mortality risk (%) b

All Ages 0.5-5.0 X IeDEA risks (increments of 0.5)

Chronic HIV mortality risk c

0-6 months 1.0-20.0 X IeDEA risks (increments of 1.0)
7-12 months 1.0-20.0 X IeDEA risks (increments of 1.0)
13-24 months 0.5-5.0 X IeDEA risks (increments of 0.5)
25-36 months 0.5-5.0 X IeDEA risks (increments of 0.5)
37-48 months 0.2-2.0 X IeDEA risks (increments of 0.2)
49-60 months 0.2-2.0 X IeDEA risks (increments of 0.2)

IeDEA: International Epidemiologic Database to Evaluate AIDS, East African

region. m: month.
a. Values for monthly CD4% decline reflect more rapid decline in the first three
months of life than after age three months, based on published literature [43–45],
and the results of internal validation analyses.
b. Acute mortality risk: risk of death within 30 days of a clinical event (WHO Stage
3, WHO Stage 4, or tuberculosis; see Methods).
c. Chronic HIV mortality: monthly risk of death for patients with no history of a
clinical event, or for patients >30 days following a clinical event (see Methods). In
all evaluated parameter sets, multipliers for chronic HIV mortality were limited to
ranges in which multipliers applied at younger ages were ≥ multipliers at older
ages. Risks were therefore permitted to remain constant or decrease (but not
increase) with age. This leads to a total of 294,660 parameter combinations of
chronic HIV mortality multipliers, and 141.4 million total parameter sets examined
(see Methods).
doi: 10.1371/journal.pone.0083389.t003

chronic HIV mortality risks for ages 7-12 months. All parameter
sets producing model-generated mortality risks within 1%
(absolute) of the target 12-month risk (48-50%) were retained
in the next step. Chronic HIV mortality risk multipliers were then
applied to ages 13-24 months; parameter sets leading to
results within 1% of the 24-month target (34-36%) were
retained. This process was repeated for time points of 36, 48,
and 60 months. In all evaluated parameter sets, multipliers for
chronic HIV mortality were limited to ranges in which multipliers
applied at younger ages were greater than or equal to
multipliers at older ages. Risks were therefore permitted to
remain constant or decrease (but not increase) with age.
Finally, all parameter sets leading to model results within these
ranges were compared again to the UNAIDS mortality rates to
identify all parameters sets that resulted in a RMSE <0.01%.

Results

Internal model validation: Comparison of model-
generated results to empiric data from IeDEA

Internal validation of survival.  In simulations using IeDEA
clinical event risk data and WITS immunologic data ("IeDEA-
WITS projections"), model-projected survival (91.2% at 16
months) was slightly greater than the survival observed in the
IeDEA cohort (91.1% at 16 months) (Figure 2, orange line).
The RMSE for this model-generated survival curve was 0.0103,
reflecting an average absolute difference of 1.03% from IeDEA
observed survival.

Systematic variation in both CD4% at birth and monthly
CD4% decline led to 3,888 evaluated parameter sets, in which
the RMSE between model-generated and IeDEA survival data
varied widely (range, 0.00423 to 0.0798). Of these, 191
parameter sets were identified as best-fitting, with a RMSE
<0.01. In general, survival was overestimated in analyses in
which CD4% at birth was high and monthly CD4% decline was
slow, and underestimated under the opposite conditions. The
parameter set with the lowest RMSE (RMSE = 0.000423)
included CD4% at birth of 45.0%, monthly CD4% decline of
6.0% in infants <3 months and monthly CD4% decline of 0.3%
in children > 3 months (Figure 2, red line).

Internal validation of clinical event risks.  The model also
projected rates of clinical events that fit IeDEA data well.
Incorporating CD4% decline rates from the best-fitting internal
validation parameter sets, as well as competing clinical event
and mortality risks from the IeDEA cohort, model-generated
incidence rates were within 2-12% of observed IeDEA rates
(Table 4, Figure 3).

Model calibration: Comparison of model-generated
results to published UNAIDS pre-ART survival curves

We examined 141 million parameter sets (all possible
combinations from Table 3). We identified 9,943 best-fitting
parameter sets through the step-wise selection process, in
which we retained only parameter sets that led to model-
generated mortality risks within ±1% of UNAIDS survival risks
at key time points (RMSE <0.01). Projected survival for the 10
best-fitting parameter sets with the lowest RMSE is shown in
Figure 4: UNAIDS survival and is depicted as the black line and
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all model-generated survival curves overlap almost entirely with
the UNAIDS survival curve. Figure 4 also shows projections
using the IeDEA survival from the internal validation analyses,
to illustrate the lower mortality seen in the IeDEA cohort (green
line), as well as the highest- and lowest-mortality risk
parameter sets from Table 3 (red and blue lines) to show the
range that the model is capable of generating.

The individual components of 10 of the best-fitting parameter
sets with the lowest RMSE are shown in Table 5. The data
parameters requiring the largest increase in risk to match
UNAIDS survival data were acute mortality within 30 days of a
clinical event (multipliers applied to IeDEA event risks ranged
from 4-5 in all parameter sets), and chronic HIV mortality in the
first 12 months of life (multipliers of 14-17 for infants ages 0-6
months, and 4-8 for ages 7-12 months). After 48 months of
age, calibrated chronic HIV mortality risks were slightly lower
than IeDEA data (multipliers of 0.4-0.8).

Discussion

We developed a patient-level computer simulation model of
disease progression among perinatally HIV-infected infants --
the CEPAC-Pediatric model. This represents the first
description of a Monte Carlo microsimulation model of

untreated HIV disease in children, and the most detailed
description to date of internal validation and calibration of a
model of pediatric HIV disease according to recommended
practices [15–17].

In internal validation analyses, using a single set of input
parameters to assess model structure, model outputs closely
matched empiric data from the IeDEA East African regional
pediatric cohort. Model-projected survival was closest to
empiric survival data if the immunologic data parameters (not
available from IeDEA) included an average CD4% at birth of
45%, a CD4% decline of 6%/month for infants < 3 months of
age, and a CD4% decline of 0.3%/month for children >3
months of age. When model-projected clinical event risks were
compared to empiric IeDEA event risks, model results matched
observed data reasonably well. The difference between model-
generated results and observed data ranged from 2-12%, less
than the 10-15% criterion accepted as "good-fitting" in a prior
study [5].

In calibration analyses, we identified new values for model
input parameters that allowed our projections to match more
generalizable survival data from untreated, African children.
Large increases in IeDEA-observed mortality risks were
required in the first 12 months of life for model projections to
match UNAIDS survival data [35–38]. There are likely to be at

Figure 2.  Internal validation of survival outcomes: Observed survival curves from the IeDEA East African region and
projected results from the CEPAC-Pediatric Model.  The solid black stepped line represents observed survival in the IeDEA
cohort based on Kaplan-Meier analysis, beginning at 5 months of age. Dashed black lines reflect the upper and lower bounds of the
95% confidence intervals for IeDEA-observed survival. The orange line shows CEPAC model-projected survival using the "IeDEA-
WITS projection" data (RMSE = 0.0103). The best-fitting curve is shown with the red line, reflecting mean CD4% at birth of 45.0%,
CD4% decline of 6.0%/month in infants <3 months of age, and 0.3%/month for children >3 months of age (RMSE = 0.00423).
doi: 10.1371/journal.pone.0083389.g002
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least two reasons for this finding. First, data in the UNAIDS
analysis were collected before widespread pediatric ART
availability (in only one included study did any HIV-infected
children initiate ART) [36]. In contrast, children in IeDEA were
likely to initiate ART when needed; although they were then
censored from our analysis, this likely averted many of the risks
of opportunistic infection and death that would have occurred
had no ART been available.

Second, the IeDEA dataset may reflect some degree of
“survivor bias:” children who survive the first months and years
of life may be longer-term survivors, with slower disease
progression than those who become ill in infancy and are
unavailable to enroll in many cohort studies. Infants in the
UNAIDS analysis were followed from birth, permitting early
infant mortality to be observed and avoiding this survivor bias,
whereas infants in the IeDEA cohort enrolled at a median of 5
months of age. Our finding that IeDEA-observed mortality risks
in the first 12 months of life required the largest increases to
match UNAIDS data suggests that unobserved pre-enrollment

Table 4. Comparison of clinical event risks observed in the
IeDEA East Africa cohort and.

 Rates/100PY Monthly risk (%)  

Clinical event
and age

Model
generated

Observed
in IeDEAb

Model
generated

Observed
in IeDEAb

Difference in
rates (as %
of IeDEA
rate) c

WHO Stage 3      
<6m 66.16 67.53 5.36 5.47 2.0
≥6m 61.54 67.89 5.00 5.50 9.4

WHO Stage 4      
<6m 19.85 21.41 1.64 1.77 7.3
≥6m 28.92 32.83 2.41 2.70 11.9

Tuberculosis      
<6m 7.34 8.23 0.61 0.68 10.8
≥6m 15.88 17.93 1.32 1.48 11.5

PY: person-years; m: months
a. As described in the Methods, patients enter the model with CD4% at birth from
the best-fitting parameter set in the internal validation survival analyses (45.0%).
CD4% values decline as per the best-fitting parameter set (6.0%/month ages 0-3
months, 0.3%/month ages >3 months). Simulated infants face competing risks of
all three types of clinical events, as well as "acute mortality" and "chronic HIV
mortality.”
b. Due to differing methods of reporting, IeDEA event risks (reported for three
distinct CD4 strata) could not directly be compared to model-projected event risks
(reported as a cohort average, where the cohort consists of a population with a
unique distribution of CD4% each month). To generate a comparable IeDEA risk
for each clinical event, we calculated an average of the three reported risks from
IeDEA (CD4 <15%, CD4 15-25%, CD4 >25%) weighted by the proportion of the
cohort in each CD4% strata during each month of the simulation.
c. Model-generated rates are expected to be slightly lower than IeDEA-observed
rates, due to:

1) Model accounting of clinical events (which permits only one event to be
recorded each month), and 2) competing risks of other events and “chronic HIV
mortality” in the model.
doi: 10.1371/journal.pone.0083389.t004

mortality was likely a key explanation for the overall very low
mortality observed in IeDEA. Such survivor bias has also been
described in other cohorts of HIV-infected children, in which
median age at enrollment is >1 year, and often up to 5 years
[47,51–55]. In studies that have enrolled children at younger
ages, mortality is reported to be two- to eight-fold greater
among infants <12 months of age compared to older children
[46,47,53,56]. Consistent with this literature, several good-
fitting parameter sets in our model calibration analyses
required chronic HIV mortality risks after 48 months of age to
be reduced below the risks observed in the IeDEA cohort to
match UNAIDS data. This suggests that mortality risks for
children who have survived to age 4 may be less than the risks
among younger children in the IeDEA cohort. Empiric data on
CD4% stratified risks of acute clinical events and mortality for
untreated, HIV-infected children ages 2-5 years are limited; in
their absence, model-calibrated mortality estimates can inform
the impact of deferred ART initiation in children of these ages.

This analysis has several limitations. First, data to completely
parameterize the model were not available from IeDEA, and
immunologic data from the US-based WITS cohort were used
where IeDEA data were unavailable [33]. Due to the lack of an
independent source of data, we were unable to perform a true
validation of the model, and instead first performed an internal
validation of IeDEA OI and mortality risks and then separately
calibrated the model to fit the UNAIDS survival curves.
However, the flexibility to incorporate data from a variety of
sources and to evaluate the impact of these heterogeneous
data sources is also a strength of modeling analyses [13]. The
WITS-derived CD4% inputs were varied extensively in
sensitivity analyses, and found to have modest impact on
goodness-of-fit between model-generated and observed
survival risks.

Second, there is no single accepted criterion by which to
compare model-generated results to empiric data. Instead,
expert guidance recommends that investigators choose and
explicitly describe a criterion that fits their model structure and
data sources [5,23–25,30,57]. We chose RMSE to assess
goodness-of-fit between projected and observed survival. The
complex microsimulation structure of the CEPAC model
renders Bayesian analysis computationally infeasible [58],
empiric datasets were too small to permit separate analyses in
training and validation sets. We therefore selected a method
that is transparent, well-described in policy models, and
comparable to methods used to validate the adult CEPAC
model [19]. Although some possible parameter sets were
necessarily excluded with this approach, we sampled the
parameter space systematically, varying all model parameters
in small increments through clinically plausible ranges and
considering all 141 million resulting parameter combinations.

In summary, we report the development, internal validation,
and calibration of the CEPAC-Pediatric natural history model of
HIV disease progression in young children. The model
demonstrates excellent performance in internal validation
analyses to evaluate model structure. The model also permits
wide-ranging sensitivity analyses on all key input parameters,
and variations in key clinical and immunologic parameters lead
to model-generated survival curves that calibrate closely to
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UNAIDS survival data for untreated, perinatally HIV-infected
children. Differences in the mortality risk parameters required
to match data from the IeDEA cohort (model internal validation)
and the UNAIDS cohort (model calibration) highlight the
importance of early infant mortality before enrollment in many
cohort studies, as well as the ability of simulation models to

estimate mortality risks among children ages two to five in the
absence of such empiric data. This validated CEPAC-Pediatric
model will be well-suited to address critical policy questions in
pediatric HIV care for children from birth through five years of
age.

Figure 3.  Internal validation of clinical event risk outcomes: CEPAC-Pediatric model results compared to IeDEA
data.  Risks of clinical events from 5-16 months of age, as observed among infants in the IeDEA East Africa region and projected by
the CEPAC-Pediatric model. Simulated infants enter the model with the CD4% at birth identified in the best-fitting parameter set for
the internal validation survival analyses (45.0%), and CD4% values decline as per the best-fitting parameter set (6.0%/month ages
0-3 months, 0.3%/month ages ≥3 months). Simulated infants face competing risks of all three types of clinical events, as well as
"acute" and "chronic" mortality. Due to differing methods of reporting, IeDEA event risks (reported for three distinct CD4 strata) could
not directly be compared to model-projected event risks (reported as a cohort average, where the cohort consists of a population
with a unique distribution of CD4% each month). To generate a comparable IeDEA risk for each clinical event, we calculated an
average of the three reported risks from IeDEA (CD4 <15%, CD4 15-25%, CD4 >25%) weighted by the proportion of the cohort in
each CD4% strata during each month of the simulation. Model-generated rates are expected to be slightly lower than IeDEA-
observed rates, due to 1) model accounting of OIs (which permits only one OI to be recorded each month), and 2) competing risks
of other OIs and chronic HIV mortality in the model.
TB: tuberculosis, PY: person-years.
doi: 10.1371/journal.pone.0083389.g003
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Figure 4.  CEPAC-Pediatric model calibration analyses: Projected survival (A).  Model-projected survival curves from age 0-60
months for: 1) Base-case IeDEA mortality data used in the internal validation analyses (purple line); 2) the empiric UNAIDS mortality
data (black line); 3) 10 of the best-fitting parameter sets (with the lowest RMSE) identified in the calibration analyses (group of
colored lines surrounding and almost completely overlapping with the black UNAIDS line); 4) the lowest-mortality risk parameter set
from Table 3 (blue line) and 5) the highest-mortality risk parameter set from Table 3 (red line). The 10 sample best-fitting parameter
sets from calibration analyses are almost entirely obscured by the UNAIDS survival data (black line) due to their extremely close fit
to the calibration target. The IeDEA survival curve from internal validation analyses, and both the highest- and lowest-mortality risk
parameter sets are all projected to 60 months of age for comparison only, as they did not meet the threshold of UNAIDS risk ±1% at
6 months and therefore were not formally evaluated at subsequent time points in the calibration analyses.
B: A zoom plot, enlarging the results for months 0-6, shows the nearly-overlapping curves in larger detail.
doi: 10.1371/journal.pone.0083389.g004

Computer Simulation Model of Pediatric HIV

PLOS ONE | www.plosone.org 10 December 2013 | Volume 8 | Issue 12 | e83389



Table 5. Root-mean-squared error for key parameters sets in the calibration of the CEPAC-Pediatric model to UNAIDS
survival data.

   Chronic HIV mortality multiplier c  
Mean CD4% at birthMonthly CD4% decline aAcute clinical event mortality multiplier b0-6m7-12m13-24m25-36m37-48m49-60mRoot-mean-squared error (RMSE) d

10 best-fitting parameter sets
45 4, 0.5 4 17 7 3 1.5 1.2 0.4 0.00122
42 3, 0.5 4 17 7 3 1.5 1.2 0.4 0.00146
50 4, 0.5 5 17 8 3.5 2 1.6 0.4 0.00152
47 3, 0.5 5 17 8 3.5 2 1.6 0.4 0.00162
50 4, 0.5 5 17 8 3.5 2 1.6 0.6 0.00172
50 4, 0.5 5 17 8 3.5 2 1.8 0.4 0.00173
47 8, 0.3 4 14 4 1.5 1 1 0.6 0.00174
45 6.4, 0.3 4 15 5 2 1.5 1.4 0.6 0.00176
47 3, 0.5 5 17 8 3.5 2 1.6 0.6 0.00176
45 6.4, 0.3 4 15 5 2 1.5 1.4 0.8 0.00181

Base-case IeDEA survival from internal validation analysis, projected to 60 months of age
45 6, 0.3 1 1 1 1 1 1 1 0.383

Lowest-mortality risk parameter set from Table 3, projected to 60 months of age
50 3, 0.3 0.5 1 1 0.5 0.5 0.2 0.2 0.575

Highest-mortality risk parameter set from Table 3, projected to 60 months of age
42 8, 1.4 5 20 20 5 5 2 2 0.236

a. CD4% decline is shown as monthly decline (in CD4 percentage points) for months 1-3 of life, followed by for months 4+ of life.
b. Multipliers were applied to the monthly risks of "acute mortality" derived from the IeDEA cohort (defined as mortality <30 days following a WHO3, WHO4, or TB clinical
event).
c. Multipliers were applied to monthly risks of "chronic HIV mortality" derived from the IeDEA cohort (defined separately as mortality risks among infants with no history of
clinical event, or >30 days after a clinical event for infants with a history of clinical event).
d. Root-mean-squared error of CEPAC-Pediatric model projections compared to UNAIDS survival data at 6, 12, 24, 36, 48, and 60 months of age. RMSE is calculated by 1)
calculating the difference between observed and projected survival proportions at each time point, 2) squaring these six absolute differences, 3) averaging the squared
values, and 4) taking the square root of this average value. RMSE reflects an average difference between observed and projected survival (as a percent) over the six time
points.
doi: 10.1371/journal.pone.0083389.t005
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