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Abstract

In the current era of malaria eradication, reducing transmission is critical. Assessment of transmissibility requires tools that
can accurately identify the various developmental stages of the malaria parasite, particularly those required for transmission
(sexual stages). Here, we present a method for estimating relative amounts of Plasmodium falciparum asexual and sexual
stages from gene expression measurements. These are modeled using constrained linear regression to characterize stage-
specific expression profiles within mixed-stage populations. The resulting profiles were analyzed functionally by gene set
enrichment analysis (GSEA), confirming differentially active pathways such as increased mitochondrial activity and lipid
metabolism during sexual development. We validated model predictions both from microarrays and from quantitative RT-
PCR (qRT-PCR) measurements, based on the expression of a small set of key transcriptional markers. This sufficient marker
set was identified by backward selection from the whole genome as available from expression arrays, targeting one sentinel
marker per stage. The model as learned can be applied to any new microarray or qRT-PCR transcriptional measurement. We
illustrate its use in vitro in inferring changes in stage distribution following stress and drug treatment and in vivo in
identifying immature and mature sexual stage carriers within patient cohorts. We believe this approach will be a valuable
resource for staging lab and field samples alike and will have wide applicability in epidemiological studies of malaria
transmission.
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Introduction

One of the tenets of the recently released Malaria Eradication

Research Agenda (malERA) is the development of new diagnostics

specifically addressing transmission reduction [1]. Individuals

harboring the Plasmodium falciparum transmissible parasite stage,

or gametocyte, are the primary reservoir for malaria transmission,

and thus proper surveillance of gametocyte carriers is critical to

transmission reduction. Surveillance is difficult, however, because

gametocytes comprise only a small fraction of the total body

parasite load during active infection and are only observed in the

bloodstream in their mature form, while developing stages are

sequestered in tissues [2]. For these reasons, quantifying gameto-

cytes in mixed parasite populations has been an ongoing challenge

ever since they were first identified more than a century ago.

Gametocytes do execute substantially different transcription-

al programs from asexual parasite stages, however, as has been

well-studied in vitro [3]. Like the sequential dynamics of the

asexual Plasmodium life cycle [4,5], gametocytes develop in a

staged progression from immature (young and intermediate

stages) to mature transmission-competent cells in preparation

for meiosis and further development in the mosquito vector.

The switch between asexual replication and sexual develop-

ment does not occur ubiquitously in vivo or in vitro, as even the

most synchronized gametocyte induction protocols result in

partially asynchronous and mixed gametocyte stages [3,6]. This

problem is compounded in vivo, as blood sampled during

infection is likely to contain both gametocyte and asexual

parasite populations, leading to a highly convolved transcrip-

tional mixture.
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In addition to the need to dissect these signatures for analysis of

microarray data, it is also of interest to develop a field-friendly

approach for detecting and quantifying both immature (indication

of conversion to sexual development) and mature (indication of

infectiousness to mosquito vector) gametocyte stages. Transcrip-

tional approaches such as RT-PCR, QT-NASBA and RT-LAMP

have been developed [7,8,9] using the established mature

gametocyte marker Pfs25 and the putative immature gametocyte

marker Pfs16. While these approaches enable sensitive detection of

these transcripts, it is unclear how the detection of these transcripts

- particularly Pfs16 - relates to actual gametocyte carriage [8]. The

development of a qRT-PCR-based assay has thus far been

impeded primarily because this approach cannot distinguish

transcript from genomic DNA when sequences are identical; the

majority of P. falciparum genes lack introns and thus have identical

sequences for both RNA and DNA. It is therefore worth

identifying novel intron-containing markers for which exon-exon

junction-spanning primers can be designed so that this approach

can be used for in vivo gametocyte quantification.

Our goal was thus to develop a new transcript-based

gametocyte model that addressed these challenges. Using a

deconvolution approach, we quantified the stage-specificity of

Plasmodium transcripts genome-wide and subsequently identified

intron-containing markers from across the full range of asexual

and sexual development. In order to identify expression patterns

specific to different gametocyte stages, particularly the immature

stages, existing in vitro asexual and sexual developmental time

course samples were re-analyzed to account for their mixed stage

composition. We further developed a qRT-PCR assay based on

these results and, applying the model in reverse, established an

algorithm to estimate the amounts of immature and mature sexual

and asexual stages in a patient sample based on the expression of a

small set of stage-specific markers. This was inspired by related

approaches that have been used successfully in dealing with mixed

cancerous/non-cancerous tissue samples [10,11] and with mixed

stages of budding yeast [12]. This framework is implemented for

public use at http://huttenhower.sph.harvard.edu/malaria2013;

as a transmission-focused tool, this system can be applied in

epidemiological settings, and as such will ideally support efforts

directed toward reducing malaria prevalence worldwide.

Results

A regression model characterizing genome-wide stage-
specific transcript expression in P. falciparum

Calculation of gene-specific expression contributions to

each life cycle stage. To identify expression patterns of

individual stage categories while accounting for mixed stage

composition, we began by using a labeled set of microarray data

with asexual and gametocyte proportions assessed manually by

microscopy [3,5]. For our purposes, we divided the P. falciparum

intra-erythrocytic development into categories that reflect

physiologically relevant distinctions during the course of natural

infection in the human host. Specifically, we separated those

phases found sequestered in tissues from those found in

circulation, resulting in a total of five categories. These included

two asexual categories, i) the circulating ring stage (termed ‘‘R’’)

and ii) the sequestering trophozoite and schizont stage (termed

‘‘T’’). The three gametocyte categories were i) the young (Stage

I, termed ‘‘YG’’) and ii) intermediate (gametocyte stages II, III,

IV, termed ‘‘DG’’) immature gametocytes that are absent from

circulation and iii) the circulating mature stage V gametocyte

(termed ‘‘MG’’). For most analyses, we grouped YG and DG

together as one category encompassing all immature gameto-

cytes (termed ‘‘IG’’).

We subsequently constructed a constrained regression model to

identify the degree to which each P. falciparum gene’s expression

varied with respect to life cycle stage (Figure 1). The model

parameters encode the relative expression of each gene that can be

attributed to each life cycle stage, five of which are described

above and a sixth category representing transcriptional activity not

well-captured by any of these (Figure 1A). The model was initially

fit using microarray expression data from three time courses

spanning the P. falciparum intra-erythrocytic life cycle wherein the

stage distributions at each of the time points were determined by

microscopy [3,5] (Figure 1D-1).

In any one time point or sample, the total transcript abundance

yg for each gene g was modeled as a mixture of its abundance in

each specific stage. The mixture fraction xs represented the

fraction of parasites in stage s (Figure 1B), and the model was

constrained to require the sum of xs across stages to remain equal

to one. The contribution of each stage to g’s overall transcript

abundance was captured as bg,s parameters which provided not

only predictive accuracy but were also used to identify stage-

specific gene sets and pathways (Figure 1D-2). After identifying

each gene g’s stage-specific parameters bg,s, but before winnowing

them down to a minimal set of sentinel markers, we inspected the

resulting genome-wide characterization of P. falciparum life cycle

transcriptional activity in order to identify stage-specific pathways

and regulatory mechanisms.

Definition of stage-specific gene sets reveals parasite

biology. The model parameters bg,s provided a measure of the

amount of expression of each gene attributable to each stage s. To

initially identify genes with stage-specific regulation, we selected

those genes for each stage where bg,s was at least two (for sexual

stages) or one (for asexual stages) standard deviations further above

mean than for any other stage. This process resulted in 637 stage-

specific genes distributed across five stages: 154 (R), 34 (T), 229

(YG), 34 (DG) and 186 (MG), with the top fifteen individual stage-

specific markers appearing in Figure 2A (see Supplementary Table

S1 for genome-wide analysis).

Author Summary

The human malaria parasite Plasmodium falciparum is
transmitted through a mosquito vector and causes over
half a million deaths per year. The microorganism cycles
through asexual and sexual life cycle stages, and its
successful transmission relies on cells in the sexual stage.
These stages are, however, present only at low levels
during infection; most infecting cells are asexually repro-
duced. It can be challenging to assign biomolecular
activity to particular parasite life cycle stages from typical
gene expression profiles, given the mixed stage compo-
sition of most samples. We developed a deconvolution
model to identify components of Plasmodium transcrip-
tional activity contributed by sexual and asexual life cycle
stages, initially using samples of known composition. From
these, we optimized a small set of stage-specific genes
with highly informative expression patterns and trained an
inference model to predict the stage composition of new
samples. The model successfully inferred the parasite’s
transition from asexual to sexual development over time
under laboratory conditions and identified a subset of
patient samples harboring transmissible sexual stages. The
system presented here can aid in epidemiological or
laboratory perturbation in which stage composition is an
important step in understanding and preventing malaria
transmission.

Inferring Stage Composition in Malaria Parasites
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Gene set enrichment analysis. Prior to selecting individual

stage-specific sentinel genes from these data, stage-specific

pathway activity was assessed genome-wide using Gene Set

Enrichment Analysis (GSEA). Since the standard gene sets

available for GSEA are somewhat sparse for P. falciparum, a

pathway database was constructed using the gene annotations in

PlasmoDB for the Gene Ontology [13] (see also Supplementary

Tables S2 and S3). These gene sets were then used with GSEA on

our model parameters, employing the genome-wide bg,s param-

eters z-scored across stages as a pre-ranked statistic for enrichment

testing. The resulting stage-specific pathway enrichments included

biological activities that are known to be associated with particular

stages in the asexual cycle, such as host cell remodeling in ring

stages (R) and host cell invasion and replication in the later stages

of the asexual cycle (T). Our analysis supports earlier observations

from the initial gametocyte transcriptome study and a more recent

early gametocyte proteome [3,14] that mitochondrial and lipid

metabolism are significantly up-regulated during early sexual

development, as well as factors involved in cell cycle control. We

also observed enrichment of endocytic pathways and cytoskeletal

remodeling during later stages of sexual development. These

processes are likely linked to hemoglobin uptake and exflagellation

during male gametogenesis, respectively (Figure 2B, and Supple-

mentary Table S2).

Signatures of natural selection. Interaction with the host

immune system can result in a higher rate of single nucleotide

polymorphisms (SNPs) in genes involved in these interactions.

Since life cycle stages vary in their level of interaction with the host

immune system, we were interested in whether any of our stage-

specific gene sets varied in signatures of natural selection. As a

Figure 1. In silico dissection approach developing a linear regression model to identify stage-specific gene expression profiles
within bulk parasite population gene expression. (A) Definition of physiologically relevant stage categories within P. falciparum development
for which we will identify stage-specific expression signatures. Stages are as follows: R: asexual ring, T: asexual trophozoite and schizont, YG: young
gametocyte ring and stage I, DG: developing gametocyte stages II, III, and IV, IG: all immature gametocytes (YG+DG), MG: mature gametocyte stage V,
and U: unexpected profile not captured by our defined stages. (B) Linear regression model for the deconvolution of bulk gene expression data from
mixed stage samples. Terms are as follows: yg: total expression of gene g, bg,s: expression of gene g attributed to stage s, Xs: proportion of the sample
that is stage s. (C) Marker Selection. Filters used to narrow down gene sets to our set of sentinel markers for field-applicable qRT-PCR assay. As we
chose markers for ring and trophozoite/schizont stages a priori based on published stage-specific gene expression data for asexual development
[4,5,46], we used this selection method to identify markers for the remaining gametocyte stage categories. (D) Overall stage prediction schematic.
doi:10.1371/journal.pcbi.1003392.g001

Inferring Stage Composition in Malaria Parasites
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measure for balancing selection within a parasite population, we

determined the genetic diversity of individual genes within the

three gametocyte stages and two asexual stages (Figure 2C). For

this purpose, we calculated SNP p values for each gene based on a

sequence comparison from 25 culture-adapted strains from

Senegal [15]. SNP p quantifies the average number of pairwise

differences among a set of strains at a set of assayed SNPs. As a

complementary measure for positive selection between popula-

tions, we also calculated Fst [16] when comparing the 25 strains

from Senegal with a reference line from Honduras, HB3 [17]. Our

analysis demonstrated that none of the genes from within the set of

highly stage-specific asexual and sexual markers are under

increased selection compared to the genomic average, neither

within a population nor between two populations. This suggests

that the stage-specific transcripts identified by this process are

enriched, by these criteria, for gene products core to the regulatory

program or stage transitions themselves, excluding proteins that

would interact more directly with the host. Such conserved genes

are likely to serve as robust markers in lab and field samples alike.

Selection and validation of a sentinel marker set for stage
prediction

Marker selection overview. After characterizing the ge-

nome-wide stage-specific gene expression of P. falciparum, we

proceeded to identify a small subset of markers sufficient to

recapitulate genome-wide resolution for stage prediction. To

combine predictive accuracy with biological interpretability, we

chose to identify the single markers representing each stage

category while still minimizing prediction error. This resulted in a

set of filtering criteria to obtain markers validated to be stage-

specific and suitable for use in microarray and qRT-PCR analyses

(Figure 1C and 1D-3).

Selection of asexual-specific and constitutively expressed

markers. To identify optimal markers for the better studied

asexual R and T stages, we began with the stage-specific gene sets

identified for each stage and first filtered based on presence of

intron(s). We also required mass spectrometry evidence confirming

the protein is expressed during asexual development [14,18]. Next,

we ranked genes based on frequency of retention during model

predictive marker selection (see Methods) and used raw expression

information such as lack of allelic expression variation, high

absolute expression levels [5], and stage-specific expression

evidence by expression timing [4] as additional filters. Based on

this process, we selected PFE0065w for the early asexual stage (R).

It encodes skeletal-binding protein 1 (SBP1), a well-characterized

component of parasite-induced membrane structures in the host

red blood cell (RBC) termed Maurer’s clefts [19]. Using these

same criteria, we selected PF10_0020 as the late asexual stage (T)

marker. The gene encodes a protein that is predicted to be

secreted into the host RBC [20] and contains a putative alpha/

beta hydrolase domain. It is highly specific for late asexual stages

not only based on the bg,s parameter, but also based on its

independent gene expression profile from a comparative tran-

scriptional analysis of three P. falciparum strains [4]. For the

baseline marker, we chose a constitutively expressed transcript as

determined by ranking all P. falciparum genes by the lowest

standard deviation across life cycle stages [3,5] and patient isolates

[21] and using a cut-off for high expression. The selected marker

PF11_0209 encodes a conserved protein of unknown function.

Selection of gametocyte stage-specific markers. To select

gametocyte markers, we began with the stage-specific gene sets

identified for each stage category as above (YG, DG, or MG) and

filtered first based on the presence of intron(s). Next, we retained

only those genes in which mass spectrometry data again confirmed

expression in the gametocyte development and absence in asexual

development, providing evidence both for stage-specific activity

and lack of evidence for non-specific stages. These criteria revealed

a shortlist of gametocyte-specific candidates with high predictive

accuracy, but in the case of the MG stage, no markers showed

high and stage-specific expression levels (as defined by the bg,s

parameter) comparable to the currently used gametocyte marker

Pfs25. We therefore decided to include Pfs25 as a MG marker to

model stage distribution in microarray data, as the major criterion

against using it for qRT-PCR (i.e. absence of an intron), does not

apply to the analysis of chip-based data. For the remaining

gametocyte stage categories in which highly expressed markers

were successfully identified, we ranked gene lists based on

frequency of retention during model predictive marker selection

and selected PF14_0748 and PF14_0367 to represent young (YG)

Figure 2. Stage-predictive gene sets are enriched for specific biological processes but show no signature of selection by diversity/
divergence measures. (A) Top 15 model bg,s parameters specific to each stage; values indicate for each gene the degree of its expression
attributed to each stage. (B) Gene set enrichments of GO and KEGG processes by stage (Supplementary Table S2). (C) Genetic diversity (within
patient) vs. divergence (between isolate) of the P. falciparum genome (see Methods for data sources), highlighting genes identified as stage-specific.
Several known markers are labeled for reference.
doi:10.1371/journal.pcbi.1003392.g002

Inferring Stage Composition in Malaria Parasites
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and developing (DG) gametocytes, respectively. PF14_0748 has

previously been identified as an early gametocyte marker [3,6],

and it has been demonstrated that its promoter can drive

gametocyte-specific reporter expression [6,22]. It encodes a

protein predicted to be exported into the host RBC with a

putative PHIST domain [20]. PF14_0367 has not been described

previously.

Initial validation of the model on microarray

samples. With a set of six sentinel markers identified, we

proceeded to test their ability to predict stage distributions in silico,

first using cross-validation over the available labeled microarray

data (Figure 1D-4). Having fit the complete regression model to

establish bg,s parameters, we subsequently retained only those six

markers’ values for prediction of a sample’s stage composition.

This was done by solving for Xs, the percent composition of each

stage, while employing a quadratic programming approach to

constrain the proportions of these stages to sum to 1. Making

predictions based on gene expression from our selected marker set,

we successfully predict the transition from asexual to sexual

development across the life cycle time course (Figure 3 A/B).

Prediction errors generated through cross-validation were mini-

mal, with total per stage, per sample, root mean squared error of

0.195 (Figure 3C).

Application of the model to in vivo malaria cohort and in
vitro drug perturbation microarray samples

To gauge how this modeling process performed on patient

microarray samples, we applied it to microarray data from two

patient cohorts, i) a previously published cohort of severe malaria

patients from Blantyre, Malawi collected in 2009 [23] and ii) a

cohort of uncomplicated malaria patients from Thies, Senegal

collected in 2008. While no staging information was available for

the Senegal patients, a subset of Malawi patients were previously

identified as gametocyte-positive by thick smears. The model

inferred that the majority of patients from both cohorts have a

strong ring-dominated profile, with the next largest subset being

late asexual stages (trophozoites and schizonts) (Figure 4A/B). For

the 10 Malawi samples in which gametocytes were observed by

thick smear, our model correctly identifies 4 (40%) as such, with 0

false positive developing or mature gametocytes predicted among

the 48 thick smear-negative patients (Figure 4A). Interestingly, two

thick smear-negative patients are predicted to have young

gametocytes, which are difficult to identify by thick smear

microscopy due to their morphological similarities with asexual

stages.

A subset of the uncomplicated malaria patients from Senegal

were also predicted to be gametocyte carriers (6 of mature, 1 of

developing and 1 of young gametocytes) (Figure 4B). As

microscopy-based information was unavailable for the Senegalese

cohort, we assessed how our gametocyte inferences correlated with

patient parameters. Of the 6 parameters we measured for this

cohort, illness duration and hematocrit differed significantly

between the group of patients inferred to be gametocyte carriers

and those inferred to be gametocyte-negative. The former had a

longer duration of illness (6.33 days61.02 SEM) than the latter

(3.84 days60.25 SEM, t-test p = 0.0014) as well as a lower

hematocrit measured in percent cell volume (34.86%62.17 SEM)

than the latter (40.41%61.06 SEM, t-test p = 0.031) (Supplemen-

tary Table S4). This finding agrees with published data on clinical

correlates of gametocyte carriage: long illness duration (greater

than 2 days) and anemia (hematocrit less than 30%) were both

independently found to be risk factors of gametocytemia in

uncomplicated malaria [24].

Evaluation of drug treatment on parasite stage

distribution in vitro. We concluded validation of the micro-

array model by using it to profile the effects of drug treatments on

parasite stage distribution. This application is of particular interest

as it was recently demonstrated that currently used anti-malarial

treatments including artemesinin combination therapy (ACT)

have limited efficacy against mature gametocytes [25]. As a proof-

of-concept we performed in vitro time course experiments for

subsequent microarray analysis with a gametocyte-producing line

of P. falciparum (3D7) in which parasites were grown in the presence

of two experimental antimalarial compounds, Genz-666136 and

Genz-644442. Genz-666136 is known to inhibit parasite dihy-

Figure 3. Marker selection yields a set of sentinel markers with high predictive accuracy. (A) Actual and (B) inferred stage distributions
across five microarray time courses (two asexual and three sexual) with reference stage distributions determined by microscopy. Six markers were
used to make these predictions, five as identified through filtering criteria (Table 1) and the previously established mature gametocyte marker Pfs25.
(C). Bootstrap cross-validation of error rates expected per stage in model inferences. Violin plots show expected density, with internal boxplots
detailing the 25th–75th percentiles and 1.56 fences.
doi:10.1371/journal.pcbi.1003392.g003

Inferring Stage Composition in Malaria Parasites

PLOS Computational Biology | www.ploscompbiol.org 5 December 2013 | Volume 9 | Issue 12 | e1003392



droorotate dehydrogenase (DHODH) enzyme, which catalyzes the

rate-limiting step in de novo pyrimidine biosynthesis [26]. Genz-

644442 was identified as a potent antimalarial compound with

unknown target in a recent small molecule screen [27]. Plasmodium

sexual differentiation in response to these compounds has not been

previously explored.

In both the treated and untreated control samples, our model

predicted an initial, subsequently decreasing fraction of the

population to consist of young gametocytes (Figure 4C). The

presence of young gametocytes is likely due to increased

conversion of gametocytes in response to growth at the relatively

high starting parasitemia used, an established induction factor of in

Figure 4. Application of microarray model to malaria patient cohorts and drug perturbation time courses. (A) Model inferences for 58
pediatric severe malaria patients from Blantyre, Malawi. Stars indicate subjects in which at least one gametocyte was observed by thick smear
examination, a particularly sensitive assay (14 patients). (B) Model inferences for 39 adult uncomplicated patient samples from Dakar, Senegal. (C)
Model inferences for in vitro time course experiments in which samples were taken at 10, 20, 30, and 40 hours post-invasion. Time courses were
performed in the presence of one of two antimalarial compounds, Genz-666136 and Genz-644442, or under normal growth conditions (control).
doi:10.1371/journal.pcbi.1003392.g004

Inferring Stage Composition in Malaria Parasites

PLOS Computational Biology | www.ploscompbiol.org 6 December 2013 | Volume 9 | Issue 12 | e1003392



vitro gametocyte development [28]. Mature gametocytes appeared

in both drug-treated time course experiments 20 hours post

invasion, while in the control experiment, we observed an

expected progression from ring to trophozoite stages. The

presence of mature gametocytes at 20 hours could reflect a

differential killing effect of the drug on asexual stages versus

mature gametocytes; this would induce exactly the inferred

increase in relative proportion of gametocytes. A drug-induced

stalling of asexual development is predicted in both time courses,

as evidenced by the decreasing fraction of late asexual stages from

10 to 20 hours under drug treatment, compared with a constantly

increasing late asexual fraction in controls (Figure 4C).

Treatment with both compounds, but to a greater extent with

Genz-666136, resulted in an increasing proportion of transcrip-

tional signature that could not be assigned to one of our stage

categories (shown as ‘‘unknown’’, gray in Figure 4C). It is possible

that the increase in unknown transcriptional signature corresponds

to an increase in dying parasites across the drug-treated growth

experiment. By microscopy, stalled and dying asexual parasites

could be observed in both drug-treated time courses.

Application of the model for qRT-PCR–based inference of
stage composition in vitro and in malaria patients

We next sought to test a variation of the microarray-based

model for application to transcriptional measurements obtained by

PCR, which might eventually be more appropriate for a field

assay. As no MG marker that achieved our filtering criteria (see

Figure 1C) for qRT-PCR also matched both the high expression

levels and stage-specificity of the existing Pfs25 marker for

gametocyte detection, we assessed the utility of the YG and DG

markers in combination for the prediction of immature and

mature gametocyte quantities when applying the model to qRT-

PCR data. Specifically, PF14_0748 and PF14_0367 were likely to

represent immature (IG) and mature (MG) gametocytes in

combination, as PF14_0367 had a bg,s parameter similar to that

of Pfs25 in mature gametocyte stages. We therefore cross-validated

this 5-marker PCR set (Table 1) comparably to the 6-marker

microarray set, using the in vitro microarray time courses as

described above. The simplified model remained able to predict

stage distribution accurately, with a root mean squared error

comparable to that of the 6-marker model (Supplementary Figure

S1).

In order to create a qRT-PCR assay for our sentinel transcripts,

we designed exon-exon junction spanning primers (distinguishing

transcripts from genomic DNA) and sequence-specific probes

(distinguishing transcripts from non-specific background amplifi-

cation). Following confirmation that our primer/probe sets

selectively amplified cDNA and not genomic DNA or non-specific

products, we validated the stage-specific expression using in vitro-

derived asexual and sexual stage RNA (Table 1, and supplemen-

tary Figure S2A, and Table S5 for optimization and validation of

qRT-PCR parameters). For these experiments, we used the

gametocyte-producing reference line 3D7 and a gametocyte-

deficient clone thereof (termed F12 [29]) to confirm the stage-

specificity of each of our sentinel markers. Normalized expression

data from time courses of 3D7 and F12 confirmed stage-specificity

of our sentinel marker set (Supplementary Figure S2B). The

asexual markers alternate with respect to time points in which

there were predominately rings or trophozoites and schizonts in

the culture, with similar results for both the F12 and 3D7 lines.

The sexual markers demonstrate stage-specificity within the 3D7

time course and no appreciable expression in the F12 line once

normalized. Specifically, PF14_0748 expression is detected in the

early and mid gametocyte time points, while PF14_0367

expression is detected in both mid and late time points.

In vitro stage prediction using qRT-PCR. Having vali-

dated the stage-specificity of each marker in vitro and tested their

predictive-ability as a set in silico, we next compiled a larger set of in

vitro samples with known distributions of parasite life cycle stages in

order to tune a set of model parameters for stage prediction

specifically using qRT-PCR-based expression measurements. For

this purpose, we used the data from our in vitro validation on the

3D7 and F12 lines, in combination with additional in vitro samples

generated from across a 48-hour period of asexual development,

and a two-week period of gametocyte conversion. For the

additional data points, we used a transgenic line in 3D7

background, termed 164/GFP, that expresses fluorescent protein

under the gametocyte-specific PF10_0164 promoter [22]. This

parasite line enabled us to determine stage composition with high

accuracy by both Giemsa stain and fluorescence microscopy

throughout gametocyte development and starting at the earliest

stages (Figure 5 A/B). The model was trained on these qRT-PCR

datasets as described earlier for microarray data, again determin-

ing the contribution bg,s of each stage to our five markers’

expression and performing cross-validation to evaluate the final

prediction error rates per stage. Again, we see that the model

accurately predicts the absence of sexual stages in F12 and low

parasitemia cultures of 3D7 while predicting young gametocytes in

Table 1. Genes used in qRT-PCR assay.

Name Accession Stage-Specificity PCR Efficiency Limit of Detection

Skeleton-binding protein 1
(SBP1)

PFE0065w ring 90.43% 101 pg cDNA (appx 30 rings)

Alpha-beta hydrolase,
putative

PF10_0020 trophozoite/schizont 87.82% 103 pg cDNA (appx 1000 troph/
schizonts)

Plasmodium exported
protein (PHISTa)

PF14_0748 early - mid gametocyte 92.17% 102 pg cDNA (appx 30 immature
gametocytes)

Conserved Plasmodium
protein

PF14_0367 mid - late gametocyte 89.77% 103 pg cDNA (appx 20 mature
gametocytes)

Conserved Plasmodium
protein

PF11_0209 all stages 92.06% 102 pg cDNA (appx 500 total
parasites)

Details of the qRT-PCR compatible marker set selected by our combined filtering process. PCR efficiency was calculated based on the slope of the line after running a
series of 10-fold dilutions of mixed-stage cDNA (Figure S2A). Limit of detection was calculated based on the number of parasite stages estimated to be present in the
last dilution where the marker was detected. Detection limit ranged from 101–103 pg cDNA, corresponding to approximately 20–200 cells, depending on the stage.
doi:10.1371/journal.pcbi.1003392.t001
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Figure 5. qRT-PCR assay optimization. (A) We collected and analyzed a range of in vitro time points with varying contributions of asexual and
sexual stages, from both gametocyte-producing and non-producing lines of 3D7. Absolute number of parasites stages that went into each qRT-PCR
reaction well is plotted. (B) Relative qRT-PCR-based gene expression of stage-specific markers for R, T, IG and MG are shown for time points
corresponding vertically to those in part A. (C) Inferred proportion of each stage in the total parasite load (model predictions) are shown
corresponding vertically to the time points in A and B, plotted as a percentage of total parasites in that sample. (D) In vivo peripheral blood samples
from severe malaria patients in Blantyre, Malawi were collected and analyzed. Absolute numbers of parasites stages per mL of blood, as determined
by microscopy, are plotted. (E) Relative qRT-PCR-based gene expression of stage-specific markers for T, IG and MG (normalized to SBP1) is shown for
time points corresponding vertically to those in part D. (F) Inferred proportion of each stage (model predictions) are shown corresponding vertically
to the time points in D and E. Stars indicate subjects in which gametocytes were observed by highly sensitive thick smear examination (one or more
gametocytes in 100 high power fields).
doi:10.1371/journal.pcbi.1003392.g005

Table 2. Admission characteristics of severe malaria patients tested by qRT-PCR, Blantyre, Malawi, 2011.

Demographics

Mean age (months) 52.9

Age range (months) 5–156

Gender 47.3% female

Parasitemia

Geometric mean parasite density/ml [95% CI] 48349 [29051–80466]

Median parasite density/ml 74800

Parasite density range/ml 69–945500

Gametocytemia

Gametocyte prevalence (Screen of 100 HPF on thick smear) 11.9% (8/67)

Gametocyte density range/ml (Counts per 500 WBC on thick smear) 0–370

Blood was sampled from participants who met the clinical case description of cerebral malaria during the malaria transmission season in 2011. All patients were from
Blantyre, Malawi and surrounding areas. Parasitemia was measured by microscopy and qRT-PCR was performed on an RNA sample stored in trizol.
doi:10.1371/journal.pcbi.1003392.t002
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the high parasitemia 3D7 cultures (Figure 5C), similar to the

distribution seen in the early time points of the drug profiling

experiments (see Figure 4C). Developing and mature gametocytes

are observed in the later mixed gametocyte induction cultures

(Figure 5C).

Application of the qRT-PCR and model predictions to a

cohort of severe malaria cases. To finally test the sensitivity

of our system in an epidemiological context, peripheral blood

samples from a cohort of severe malaria patients in Blantyre,

Malawi were collected over the course of the malaria transmission

season in 2011 (see Table 2 for patient cohort characteristics).

Smears were quantified using standard methods of ring quanti-

fication (thin smear microscopy and grid) and detailed gametocyte

quantification (highly sensitive thick smear microscopy screen of

100 high power fields for positivity, then quantification against 500

white blood cells, see Figure 5D).

Of the 86 samples examined, 8 were gametocyte-positive by

thick smear. We performed qRT-PCR on these samples and 8

matched gametocyte-negative samples with equivalent parasit-

emias. Seven of the 8 (88%) microscopy-positive gametocyte

carriers were qRT-PCR positive for one or both gametocyte

markers, while only three of the 8 (38%) matched microscopy-

negative individuals were positive for either gametocyte marker,

with highest levels of expression observed in the microscopy-

positive gametocyte carriers (Figures 5E). This provides an

approximate baseline of error rates for existing single-marker

qRT-PCR approaches.

In comparison, our model provided additional detail, first

predicting that most patients have a ring-dominated profile as

expected in peripheral blood (Figure 5F). A number of individuals

were predicted to have trophozoites and schizonts, which has been

shown to be associated with severe malaria [30]. The model

predicted gametocyte fractions in four patients, all of which were

gametocyte-positive by thick smear. We thus achieve a compara-

ble false negative rate (50%) and a higher true positive rate (100%)

to single-marker qPCR as compared to standard thick-smear

microscopy.

Discussion

Several highly sensitive single-marker molecular assays are

currently used to detect Plasmodium gametocytes. None of these

existing tools have been appropriate for detection and quantifica-

tion of the relevant range of parasite stages present during

infection, however, due primarily to the lack of a sufficiently broad

panel of stage-specific markers. Further, since malaria parasite

populations exist as mixtures of the different phases of the life

cycle, assays combining multiple markers require customized

computational analysis methods for dealing with this complexity.

We combined the development of such a bioinformatic deconvo-

lution approach with panels of stage-specific, intron-containing

markers appropriate both for microarray analysis and a newly

developed qRT-PCR assay. This multi-marker platform enabled

us not only to detect gametocyte carriers but primarily to infer the

relative amounts of sexual and asexual stages within a sample. We

provide an implementation of this platform for further develop-

ment and application, particularly for refinement in field settings.

This process can also be adapted bioinformatically by the

exclusion or inclusion of markers to answer specific questions,

such as determination of parasite sex ratios that are known to

influence mosquito infectiousness [31].

Our deconvolution model provided the opportunity to define

stage-specific gene sets and to characterize the biology of these

stages’ expression programs using tools such as GSEA, even in the

absence of transcriptional data from pure stage populations. For

example, our GSEA analysis confirms earlier studies that

suggested increased mitochondrial and lipid metabolism during

gametocyte development [3,32]. Interestingly, the analysis also

suggests significant enrichment of several markers related to

endocytic trafficking in late gametocyte development but not in

any other parasite stage. The biological significance of this

observation remains to be determined. To put such findings into

context and ultimately describe the gametocyte transcriptome at

high resolution, a systematic transcriptional re-analysis of the

entire P. falciparum gametocyte cycle using isolated and synchro-

nous gametocyte stages will be required.

Transcriptional approaches have significantly increased the

sensitivity of gametocyte detection in field-compatible assays

[8,9,33,34,35]. However, these have been limited to either (i)

qualitative assessments of multiple gametocyte markers, i.e. RT-

PCR of immature and mature gametocyte markers [35], or (ii)

quantitative assessments of mature gametocytes only, i.e. QT-

NASBA of the gamete surface antigen Pfs25 [8]. In order to

properly define the reservoir of parasite and gametocyte carriers in

the field, it is imperative to determine both the absolute parasite

burden and the stage composition of parasites in the blood

circulation. Challenges have prevented the development of a

diagnostic that can measure the latter, such as (i) the lack of

transcriptional analysis methods to identify gametocytes with high

specificity in a sample containing a mixture of stages, (ii) the lack of

validated immature gametocyte markers, and (iii) the lack of

known intron-containing qRT-PCR compatible markers for all

stages. We tackled these challenges by developing a model specific

to the quantification process and ensuring that it was compatible

with both microarray and qRT-PCR measurements. This is

distinct, of course, from models that would focus only on sensitivity

and specificity of gametocyte detection from such data, which

represent a potentially fruitful course of future computational

investigation. Instead, by incorporating relative expression values

of the markers, the model allowed us both to identify a subset of

patients as gametocyte carriers and to additionally quantify sub-

categories of immature and mature gametocyte fractions within

the mixture of stages in the bloodstream.

Following validation of our model on samples for which stage

composition was known, we applied our model to two microarray

data sets in which stage composition was unknown: (i) a cohort of

uncomplicated malaria patients, and (ii) two in vitro growth

experiments in the presence of drug. In the former, we found

that both mean illness duration and hematocrit differed between

inferred gametocyte carriers and non-carriers, in agreement with

published data demonstrating that long illness duration and low

hematocrit is linked to gametocyte carriage [24]. In the latter, we

observed an increase in the fraction of mature gametocytes as well

as unexplained transcriptional signature upon the addition of drug

treatment to parasites. The enrichment of mature rather than

young gametocytes in response to drug treatment suggests that the

drug selectively kills asexual stages, leaving gametocytes unaffected

rather than inducing the development of new young gametocytes.

The increase in unexplained signatures likely indicates the

transition to unhealthy, dying parasite fractions. These applica-

tions demonstrate the range of potential uses for this inference

tool.

As the exon-exon junction spanning primer/probe sets for 5

markers designed here represent the first attempt at a multi-

marker gametocyte-staged qRT-PCR assay, further modeling of

PCR-specific measurement error and careful standardization of

experimental protocol for this difficult task will both improve field

inferences. Like the microarray expression model, however, this

Inferring Stage Composition in Malaria Parasites
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model successfully recapitulated the transition from asexual to

sexual development across multiple in vitro experiments even on

first application. When used initially in vivo for blood samples from

a cohort of children with severe malaria in Malawi, the system

successfully identified a subset of patients as immature and/or

mature gametocyte carriers. Because immature gametocytes in

particular are present in the body several days before the more

mature forms emerge, our approach for detecting them could be

used in further investigations into factors that influence gameto-

cyte conversion in vivo.

The assay and algorithm framework presented here has

potential for use in epidemiological studies such as those of

asymptomatic carriers, who likely represent a major reservoir for

malaria transmission. Multiple such studies are already ongoing

and will yield additional samples to further optimize computa-

tional models of gametocyte differentiation. This is also true of

data generated from other sensitive expression platforms such as

glass-slide arrays or Nanostring. The inference process may thus

have applications in better understanding the natural progression

of malaria in the human host, by identifying gametocytes earlier in

the course of infection and determining the impact of specific drug

treatments on gametocyte development. By scaling to future

population-level screens, the resulting information will help better

characterize the epidemiology of gametocytemia based on malaria

transmission intensity, geography, climate and season.

Materials and Methods

Ethics statement
The institutional review boards of the Harvard School of Public

Health, Brigham and Women’s Hospital, the University of Malawi

College of Medicine, and the Ministry of Health in Senegal

approved all or parts of this study. Consent was obtained from the

patient or a child’s guardian.

Patients and sample collection
Malawi patient isolates. Patients who enrolled in an

ongoing severe malaria study [36] at the Queen Elizabeth Central

Hospital during the 2009 and 2011 transmission season were

included in this study. These patients were between the ages of 1

month to 14 years of age and came from Blantyre, Malawi and

surrounding areas, where transmission is high and seasonal. All

patients enrolled in the study met the clinical criteria for severe

malaria, and severity was classified by Blantyre Coma Score [37].

The majority of patients were treated with an antimalarial drug

(majority received quinine) within the 24 hours prior to admission.

Parent or guardians of all children enrolled in the study were

consented in writing in their own language by local native-

speaking healthcare staff (nurse or doctor). The samples from the

2009 cohort have been described in detail in a recent publication

[23]. For the 2011 cohort, a venous blood sample was drawn at

admission and a 500 ml sample of whole blood was added directly

to Tri-Reagent BD (Molecular Research Center), mixed vigor-

ously and stored at 280 C until processing. Simultaneously, thick

and thin smears were collected and stored for later processing.

Patients were classified as ‘‘gametocyte-positive’’ if they had 1 or

more gametocytes in 100 thick smear high power fields (HPF). For

standard gametocyte quantification by thick smear, we quantified

gametocytes per 500 white blood cells (WBC).

Senegal patient isolates. Patients who enrolled in a study of

uncomplicated malaria in Thies, a low malaria endemicity suburb

of Dakar, Senegal in October 2008 during transmission season

were included in this study. Patients who presented to Section de

Lutte Antiparasitaire de Thies, with signs and symptoms of

malaria were offered enrollment if they had microscopic confir-

mation of malaria infection and had mild symptoms. At the time of

admission, a blood sample was taken from which 4.5 mL was

transferred into Tri-Reagent BD (Molecular Research Center),

shaken vigorously for 15 seconds, and frozen at 280uC for

transcriptional analyses. General demographic data, history of

illness and hematocrit were recorded. Samples were transported to

HSPH in a liquid nitrogen dry shipper, thawed in a room

temperature water bath and RNA isolated according to manu-

facturer’s instructions (Molecular Research Center). Simultaneous-

ly, thin smears were collected and stored for later processing.

P. falciparum asexual and sexual in vitro culture
A transgenic line, 164/GFP, of a gametocyte-producing clone of

the 3D7 strain of P. falciparum was used to produce the mixed stage

samples for model training and validation. This transgenic line,

which aided in the quantification of gametocyte stages, produces

stage-specific GFP expression under the PF10_0164 gene

promoter, as described previously [22]. A previously characterized

non gametocyte-producing clone, F12, of the 3D7 strain was used

to confirm stage-specificity of gametocyte markers [29]. Culture

conditions were as described previously [38], maintaining the

parasite line in O+ blood at 4% hematocrit in RPMI-1640 media

supplemented with 10% human serum. Cultures were kept at

37uC in a chamber containing mixed gas (5% CO2, 5% O2, 90%

N2). Prior to induction, asexual parasite cultures were synchro-

nized for two cycles with 5% D-sorbitol [39], and subsequently

induction of gametocytogenesis was performed according to the

Fivelman protocol [28]. Briefly, asexual parasites were grown to a

high parasitemia in the presence of partially spent (‘‘conditioned’’)

medium, and then sub-cultured at the schizont stage into new

dishes containing fresh media and erythrocytes. One of two

methods was used to reduce the amount of asexual stages in the

cultures: Treatment with D-sorbitol was applied on two days later

to lyse asexual trophozoite/schizont stages and selectively enrich

for unaffected early gametocytes, or N-Acetyl glucosamine was

added to the medium one day later and every subsequent day to

selectively kill asexual stages.

P. falciparum drug perturbations
A 3D7 line was used to study the effect of drug perturbations on

parasite growth. Culture conditions were performed as described

above. Asexual parasite cultures were synchronized for three

cycles with 5% D-sorbitol, and expanded to a parasitemia of 5–

6%. Hematocrit was increased from 3 to 6% at the late schizont

stage using fresh blood. Upon reinvasion drugs were added to the

culture at a concentration of 56IC50. Drug-treated and control

parasites were harvested at 10, 20, 30, and 40 hours post-invasion

and RNA was extracted (Qiagen).

Standard and fluorescence microscopy
In order to accurately quantify the stage distribution of parasites

in our in vitro samples, we used a combination of standard and

fluorescence microscopy. Parasite stage distribution was monitored

throughout the parasite synchronization and induction protocol

using Wright’s Giemsa stain applied to thin blood smears.

Quantification of asexual rings and trophozoite stages, as well as

developing and mature sexual stages was done directly by light

microscopy. In order to quantify early stages of sexual develop-

ment that are morphologically similar to asexual stages, we used a

combination of live imaging and immunofluorescence microscopy.

Live imaging was performed using the transgenic 164/GFP line.

Parasites were analyzed using the FITC channel on an inverted

epifluorescence microscope (Zeiss) and quantification was done of
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the proportion of GFP(+) parasites out of the total number of

Hoechst (+) parasites. Immunofluorescence assays were performed

with cell monolayers on glass slides, prepared as described

previously [40]. For labeling with the constitutive gametocyte

marker Pfs16, slides were fixed in ice-cold methanol, blocked with

5% nonfat dry milk powder, incubated with polyclonal mouse

antibody against Pfs16 (1:2500) [41], washed and incubated with a

secondary antibody conjugated to Alexa 488. Parasite nuclei were

labeled with DAPI and quantification was done on the proportion

of FITC(+) parasites out of the total number of DAPI(+) parasites.

For time points in which we had data from both live and

immunofluorescence experiments [41], the quantification of early

gametocytes from both methods was averaged to give the final

amount.

Quantitative reverse-transcriptase PCR assay
Primer & probe design. We have developed a quantitative

reverse-transcriptase PCR (qRT-PCR) assay for the quantification

of five key gene transcripts. The assay includes primers and probes

designed against the markers described in the Results section.

Primers and probes were designed by hand using the PrimerEx-

press software (Applied Biosystems) and following recommended

guidelines for qRT-PCR primer and probe design. Primers were

specifically designed to cross exon-exon junctions, so as to reduce

genomic DNA amplification. In addition both primers and probes

were checked for homology against Plasmodium or human

homologous sequences using PlasmoDB and NCBI Blast in order

to eliminate the chances of non-specific amplification (see also

Supplementary Table S5 for primer and probe validation).

RNA extraction, DNAse digest and reverse

transcription. RNA from mixed stage cultures was preserved

and extracted and processed as previously described [42]. Briefly,

samples were stored in TriReagent (Molecular Research Center)

until use. For sample processing, RNA was extracted by the

phenol-chloroform method followed by DNAse digest (Ambion),

and a second phenol-chloroform extraction for protein removal

and sample concentration. For first strand synthesis we used the

SuperScript III First Strand Synthesis kit (Invitrogen).

qRT-PCR assay optimization. Amplification of the correct

target sequence was confirmed by gel electrophoresis and melt

curve analysis using SYBR Green (BioRad). The ability of primer

pairs to discriminately amplify the cDNA product was determined

by performing qRT-PCR on mixed stage P. falciparum cDNA and

genomic DNA (same extraction, minus DNAse digest and reverse

transcription for genomic DNA). The possibility of non-specific

amplification with host template was ruled out by performing

qRT-PCR on cDNA and genomic DNA from a human whole

blood sample from which GAPDH was successfully amplified (data

not shown). Primer pair efficiencies were determined by calculat-

ing the slope of the crossing threshold (CT) values on 10-fold serial

dilutions of mixed stage cDNA (Supplementary Table S6).

Sensitivity assessment. Sensitivity of this assay was deter-

mined using 10-fold serial dilutions of mixed stage cDNA.

Sensitivity was estimated by calculating the amount of parasites

of each stage that were present in the sample at the limit of

detection by qRT-PCR.

Microarray expression analysis
RNA (from peripheral blood of Senegalese patients and

cultured in vitro drug perturbations) was assessed by Bioanalyzer

(Agilent), and high quality RNA samples were labeled and

hybridized to an oligonucleotide array (Affymetrix) custom-

designed for the P. falciparum 3D7 genome, PlasmoFB, as published

previously [5]. The raw CEL files were condensed into GCT

expression files using RMA and the default parameter settings in

ExpressionFileCreator in GenePattern [43].

Development and validation of the constrained linear
regression model

Development. A constrained linear regression model was

constructed to estimate the contribution of each stage to the

overall transcript abundance from training data

The total transcript abundance yg for each gene g was modeled

as a mixture of its abundance in each specific stage U,R,T,IG or

YG+DG and MG. The mixture fraction xs represents the

proportion of parasites in each stage s and is thus constrained

between zero and one.

Microarray model training to establish genome-wide

stage-specific expression. This model was first fit to estimate

the contribution of each stage to each transcript’s abundance,

parameters bg,s. Labeled training data were obtained from a

published in vitro time course [3,5] in which the stage-specific

parasite fractions xs were known from fluorescence microscopy.

The model was fit to these training data using lm, the linear model

method without an intercept, in R, resulting in a table of 5,159

genes across the 5 erythrocyte stage-specific parameters (Supple-

mentary Table S1).

Gene set enrichment analysis. GSEA was performed using

the pre-ranked bg,s parameters determined in this manner in

combination with a newly derived set of P. falciparum-specific gene

sets. For this purpose P. falciparum Gene Ontology [13] leaf

annotations were obtained from PlasmoDB and propagated into

the ontology using the Sleipnir functional genomics library [44].

Gene sets containing ,2 genes were removed, and overlapping

gene sets were merged (combining the top 10% of gene set pairs

ranked by the fraction of shared genes relative to the total size of

the smaller set). These gene sets were finally combined with the P.

falciparum pathways from KEGG [45]. Enrichment of the resulting

pathway sets (Supplementary Table S3) was then assessed in the

five pre-ranked parameter lists using GSEA over 1000 bootstraps.

Model application to predict stage distribution
Given the learned model parameters bg,s from stage-labeled data

with known xs, the model was inverted to infer the unknown stage

distributions xs in new samples. A quadratic programming

approach was used to solve the system of linear equations with

the constraint that the proportions of all stages must sum to 1 and

that each stage contributes a non-negative fraction of expression:

y~bT x

subject to S
s[fU ,R,T ,IG,MGg

xs~1

and x§0

We implemented this process in the R function quadprog and

solved for the stage distributions using the sets of six (for

microarrays) or five (for PCR data) markers ultimately selected

as follows.

Co-normalization of reference and inference data

sets. Microarray data sets. For model inference in microarray

data, missing values remaining in input microarrays were imputed

per dataset using the row mean across all samples. For each set of
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two or more training and inference datasets obtained in different

batches, values used in the modeling process were co-normalized

using quantile normalization. Datasets were first merged, retaining

only gene names common among both datasets and the resulting

merged data was jointly quantile normalized.

qRT-PCR data sets. Similarly for qRT-PCR expression values,

raw values were delogged using the formula to bring the data into

a range of log-scaled abundance counts comparable to microarray

samples. Missing values were imputed to the lowest detectable

limit on our qRT-PCR assay, which corresponds to a CT value of

50 or 3.23 in delogged expression space. Again considering sets of

reference and inference data together, data were median

normalized, such that all samples had the same median value

(i.e. adjusting expression values by subtracting the column median

and adding the global median).
Stepwise backward marker selection. To identify reduced

marker sets appropriate for inference, we used the model’s

inference process to perform in silico marker selection based on

greatest accuracy of stage inference in our labeled microarray

training data. Iteratively, model inference was performed on the

total labeled microarray time courses using the complete

transcriptome. Each individual gene was removed, the model re-

applied, and the marker inducing the smallest increase in inference

error removed. These steps were repeated to a minimum of five

markers, and the entire process repeated 15000 times. The

resulting whole transcriptome rankings were averaged to assign a

rank-average selection preference to retention of each Plasmodium

gene as one criterion for our reduced marker set.
Bootstrap cross validation. The model’s accuracy in each

labeled microarray and qPCR training set was evaluated by 10-

fold bootstrap cross validation. For each fold, one third of

conditions were selected for holdout with replacement to form a

test set. The model was fit as above to the remaining training data

and its accuracy in predicting new expression samples was

calculated using a per stage root mean square error in the test set.

Supporting Information

Figure S1 Performance of the 5 marker model on
published microarray data sets. (A). Actual and (B) inferred

stage distributions across five microarray time courses (two asexual

and three sexual) with reference stage distributions determined by

microscopy. Five markers were used to make these predictions

(Table 1). (C). Bootstrap cross-validation of error rates expected per-

stage in model inferences. Violin plots show expected density, with

internal boxplots detailing the 25th–75th percentiles and 1.56fences.

(TIF)

Figure S2 qRT-PCR assay optimization. (A) Efficiency of

qRT-PCR reactions using 10-fold dilutions of mixed parasite

cDNA. 4 to 6 dilutions were assessed for each primer, and

efficiencies were in the acceptable range for all 5 primers (87–92%).

R2-values were all greater than 0.96. Technical variation between

replicates was very low: the average standard deviation between

technical replicates was 0.243 and ranged between 0.01 and 1.543.

(B) Stage-specificity of qRT-PCR markers. Using two clones of 3D7,

F12 (gametocyte deficient) and wild type (gametocyte producer), we

performed in vitro gametocyte inductions and collected parasite

samples for microscopy and qRT-PCR at days 21, 0, 1, 5, 10

according to the Fivelman et al protocol [28]. Results, displayed as

relative expression normalized to constitutively expressed marker

PF11_0209, confirm stage-specificity of markers.

(TIF)

Table S1 Annotated gene list and metadata. Annotations

of the 5160 genes in the P. falciparum transcriptome used in the

analysis, including the frequency of selection in our subsampling

and backward selection steps, presence of an intron, contribution

of expression to stage, determination of stage specificity, product

description and population genetic parameters of total SNP

counts, diversity and divergence.

(XLSX)

Table S2 Complete GSEA results per stage. Results for

each stage in our microarray model, wherein the per gene z-scored

contributions of expression to that stage were ranked and were

characterized for enrichment in functional pathways.

(XLSX)

Table S3 GSEA gene sets. Gold Standard Catalog of GO and

Kegg pathways obtained from individual GO slims from

PlasmoDB and the GO ontology integrated into the GO

hierarchical structure.

(XLSX)

Table S4 Clinical parameter data for Senegal cohort.
GraphPad Prism Version 6.0 was used to compare two groups

(those inferred to have gametocytes and those not inferred to have

gametocytes) for six continuous variables measured at admission:

age, hematocrit, temperature, illness duration, height, and weight.

A multiple t-test analysis was performed, analyzing each variable

individually, and then using false discovery rate (Q = 0.25) to

determine significance.

(DOCX)

Table S5 Additional qRT-PCR assay optimization data.
Primers were specifically designed to cross exon-exon junctions, so

as to reduce genomic DNA amplification, and were checked for

homology against Plasmodium or human homologous sequences

using PlasmoDB and NCBI Blast in order to eliminate the chances

of non-specific amplification. Using our primer set with sequence-

specific probes showed no cross-reactivity with genomic DNA or

human templates. Our primer sets also greatly reduced the

amount of genomic DNA amplification even using SYBR (CT.39

as compared with DNA-amplifying control marker at CT = 25),

yet it was not zero.

(DOCX)

Table S6 Primer and probe sequences used in qRT-
PCR. Sequences for the reverse and forward primers and minor

groove-binding fluorescent probes used in the qRT-PCR assay.

(DOCX)
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