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Abstract
Podocytes are specialized cells that contribute critically to the normal structure and function of the
glomerular filtration barrier. Their depletion plays an important role in the pathogenesis of
glomerulosclerosis. Here, we report generation of a genetic model of conditional podocyte
ablation and regeneration in zebrafish using a bacterial nitroreductase strategy to convert a
prodrug, Metronidazole, into a cytotoxic metabolite. A transgenic zebrafish line was generated
that expresses a green fluorescence protein (GFP) and the nitroreductase fusion protein under the
control of the podocin promoter Tg(podocin:nitroreductase-GFP). Treatment of these transgenic
zebrafish with Metronidazole results in podocyte apoptosis, a loss of nephrin and podocin
expression, foot process effacement, and a leaky glomerular filtration barrier. Following
Metronidazole washout, proliferating cells were detected in the glomeruli of recovering transgenic
fish with a restoration of nitroreductase-GFP fluorescence, nephrin and podocin expression, a
reestablishment of normal foot process architecture and glomerular barrier function. Thus, our
studies show that zebrafish podocytes are capable of regenerating following depletion and
establish the Tg(podocin:NTR-GFP) fish as a new model to study podocyte injury and repair.
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Introduction
The kidney is a vital organ that performs a number of essential functions including blood
filtration and clearance of endogenous waste products. Podocytes are specialized epithelial
cells that contribute critically to the kidney’s “filtration apparatus”. Podocyte dysfunction
and/or damage has been associated with both acute and chronic glomerular diseases
including focal segmental glomerulosclerosis, diabetic nephropathy and HIV nephropathy
(1, 2, 3, 4–6). Podocyte depletion leads to glomerulosclerosis in murine models and recent
studies suggest that short-lived localized insults can trigger a cascade of secondary damage
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that causes more global injury (7–9). Understanding how podocytes respond to injury and
whether they are capable of regeneration will provide valuable information for the
development of new therapies that seek to replace damaged or lost podocytes (10).

The Zebrafish is a widely used vertebrate model organism for the study of developmental
mechanisms and disease pathologies for many organs. It combines many advantages
including genetic tractability of both forward and reverse genetics, accessibility to
observation and manipulation during organogenesis, and a great capability for regeneration
after injury(11–18). Studies from multiple groups have established zebrafish as a useful
model system to study kidney development and function(19–22). Despite the structural
simplicity of the zebrafish pronephros, consisting of a single glomerulus in connection with
two pronephric tubules, it possesses a glomerular filtration apparatus with a similar
complexity to that of the mammalian kidney(21, 23). More recently, it has been utilized as
an alternative in vivo model for studying kidney injury and regeneration (16, 24–26).

The zebrafish kidney has a remarkable ability to regenerate after injury, and kidney stem/
progenitor cells have been identified in adults(16, 26). Similar to a recent report (27), we
have independently established two transgenic zebrafish lines where green fluorescence
protein (GFP) and a fusion protein of GFP and the bacterial nitroreductase (NTR) are
expressed in podocytes under the control of the podocin promoter. In the Tg(podocin:GFP)
line, the podocytes are fluorescently tagged allowing them to be visualized, isolated, and
tracked in vivo whereas the Tg(podocin:NTR-GFP) line utilizes bacterial NTR to convert
the nontoxic pro-drug metronidazole (Mtz) into a cytotoxic, DNA cross-linking agent that
induces cell death(28, 29). Here, we report that specific podocyte ablation and glomerular
dysfunction occurs in Tg(podocin:NTR-GFP) embryos after treatment with Mtz.
Interestingly, following Mtz washout there is a recovery of glomerular filtration barrier
function that is associated with podocyte proliferation in the glomerulus and a restoration of
normal podocyte foot-process architecture. These findings suggest that zebrafish podocytes
are capable of regeneration following depletion and establish the Tg(podocin:NTR-GFP)
line as a useful model to identify new therapeutic targets involved in the response of
podocytes to injury.

Results and Discussion
Expression of GFP and GFP-NTR under the control of podocyte specific podocin promoter

We isolated a 3.5-kb DNA fragment located upstream of the podocin gene that has
previously been found to contain the mouse podocin promoter (30, 31). We subsequently
ligated GFP and GFP-NTR under the control of this promoter in the Tol2 transposon vector
and injected zebrafish embryos with these constructs (32)(Fig. 1A). By out-crossing with
wild type fish, we identified 4 independent founders for both transgenic fish lines,
Tg(podocin:GFP) and Tg(podocin:NTR-GFP) respectively. Embryos from each of the
founders displayed identical expression patterns in which GFP was expressed exclusively in
the region of the pronephric glomerulus from 60 hours post-fertilization (hpf) by
fluorescence microscopy (Fig. 1B). The founders with the strongest GFP expression were
used to collect embryos for study and line maintenance. Consistent with these lines
expressing GFP in podocytes, we found that the GFP signal localized to the site of nephrin
expression (Fig. 1C), and they both colocalized with the site of NTR expression in
Tg(podocin:NTR-GFP) laval fish (Fig. 1D).

Conditional ablation of podocytes results in a loss of podocyte marker expression and the
slit diaphragm, and defective glomerular barrier function

We next determined the conditions under which Mtz will induce conditional ablation of
podocytes. Wild type, Tg(podocin:GFP) and Tg(podocin:NTR-GFP) larval fish at 70 hpf
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were incubated with Mtz for 12–48 hours at concentrations ranging from 1–20 mM.
Exposure to Mtz for 12 hours resulted in pericardial edema in Tg(podocin:NTR-GFP) larval
fish, consistent with renal failure (Fig. 2A). The extent of pericardia edema was more
pronounced with increasing Mtz concentration or prolonged exposure even when low (2
mM) concentration of Mtz was used (data not shown). Concomitant with the presence of
pericardial edema, the intensity of the GFP signal in the glomerulus of Mtz treated
Tg(podocin:NTR-GFP) larval fish was significantly reduced in a dose dependent fashion
(Fig 2B). A robust effect was found when Tg(podocin:NTR-GFP) embryos were exposed to
Mtz at 4 or 10 mM for 12 hours with ~95% (n=41/43) of the animals showing a dramatic
reduction or loss of GFP fluorescence in the glomerulus (Fig. 2B and 2C, b). No effects on
GFP signal or the appearance of pericardial edema was observed in Mtz treated
Tg(podocin:GFP) embryos for 12 or 48 hr (Fig. 2A left panel, and 2C, a). When Mtz
concentrations >20 mM were used we observed non-specific toxicity, characterized by
necrosis of the larva without significant pericardial edema in all groups (Tg(podocin:NTR-
GFP), Tg(podocin:GFP) and wild type fish; data not shown). Whole mount in situ
hybridization showed that the loss of GFP fluorescence induced by Mtz was concomitant
with loss of the expression of nephrin (Fig. 2C, d and Fig. 4A, j and k) and podocin in the
glomerulus (Fig. 4A, f and g). Despite significant edema and reduced expression of GFP/
nephrin/podocin induced by Mtz in Tg(podocin:NTR-GFP) animals, we did not detected any
abnormalities or change of gene expression in Mtz treated Tg(podocin:GFP) and wild type
larval fish, or in Tg(podocin:NTR-GFP) larval fish without Mtz treatment. Ultrastructural
examination of the glomerulus from Mtz treated Tg(podocin:NTR-GFP) larval fish by
electron microscopy (EM) revealed the presence of podocyte foot process effacement (Fig.
3A, b). A more severe disruption in foot process architecture and areas of podocyte
denudation was detected in animals following exposure to Mtz for 72 hours (Fig. 3A, d).
Consistent with this, quantitation of the podocytopathy by classifying the areas of injury into
mild, moderate, severe, and denuded (Fig. 3B), according to established methods (25),
confirmed that 72 hrs of Mtz treatment caused greater injury than 12 hrs of Mtz treatment
(Fig. 3C). Interestingly, despite severe damage of podocytes in some of the Mtz treated fish,
the morphology of the glomerular basement membrane and the endothelium remained well
preserved (Fig. 3A, d), indicating that the NTR mediated cell damage is confined to
podocytes.

NTR is known to induce cell death by converting Mtz into a DNA cross-linking agent (33).
In line with this, chromatin condensation, a hallmark of the onset of apoptosis, was clearly
detected by EM in some of the podocytes in Mtz treated Tg(Podocin:NTR-GFP) larval fish
(Fig. 3A, c). We further investigated Mtz induced podocyte apoptosis using the TUNEL
assay (Fig. 2C, e and f). While no apoptotic cells were detected in the glomeruli of Mtz
treated wild type (data not shown) and Tg(Podocin:GFP) (Fig. 2C, e) controls (n=30
respectively), we observed strong apoptotic signals in the glomeruli of Mtz-treated
Tg(Podocin:NTR-GFP) animals (n=30) (Fig. 2C, f). These apoptotic cells co-stained with
the anti-panCrb antibody, which recognizes the Crumbs protein Crb2b on podocytes (34),
confirming that the dying cells were podocytes (Fig. 2C, f). Taken together, these results
indicate that apoptosis of podocytes is responsible for the loss of GFP fluorescence and
nephrin/podocin expression in the glomeruli of Mtz-treated Tg(Podocin:NTR-GFP) animals.
However, we cannot rule-out that NTR-induced injury downregulates podocin and nephrin
expression independently of podocyte cell death or that podocyte cell death causes
secondary damage to surrounding cells such as the endothelium, pronephric tubules, and
mesangial cells. Interplays between podocyte, endothelial cells and mesangial cell has been
suggested to be critical for the survival and/or development of the complex architecture and
function of the glomerulus (35–38).
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Albuminuria is considered to be a hallmark of glomerulopathy and has been widely used as
an important clinical marker for diagnosis, monitoring disease progression and remission in
patients with chronic kidney diseases (39, 40). To functionally assess the effects of podocyte
depletion on the glomerular filtration barrier of Mtz-treated Tg(Podocin:NTR-GFP) animals,
we injected rhodamine-conjugated albumin into the circulation of larval fish. If the
glomerular filtration barrier is compromised, the albumin tracer will pass into the
pronephros and be taken up by proximal tubule cells. 5–6 hours after injection, rhodamine-
albumin containing vesicles were detected inside the cells of the pronephric tubules in Mtz
treated Tg(Podocin:NTR-GFP) larval fish (Fig. 4B, middle), but not in Tg(Podocin:NTR-
GFP) larval fish without Mtz treatment (Fig. 4B, left panel) or in Mtz treated
Tg(Podocin:GFP) fish (data not shown).

Structural and functional recovery of podocytes after NTR/Mtz induced podocyte ablation
Although still controversial in mammals, recent studies have shown that the zebrafish
kidney contains renal stem/progenitor cells and regenerates after acute kidney injury(16, 26).
To investigate the regenerative capacity of podocytes after NTR/Mtz-mediated ablation, we
performed Mtz washout experiments. After treatment with 4 mM Mtz for 12 hours, Mtz was
washed away and the fish were observed periodically under light and fluorescence
microscope to assess their pericardial edema and glomerular GFP fluorescence. Four days
post Mtz washout, weak but visible GFP signal re-appeared in the glomeruli of
Tg(podocin:NTR-GFP) animals. By 7 days post Mtz washout, the glomerular GFP
fluorescence had become more intense and both nephrin and podocin transcripts could be re-
detected (Fig. 4A, d, h, l). In addition, the pericardial edema had resolved (data not shown).

To determine whether the re-appearance of GFP fluorescence and expression of podocin and
nephrin also results in a corresponding recovery in the structure of the previously ablated
glomerulus, we examined podocyte ultrastructure by EM. A re-establishment of slit
diaphragms was found in Mtz-treated Tg(podocin:NTR-GFP) animals starting at 4 days post
Mtz washout although the majority of podocytes displayed a ‘moderate’ degree of
effacement at this stage (Fig. 3A, e, and 3C). At 7 days post Mtz washout, well-formed foot
processes linked by slit diaphragms were found with the majority of podocytes showing only
a ‘mild’ degree of effacement (Fig. 3A, f and 3C). A recovery in the glomerular barrier
function was examined by the rhodamine conjugated-bovine albumin filtration. In
Tg(podocin:NTR-GFP) animals 7 days post Mtz washout, no rhodamine-albumin-positive
vesicles were detected in the proximal tubules (Fig. 4B, right panel) consistent with a
functional recovery of the NTR/Mtz damaged glomerulus.

To understand whether podocyte proliferation contributes to the recovery of the NTR/Mtz-
damaged glomerulus, cell proliferation was examined by 5-bromo-2-deoxyuridine (BrdU)
labeling. BrdU was injected into circulation and two to four hours later, larval fish were
fixed and BrdU incorporation detected by immunofluorescence staining using anti-BrdU
antibody. A low level of BrdU incorporation was seen in glomeruli from Tg(podocin:NTR-
GFP) larval fish without Mtz treatment (Fig. 4C, left panel). Despite the presence of BrdU
labeling in neighboring cells of the glomerulus and pronephric tubules, almost no BrdU
incorporation was detected in the glomeruli in Tg(Podocin:NTR-GFP) larval fish treated
with Mtz for 12 hours. The GFP fluorescence signal was also significantly reduced in the
glomerulus of these animals (Fig. 4C, middle panel). However, greatly increased BrdU
labeling was observed in Tg(podocin:NTR-GFP) animals 7 days post Mtz washout. The
majority of these BrdU labeled cells also expressed GFP, consistent with being podocytes
and implicating podocyte proliferation in the glomerular recovery from NTR-induced injury.

In summary, we have shown here the utility of the Mtz/NTR system to cause glomerular
damage by using the podocin promoter to specifically restrict the apoptotic-inducing effects
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of NTR to podocytes. This system is temporally inducible, highly efficient, and the duration
of the ablation can be exquisitely controlled by washout experiments. Using this genetic
tool, we demonstrated that podocyte depletion leads to effacement and a loss of slit
diaphragms and glomerular barrier function. Remarkably, about a week following Mtz
washout, the glomerulus is able to recover functionality, restoring foot process architecture
and filtration integrity. This regeneration is associated with podocyte proliferation,
suggesting that zebrafish podocytes can re-enter the cell cycle and replenish cells lost to
injury. Alternatively, new podocytes may be derived from a resident stem/progenitor cell
population, such as the putative CD133+CD24+CD106+ stem cells identified in the
Bowman’s capsule of human glomeruli (41). By combining this tool with forward genetic or
chemical screens it should now be possible to identify new genes and novel compounds that
accelerate podocyte recovery from injury

CONCISE METHODS
Zebrafish culture

Wild type and transgenic zebrafish (Danio rerio) embryos, larvae and adult fish were raised
and maintained under standard laboratory conditions(42).

Chemicals, reagents and antibodies
Rhodamine B isothiocyanate conjugated bovine albumin, FITC-dextran 10 kDa, 5-bromo-2-
deoxyuridine (BrdU), Metronidazole (Mtz) were purchased from Sigma-Aldrich (St. Louis
MO). The terminal deoxynucleotidyl transferase–mediated deoxyuridinetriphosphate nick
end-labeling (TUNEL)-In Situ Cell Death Detection Kit, TMR red was from Roche (catalog
no. 12156792910). Mouse anti –BrdU antibody was purchased from Invitrogen. The rabbit
anti-panCrb antibody was a kind gift from Dr. J. Malicki (34, 43). Fluorescence conjugated
secondary antibodies were obtained from Jackson laboratory.

Generation of Podocin driven GFP and GFP-Nitroreductase constructs and zebrafish lines
A 3540 bp DNA fragment from zebrafish genomic DNA corresponding to the 5′ end of the
zebrafish podocin gene was cloned by PCR amplification using primers (forward) 5′-
TACGCTTGAGCAACTAAATGAATGGC-3; (reverse) 5′-
GTGAAGTGTCCTCTGGTGTTTGG-3′. The PCR fragment was subsequently cloned into
a pGEM-T Easy vector (pGEM-PodP). To generate the constructs for Tg(podocin:NTR-
GFP) and Tg(podocin:GFP) transgenic fish, we use the pTol2-Slc2a15b-NTR/GFP and
pTol2-Slc2a15b-GFP constructs (Dr. Davidson, NZ) as templates to replace the Slc2a15b
promoter with podocin promoter fragment. After obtaining pTol2-podocin:GFP and pTol2-
podocin:NTR-GFP constructs, they were co-injected with Tol2 transposase RNA(32) into
two-cells stage zebrafish embryos for genomic integration and generating stable transgenic
lines. Adult carriers of Tg(podocin:GFP) and Tg(podocin:NTR-GFP) were identified by
screening their progeny for GFP fluorescence. Adult fish expressing transgene were out-
crossed to wild type fish to obtain the germ-line transgenics.

NTR/Metronidazole mediated podocyte ablation
Zebrafish embryos were collected from timed pair mating of F1 Tg(podocin:GFP),
Tg(podocin:GFP-NTR) and wild-type fish about 60–70 hpf (with visible GFP fluorescence
in the glomerulus) and dechorionated. Mtz was freshly prepared in 0.1% ETOH and added
to fish water. The larval fish were treated with various concentrations of Mtz for 12, 24, 48
and 72 hours in the dark. For recovery experiment, the Mtz-containing medium was replaced
with 3–4 changes of fresh embryo medium, and embryos/ larvae were returned to 28°C, and
monitored every 6–12 hours. Minimal 15 embryos/larvae were in each group under each
treatment condition. Each experiment was repeated for at least three times. The control
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experiment was set up as following: wild-type +ETOH (control 1); Tg(Podocin:NTR-GFP)
+ ETOH (control 2); wild-type +Mtz (control 3) and Tg(podocin:GFP) +Mtz (control 4) and
Tg(podocin:NTR-GFP) +Mtz (experiment). The morphology of the fish and the intensity of
the fluorescence signal in the glomerulus were monitored by stereomicroscope and
fluorescence microscope respectively.

Whole mount in situ hybridization
Whole mount in situ hybridization was performed as previously reported (44) with the
modification of longer proteinase K treatment of 30 minutes for 4 dpf embryos and 1 hour of
treatment for fish at or beyond 7 dpf.

Transmission electron microscopy
Zebrafish larvae were first fixed in 4% paraformaldehyde/PBS at 4°C overnight, then
transferred to 2.0% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4 (Electron
Microscopy Sciences, Hatfield, PA) overnight at 4°C, then rinsed in cacodylate buffer and
post-fixed in 1.0% osmium tetroxide in cacodylate buffer for one hour at room temperature,
followed by dehydration through a graded series of ethanol to 100%. They were then
infiltrated with Epon resin (Ted Pella, Redding, CA) in a 1:1 solution of Epon: 100%
ethanol overnight on a rotator. The following day, they were embedded in fresh Epon at
60°C overnight. Thin sections were cut on a Leica EM UC7 ultramicrotome, collected onto
formvar-coated grids and stained with uranyl acetate and lead citrate. All grids were
examined in a JEOL JEM 1011 transmission electron microscope at 80 kV. Images were
collected using an AMT digital imaging system (Advanced Microscopy Techniques,
Danvers, MA).

TUNEL cell death assay
The terminal deoxynucleotidyl transferase–mediated deoxyuridinetriphosphate nick end-
labeling (TUNEL) assay was performed using the In Situ Cell Death Detection Kit, TMR
red (Roche catalog no. 12156792910) and follow manufacturer’s instruction with
modification. After staining, fish embryos were embedded in 2% agarose block, dehydrated
and embedded in JB-4 resin (Polysciences). After polymerization, the resin block was cut
into 5 μM-thick section, mounted and viewed under fluorescence microscopy.

Glomerular filtration assay
Zebrafish larvae aged 3.5–4 dpf were anaesthetized with Tricaine prior to injections.
Rhodamine B isothiocyanate conjugated bovine albumin (Sigma) was diluted in PBS to
make a final concentration of 1 mg/ml. FITC-dextran 10 kDa was diluted to 10mg/ml in
PBS. Approximately 23 nl of rhodamine-albumin or FITC-dextran solution was injected into
retro-orbital vasculature in each animal. Six hours after injection, animals were harvested
and fixed in 4% paraformaldehyde/PBS, and processed for embedding in JB-4 resin as
mentioned previously. Finally the block was sectioned and viewed directly under
fluorescence microscopy. In addition to rhodamine conjugated-albumin, FITC-dextran of 10
kDa (10 mg/ml, 23 nl total) was also injected into each animal as an internal control. In
some of the recovery experiments, 10 kDa FITC-dextran was avoided because of the
interference of FITC dextran signal with the re-appearance of GFP signal in recovered
podocytes. 10 kDa FITC dextran is freely filtered by the glomerulus into the tubules system
and be uptake by tubular cells. However, the rhodamine labeled albumin will not be filtered
under normal circumstance by the glomerulus and therefore will not appear in the tubular
system/tubular cells unless there is a leakiness/destruction of the glomerular filtration
barrier. This assay has frequently been used as a readout of the permeability/barrier function
of the glomerulus in animals (45).
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Cell proliferation assay- BrdU incorporation
5-bromo-2-deoxyuridine (BrdU) (Sigma) was diluted in PBS to make a final concentration
of 100 uM. Approximate 23 nl of the BrdU solution was injected into each animal. Two
hours after BrdU injection, animals were harvested and fixed in 4% paraformaldehyde/PBS
and processed for JB4 embedding. After section, tissues slices were stained with anti-BrdU
antibody following manufacturer’s instruction (Invitrogen).
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Fig. 1. GFP and NTR-GFP expression under the 3.5-kb podocin promoter
A. Constructs used to generate the podocin driven GFP (left panel) and NTR-GFP (right
panel) transgenic lines are shown respectively. B. GFP expression in glomeruli from
transgenic fish Tg(podocin:GFP)(left panel, arrow) and Tg(podocin:NTR-GFP)(right panel,
arrow). C. GFP expression (panels in B) overlaps with nephrin expression in glomeruli from
Tg(podocin:GFP) (left panel, arrow) and Tg(podocin:NTR-GFP) (right panel, arrow)
embryos. D. NTR is expressed in glomeruli from Tg(podocin:NTR-GFP)(right panel,
arrows), but absent in glomeruli from Tg(podocin:GFP) embryos (left panel).
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Fig. 2. Metronidazole induces podocyte specific ablation
A. Mtz induced pericardial edema is seen in Tg(podocin:NTR-GFP) fish (right panel,
indicated by the arrowhead) but not in Tg(podocin:GFP) fish (left panel). B. Treatment with
Mtz results in attenuation and eventually loss of the GFP signal in the glomerulus of
Tg(podocin:NTR-GFP) animals in a dose dependent manner (live images of glomeruli are
shown in the upper panels and quantitation of fluorescence is shown in the lower graph). *
indicates p<0.05, ** indicates p<0.01. C. A loss of GFP fluorescence and nephrin transcripts
is seen in the glomeruli of Tg(podocin:NTR-GFP) fish (b and d respectively), but not in
Tg(podocin:GFP)(a and c respectively) after treatment with Mtz for 12 hours. Arrows
indicate the glomerulus. TUNEL-positive apoptotic cells (red) that co-label with the anti-
panCrb antibody (green) are detected in the glomerulus of Mtz treated Tg(podocin:NTR-
GFP) animals (f, arrows), but not in Mtz treated Tg(podocin:GFP) fish (e). N, notochord. *
indicates the glomerulus.
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Fig. 3. Ultrastructural examination of podocytes in Mtz treated Tg(podocin:GFP) and
Tg(podocin:NTR-GFP) fish larvae
A. Electron microscopy examination of Mtz treated Tg(podocin:GFP) larval fish shows
normal podocyte morphology, intact foot processes and normal appearing glomerular
basement membrane (a). Examination of Tg(podocin:NTR-GFP) fish treated for 12 hours
with Mtz reveals the presence of foot process enfacement (b and c, indicated by arrows).
Chromatin condensation and early nuclear fragmentation in podocytes is clearly seen at 12
hours post exposure to Mtz indicating podocyte apoptosis (c). A complete loss of foot
process and significant podocyte destruction are observed in fish treated with Mtz for 72
hours (d), however, the morphology of neighboring endothelial cells appear grossly normal
with intact intercellular junctional structures and glomerular basement membrane (b and d,
arrowheads indicate intercellular junctional structures). 4 days after Mtz washout, foot
process-like structures appear attached to the glomerular basement membrane in the
glomerulus (arrows in e). 7 days after washout, near complete recovery of foot processes
and slit diaphragms are found in the glomerulus (f). B. The change in podocyte
ultrastructure in response to Mtz treatment and subsequent recovery after Mtz washout is
categorized into mild, moderate, severe and denuded injuries based on established methods
(25). C. Quantitation of damage of podocytes after Mtz treatment and podocyte recovery 4
day and 7 days after Mtz washout. Podo, podocyte. Endo, endothelial cell. BS, Bowman’s
space. Cap, capillary space.
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Fig. 4. Dynamic changes in gene expression, glomerular function, and cell proliferation during
Mtz induced podocyte injury and recovery after Mtz washout
A. GFP fluorescence is reduced and then absent after Mtz treatment for 12 and 48 hours,
respectively (b–c), but reappears at 7 days after Mtz wash out (d). Arrows indicate the
glomerulus. Whole mount in situ hybridization for podocin (f–h) and nephrin (j–l)
transcripts reveals the concomitant loss and re-appearance of expression corresponding with
the change in GFP fluorescence in the glomerulus of Mtz-treated Tg(podocin:NTR-GFP)
animals. No change in GFP expression (a), or podocin (e) and nephrin (i) expression is seen
in the glomerulus of Tg(podocin:NTR-GFP) animals without Mtz treatment. B. Assessment
of glomerular filtration function using the rhodamine-conjugated albumin filtration assay. 5–
6 hours after retro-orbital injection of rhodamine-albumin, rhodamine-albumin containing
vesicles are detected inside pronephric tubule cells of Mtz treated Tg(Podocin:NTR-GFP)
fish (middle panel, inset shows a higher magnified view of the tubule with arrowheads
indicating red rhodamine-albumin containing vesicles inside the proximal tubular cells).
Rhodamine-positive vesicles are not seen in untreated Tg(Podocin:NTR-GFP) control fish,
although the uptake of freely filtered 10 kDa FITC-dextran is detected in these animals (left
panel, arrowhead in inset indicates green FITC-dextran containing vesicles). No rhodamine-
positive vesicles are seen in the pronephric tubule cells in recovered Tg(Podocin:NTR-GFP)
animals at 7 days post Mtz washout (right panel). C. Detection of proliferating cells by
BrdU incorporation. A small number of BrdU-positive cells are seen in the glomerulus of
untreated Tg(podocin:NTR-GFP) laval fish (left panel, arrow indicates the red-colored BrdU
signal in the nucleus. Green fluorescence marks NTR-GFP expressing podocytes). In

Huang et al. Page 13

Kidney Int. Author manuscript; available in PMC 2013 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Tg(Podocin:NTR-GFP) fish larvae treated with Mtz for 12 hours, despite the presence of
BrdU labeling in neighboring cells of the glomerulus and pronephric tubules (arrows),
almost no BrdU incorporation is detected in the glomerulus and the GFP fluorescence of
podocytes is significant reduced (middle panel). Greatly increased BrdU staining is detected
in the glomerulus of Tg(podocin:NTR-GFP) fish at 7 days post Mtz washout (right panel)
(arrows). Overall GFP fluorescence is also increased in the glomerulus of these recovered
animals. Some of the BrdU labeled cells are apparently also expressing GFP. N, notochord.
Pt, pronephric tubule. * indicates glomerulus*.
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