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ABSTRACT

In vitro recombination methods have enabled one-
step construction of large DNA sequences from
multiple parts. Although synthetic biological
circuits can in principle be assembled in the same
fashion, they typically contain repeated sequence
elements such as standard promoters and termin-
ators that interfere with homologous recombination.
Here we use a computational approach to design
synthetic, biologically inactive unique nucleotide
sequences (UNSes) that facilitate accurate ordered
assembly. Importantly, our designed UNSes make it
possible to assemble parts with repeated terminator
and insulator sequences, and thereby create
insulated functional genetic circuits in bacteria and
mammalian cells. Using UNS-guided assembly to
construct repeating promoter-gene-terminator
parts, we systematically varied gene expression to
optimize production of a deoxychromoviridans bio-
synthetic pathway in Escherichia coli. We then used
this system to construct complex eukaryotic AND-
logic gates for genomic integration into embryonic
stem cells. Construction was performed by using
a standardized series of UNS-bearing BioBrick-
compatible vectors, which enable modular assembly
and facilitate reuse of individual parts. UNS-guided
isothermal assembly is broadly applicable to the
construction and optimization of genetic circuits
and particularly those requiring tight insulation,
such as complex biosynthetic pathways, sensors,
counters and logic gates.

INTRODUCTION

Synthetic bacterial pathways and circuits are of great
interest for the production of industrial chemicals (1–3)

and biofuels (4–7), as well as for biosensing (8,9) and bio-
medical purposes (10–14). A major goal of synthetic
biology is to facilitate these efforts by enabling the
assembly of multigene circuits in which each part
performs its function predictably, while minimizing unex-
pected interactions between parts (15,16).
Although such circuits can be assembled one piece at a

time (17), serial manipulations are time-consuming, espe-
cially when libraries or multiple design-build-test cycles
are required to achieve the desired functionality (18).
Homologous recombination-based methods such as
Gibson isothermal assembly (19) allow the simultaneous
assembly of multiple DNA parts and have been used to
re-create large natural sequences such as whole genomes
(20–22). However, the construction of synthetic circuits
can pose additional challenges.
Synthetic circuits are often designed to incorporate

standard, insulated parts (15,23,24). Standard parts are
desirable because they can be characterized and then
easily reused or repurposed between circuits. Insulation,
or the degree to which part activity is independent of
context or the presence of other parts, is important
because it ensures that part activity is consistent between
circuits. Owing to the need for standardization and insula-
tion (15,23,24), repeated promoter, ribosome binding site
(RBS) and terminator sequences commonly flank the
parts comprising synthetic circuits. This is problematic
because unique sequences are required for ordered isother-
mal assembly (19). In principle, one can surmount this by
using PCR to flank the repeated sequences with appropriate
homology before assembly (25,26), but this can increase
both the number of parts and the risk of PCR-based muta-
tions. Alternatively, one can focus on the design of non-
repetitive multigene architectures such as operons;
however,operonscan introducevariation ingeneexpression
andmRNAstability that is not yet fully understood (17,27).
Moreover, it is sometimes desirable to independently
vary the expression of multiple operons, as demon-
strated for taxadiene synthesis in Escherichia coli (28).
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An alternative approach is to design unique nucleotide
sequences (UNSes) to flank each of the parts to be
assembled, thereby providing the homology required for
ordered assembly of parts containing repeated standard
promoter and insulator sequences into functional genetic
circuits (26,29,30). Previous work has demonstrated the
use of UNSes to assemble multiple parts into functional
circuits via recombination-based methods, but not the
ability to assemble repetitive sequences or to insulate
parts from either the UNSes used or from one another
(26). Others have demonstrated some evidence for efficient
assembly of repetitive parts, but have not used it to
achieve tight insulation or to generate functional genetic
pathways (30). Still others have demonstrated assembly of
repeating promoter-gene-terminator parts into functional
pathways presumed to exhibit some insulation (29). To
avoid recombination errors, however, this approach
required the use of different promoters and terminators
in each part, which can pose a challenge for circuit stand-
ardization and scalability.
Here we describe the design of 40-bp UNSes to simul-

taneously assemble multiple repetitive, well-insulated
genetic parts into functional synthetic circuits. We demon-
strate that our designed UNSes have minimal unexpected
biological activity in bacteria and enable efficient assembly
of multiple DNA parts containing repeated promoter, ter-
minator and insulator elements. Using a series of vectors
designed to facilitate ligation of UNSes with common
standard parts such as BioBricks (31) and BglBricks
(32), we used the UNSes to systematically vary expression
of multiple well-insulated promoter-gene-terminator units,
to construct and optimize a deoxychromoviridans biosyn-
thetic pathway in E. coli, and to construct transcriptional
AND-logic gates for integration into the genome of
embryonic stem cells (33). Our results demonstrate the
use of UNS-guided isothermal assembly as a means of
constructing and optimizing diverse insulated biological
pathways and circuits.

MATERIALS AND METHODS

Computational design of UNSes

105 random 40-bp sequences were generated in MATLAB
with each nucleotide having an equal chance of being A,
T, G or C. This list was systematically reduced by sequen-
tially applying the following design criteria:

(1) ATGC Distribution: 45%�GC content �55%. No
tracts of >4 AT-only or GC-only sequences; 1–2 G/
C nucleotides at each terminus.

(2) Does not contain start codons (ATG/TTG/CTG).
We note that any RBS sequences occurring by
chance in the UNSes are predicted to be active
only if start codons are close by (34).

(3) Does not contain the following common multiple
cloning site (MCS) restriction sites: EcoNI, ClaI,
XbaI, NcoI, BglII, SpeI, BamHI, NheI, PstI,
HindIII, NotI, XhoI, AvrII, BlpI, Bsu36I, AgeI,
AflII.

(4) Does not contain the following restriction sites
commonly used for assembly: AscI, SapI, MauBI,
BbsI, MreI, AvrII, BpmI, BsaI.

(5) Hairpin Tm <40�C assuming 10mM NaCl and
10mM Mg2+, evaluated with ‘oligoprop’ in
MATLAB. Strong hairpins are predicted to be
common because of the high Mg2+ concentration in
isothermal assembly reactions.

(6) No bacterial promoter-like sequences identified by
PPP (35) or BPROM (SoftBerry).

(7) Max score <35.0 when BLASTed against the E. coli
MG1655 genome.

(8) Hybridization of the UNS with all other UNSes
has a Tm <20�C, evaluated using UNAFold and
assuming 100 nM DNA, 10mM NaCl and 10mM
MgCl2.

Supplementary Table S1 lists 10 UNSes designed by
this approach and the predicted properties of each.
Supplementary Table S2 lists the predicted annealing tem-
peratures for every combination of these 10 UNSes.

Cloning of part and destination vectors

Basic part and destination vectors were generated by
synthesizing a double-stranded gBlock (IDT) fragment
containing appropriate UNSes, and inserting it into the
desired vector via restriction cloning. BioBrick and con-
ventional restriction cloning were then used to insert
promoters, genes and terminators as required. The con-
struction of all part and destination vectors in this work is
described in Supplementary Table S3. Primers and
gBlocks used to construct these vectors are listed in
Supplementary Tables S4 and S5, respectively.

Digestion, purification and assembly of part and
destination vectors

For each assembly, part vectors were digested with one
restriction enzyme at the UN site and one restriction
enzyme at the UN+1 site; the last part was instead
digested at the UN and UX sites. Destination vectors
were digested at their U1 and UX sites. The available
restriction sites in each part or destination vector are
listed in Supplementary Table S3. Digested destination
vectors were PCR-purified using a DNA Clean &
Concentrator Kit (Zymo Research), and digested parts
were gel-purified using a Gel DNA Recovery Kit (Zymo
Research).

Gibson isothermal assembly aliquots were prepared as
previously described (19), but the amount of T5 exonucle-
ase was doubled. 100 ng of digested PCR-purified destin-
ation vector and equimolar amounts of gel-purified parts
were combined in a 5 ml volume, and 5 ml of a 2� isother-
mal assembly aliquot added. The mixture was incubated in
a PCR machine at 50�C for 1 h, with the hot-lid set at
105�C. 2 ml of the assembly mixture was then transformed
into TOP10 E. coli (Invitrogen).

Growth and induction

For all expression experiments in Figures 1–3, vectors or
isothermal assembly reactions were transformed into
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TOP10 E. coli (Invitrogen) using either the manufacturer’s
instructions or the TSS competent cell method as previ-
ously described (36). Individual colonies were inoculated
into 1ml of LB+1.0% glucose+50mg/ml ampicillin, and
grown overnight at 30�C in a 2ml deep-well plate (Thermo
Scientific) with shaking at 1200 rpm on a Titramax 1000
platform shaker (Heidolph). Overnight cultures were
diluted 20-fold into 1ml M9+0.5% glucose+0.1% leu-
cine+50 mg/ml ampicillin, grown for 4.5 h and induced
with 1mM IPTG for 24 h before analysis.

Fluorescence and OD595 measurements

Twenty-four hours following induction, the OD595 from
100 ml of each culture was measured in 200-ml 96-well flat
bottom non-treated sterile polystyrene plates (Corning) on
a Victor3V 1420 Multilabel Counter (Perkin Elmer) using
a 595/60 nm filter. mCherry fluorescence was measured in
the same fashion using 565/30 and 630/15 excitation and
emission filters, respectively. EGFP fluorescence was

measured using 485/14 and 535/25 filters. In both cases,
the background due to biomass in each fluorescence
channel was corrected for by measuring the mCherry/
OD595 or EGFP/OD595 ratio of wild-type TOP10 cells,
multiplying this value by the OD595 of each well and
subtracting the resulting value from that well’s total
fluorescence.

Extraction and quantification of deoxychromoviridans

Twenty-four hours following induction, the 96-well plates
in which the cells were grown were centrifuged for 10min
at 3200 g and their pellets resuspended in 100 ml 10% SDS.
The plates were then incubated in a 55�C water bath for
1 h with occasional vortexing. 500 ml ethanol was then
added to each well, and the plate incubated at 55�C for
1 h with occasional vortexing. Plates were then left to
shake overnight (�12 h) at 37�C in a Titramax 1000
platform shaker (Heidolph) at 1200 rpm. In the morning,
the plates were centrifuged at 3200 g for 10min, and 100 ml

Figure 1. Design and implementation of a synthetic-sequence-guided DNA assembly strategy. (A) Computational approach for generating UNSes to
facilitate isothermal assembly. In all, 105 random 40-bp sequences were generated in MATLAB, and then eliminated if they contained the indicated
sequences (see ‘Materials and Methods’). (B) ‘Part’ and ‘destination’ vectors for UNS-guided assembly. Each part vector contains a multiple cloning
site (MCS) flanked by two UNSes (e.g. U1+U2, U2+U3) and a common terminal UNS (UX). The MCS contains BioBrick and BglBrick cloning
sites. Rare unique restriction sites (red arrows) flank the UNSes. Destination vectors contain only U1 and UX, and internal restriction sites. (C)
Diagram of a five-piece assembly, including four part vectors (P.V.) and a destination vector. All part vectors are digested around UN and UN+1

except the last, which is digested around UN and UX to permit assembly into U1UX of the destination vector. Part vector cloning and assembly into a
destination vector takes �3 days total. Only �1 day is required if the desired part vectors have already been generated. (D) Restriction digest of 16
clones from a representative five-piece assembly in which each part was an identical 380-bp sequence. Red arrow indicates the expected 1.6 kb insert.
(E) Effect of different UNSes on mCherry expression in a part vector with or without a Ptrc promoter (N=6, error bars=SEM).
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of supernatant transferred to a 200-ml 96-well flat bottom
non-treated sterile polystyrene plate (Corning). Each well
was then analyzed for absorbance at 650 nm with a
Victor3V 1420 Multilabel Counter (Perkin Elmer) using
a 650/8 nm filter.

Analytical digests

For the digests in Figure 1, individual clones were mini-
prepped (Qiagen) and digested with NsiI and MauBI

FastDigest enzymes (Fermentas) to yield expected back-
bone and insert sizes of 12 308 and 1586 bp, respectively.
For the mCherry/EGFP library, 60 clones were pooled,
mini-prepped and digested with MluI and Eam1105I
FastDigest enzymes to yield expected backbone and
insert sizes of 3469 and 3090 bp, respectively. For the
vioBAE library, 60 clones were pooled, mini-prepped
and digested with MluI and BspHI FastDigest enzymes
to yield expected backbone and insert sizes of 2584 and
10 052 bp, respectively. Densitometry analysis was carried
out using ImageJ’s gel analysis function, and each insert
band’s intensity was divided by its length in kilobases
before calculating its percentage of the total. We note
that densitometry of pooled digested clones can be
inaccurate, owing to differences in plasmid yield between
clones. In general, plasmid yields between clones varied by
<2-fold. The digests in Figure 4 were carried out with
XhoI. All restriction digests were run on 1% agarose
gels containing ethidium bromide and visualized with
320 nm transillumination.

RESULTS

We implemented our assembly strategy and demonstrated
its use in four steps: (i) we computationally designed 40-bp
UNSes and confirmed that they enable efficient assembly
of homologous parts, with minimal unwanted biological
activity in bacteria; (ii) we demonstrated that parts flanked
by UNSes and containing strong termination motifs can
be used to systematically vary the expression of multiple
fluorescent proteins; (iii) we demonstrated the utility of
this system for building and optimizing biosynthetic
pathways in E. coli, using deoxychromoviridans biosyn-
thesis as a test case; and (iv) we showed how this assembly
strategy was used to assemble genetic logic gates for
chromosomal integration into embryonic stem cells (33).

Computational design and performance of UNSes

To design bacterial UNSes for isothermal assembly, we
generated 105 random 40-bp sequences and systematically
eliminated those that failed to meet two broad criteria:
(i) high likelihood of accurate assembly and (ii) low like-
lihood of affecting nearby gene expression cassettes
(Figure 1A and see ‘Materials and Methods’ section).
The former was achieved primarily by eliminating poly-
GC tracts and high-Tm hairpins that may interfere with
annealing during isothermal assembly, and by ensuring
that different UNSes are unlikely to anneal to one
another (see ‘Materials and Methods’ section). The latter
was achieved by eliminating UNSes containing start
codons, promoter-like sequences or sequences with high
BLAST scores against the E. coli K12 genome. Only
0.05% of sequences remained after applying these
criteria. Ten UNSes and their predicted properties are
listed in Supplementary Table S1.

UNSes were used to design a series of ‘part’ and
‘destination’ vectors to facilitate the assembly process
(Figure 1B and Supplementary Table S3). The minimal
composition of a part vector is: an UNS ‘UN’, an MCS
with BioBrick cloning sites, a second UNS ‘UN+1’ and a

Figure 2. Systematic variation of gene expression via UNS-guided
assembly. (A) Promoter library. Schematic shows U1U2 part vector
expressing mCherry and indicates the location of the promoter to be
varied (red text). The y-axis shows mCherry expression from U1U2 part
vectors with different BioFAB promoters; x-axis lists the relative
strength of each promoter as measured by the BioFAB (N=6, error
bars=SEM). (B) Terminator testing. Schematic shows the product of
assembling a promoter-less U2-EGFP-U3-UX part vector downstream
of a U1-Ptrc-mCherry-Term-U2 part vector in pDestET. ‘Term’ (red
text) represents one of the terminator arrangements listed on the x-
axis, and is located between mCherry and EGFP in the final construct.
Read-through frequency is reported as the ratio of EGFP to mCherry
fluorescence, normalized to the no-terminator control (N=6, error
bars=SEM). (C) Assembly of a fluorescent protein expression
library. U1U2 part vectors contained mCherry, the [TB1006]

2-TT7 termin-
ator (T3 in figure), and one of four BioFAB promoters. U2U3 part
vectors were the same but contained EGFP. These eight parts were
assembled into pDestET, and 60 resulting clones pooled and tested
for insert size via restriction digest. Arrows indicate the backbone
(black), correct-size insert (red) and a minor incorrect assembly
product (gray). In all, 97.9% of inserts are the correct size by densi-
tometry (�59/60 clones correct). (D) Fluorescence of 54 sequenced
clones, with the color of each circle indicating a unique set of
promoter sequences. Dashed lines indicate the mean mCherry or
EGFP fluorescence of all clones with a given promoter sequence; the
promoter corresponding to each dashed line is indicated at its intercept.

684 Nucleic Acids Research, 2014, Vol. 42, No. 1

,
,
,
 bp
,
,
 bp
,
,
 bp
,
,
-
utility 
,
Methods
Methods
,
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt860/-/DC1
P
D
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt860/-/DC1
",0,0,2
``
",0,0,2
,


third UNS, ‘UX’. Although UN and UN+1 are different for
each vector, UX is common to all part vectors. Desired
sequences are cloned into part vectors via conventional
methods to, for example, make part vectors bearing
promoter-gene-terminator cassettes (Figures 2 and 3);
this process can take as little as 1–2 days, including
plasmid isolation and restriction digest- or PCR-based
confirmation of successful cloning. To assemble multiple
part vectors into a single construct, each is digested with
restriction sites flanking UN and UN+1 except for the final
part in the series, which is instead digested at restriction
sites flanking UN and UX (Supplementary Table S3). The
resulting UNS-flanked fragments are gel-purified and
assembled into a digested PCR-purified destination
vector via isothermal assembly. Destination vectors
contain UNSes U1 and UX, and therefore contain
homology to the first and last of the parts (Figure 1C
and see ‘Materials and Methods’ section). From part
vector cloning to assembly, this process can take as little
as 2–3 days (Figure 1C). If desired part vectors already
exist, this process can take as little as 1 day.

Consistent with our design, parts flanked by computa-
tionally designed UNSes assembled efficiently even when
they contained substantial sequence homology. We first
performed a 5-piece assembly of digested part vectors, in
which each vector contained only a T7 promoter, MCS
and T7 terminator (pJT170, 172, 174, 176, Supplementary
Table S3), into the destination vector pDestBAC
(Supplementary Table S3 and Figure 1C). Each digested
part was �80% identical, with the UNSes providing the
only differences in sequence. Following transformation
into TOP10 E. coli, �85% of clones reproducibly con-
tained correctly sized inserts; analytical digests from a
representative experiment are shown in Figure 1D.
Sequencing showed that all correctly sized inserts had
the expected sequence, whereas incorrectly sized inserts

were due to recombination between non-sequential parts
(e.g. U1U2 and U4U5). All other assembly reactions in this
work, in which parts had substantially <80% sequence
homology, assembled correctly 90–98% of the time
(Figures 2–4).
Also consistent with our design strategy, UNSes showed

minimal biological activity in bacteria as measured by
their effects on proximal promoter cassettes. We cloned
mCherry with either no promoter or a strong (Ptrc)
promoter, into each of four part vectors bearing different
UNSes (pJT170, 172, 174, 176; Supplementary Table S3),
and measured the resulting fluorescence in TOP10 E. coli
(Figure 1E). Although the Ptrc vectors produced about
100-fold more mCherry than their promoter-less counter-
parts, variation within the promoter-less vectors or Ptrc

vectors was minimal (<18% difference in mean fluores-
cence). This indicated that the UNSes did not differ sub-
stantially in their effects on proximal expression cassettes.

Systematic variation of gene expression using
UNS-guided isothermal assembly

Rational optimization of biological circuits requires a way
to systematically and independently vary the expression of
multiple genes. We asked whether UNS-guided assembly
could be used to construct expression libraries of multiple
strongly insulated parts, such that the promoter strength
of a part would determine only its own expression level,
without affecting others.
We first chose a small set of promoters from the

BioFAB library (37) and cloned them into a
U1-mCherry-U2 part vector (pJT260; Supplementary
Table S3), resulting in variation of promoter strength
over a 100-fold range (Figure 2A). To ensure translation
rates were not affected by our choice of promoter, we
chose only those promoters that were identical

Figure 3. Optimization of deoxychromoviridans production. (A) UNS-guided assembly strategy for a promoter library of vioB, vioA and vioE. Each
part vector contained a vio gene, a [TB1006]

2-TT7 terminator (T3 in figure) and one of 6 BioFAB promoters. (B) TOP10 E. coli and TOP10 E. coli
transformed with the assembled library, grown for 36 h on LB-agar plates. (C) Distribution of deoxychromoviridans yields from liquid cultures of
individual clones. Yields were measured by extracting deoxychromoviridans from each culture and measuring its absorbance (see ‘Materials and
Methods’), normalized to the highest absorbance obtained. Inset: restriction digest of 60 pooled library clones. Arrows indicate the backbone
(bottom arrow), expected insert size (top arrow) and a minor, incorrect insert (middle arrow). 95.2% of inserts are the correct size by densitometry
(�57/60 clones correct). (D) Plot of individual clones’ deoxychromoviridans production as a function of their promoter strengths. The color of each
dot indicates its level of production. The dashed oval highlights a cluster of strains with high production. The highest production strain has medium-
to-strong vioB and vioE expression (P199 and P048, respectively) but weak vioA expression (P001). The intersect of the dashed lines indicates this
point’s projection onto the vioA–vioB plane, and the solid line connects the point to its projection.
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downstream of their transcription start sites, and therefore
would not alter mRNA 50 UTRs (38).
We also built a set of terminator variants and identified

those sufficient to insulate our promoter library
(Figure 2B). Terminator variants consisted of a mixture
of T7 terminators and repeats of BBa_B1006, a strong
terminator BioBrick (39), and were cloned into a U1-
Ptrc-mCherry-U2 part vector (pJT257, 260, 318, 320, 321;
Supplementary Table S3). Read-through frequency was
assessed by assembling each part upstream of U2-EGFP-
U3-UX (pJT345; Supplementary Table S3), in the
multicopy destination vector pDestET (Supplementary
Table S3), and measuring the ratio of EGFP to mCherry
fluorescence (see ‘Materials and Methods’ section and
Figure 2B). The triple terminator ([TB1006]

2-TT7) decreased
read-through by �100-fold, and was therefore the smallest
terminator sufficient to insulate members of the promoter
library from one another.
Combining the promoter library and terminators with

our UNS-guided assembly strategy, we were able to inde-
pendently titrate the expression of two fluorescent
proteins. Using restriction cloning, we generated part
vectors with U1-Ptrc-mCherry-[TB1006]

2-TT7 -U2 (pJT260;
Supplementary Table S3) and U2-Ptrc-EGFP-[TB1006]

2-
TT7-U3-UX (pJT336, Supplementary Table S3), cloned
four of the BioFAB promoters in place of each part

vector’s Ptrc promoter and assembled the resulting parts
into pDestET (Figure 2C) to generate a small library of 16
fluorescent protein expression variants. Sixty of the result-
ing clones were sequenced, and tested for insert size,
OD595, and mCherry and EGFP fluorescence (see
‘Materials and Methods’ section). Despite the presence
of homology-rich triple-terminators in each part, nearly
all clones assembled correctly (Figure 2C; in all, 97.9%
of inserts were the correct size by densitometry, or �59/
60 clones, and at least 54/60 clones contained expected
promoter upstream regions as evaluated by sequencing).
A plot of mCherry versus EGFP fluorescence (Figure 2D)
showed that expression of mCherry could be titrated over
a �100-fold expression range without substantially affect-
ing EGFP expression. The reverse was also true, suggest-
ing that strong insulation is provided by the [TB1006]

2-TT7

terminators. These results demonstrated that UNS-guided
assembly makes it possible to efficiently construct tightly
insulated multigene circuits despite the presence of
repeated sequence elements.

Optimization of deoxychromoviridans production in E. coli

The ability to assemble multiple well-insulated parts
should enable rational optimization of genetic circuits.
As a test case for UNS-based optimization of a bacterial
biosynthetic pathway, we chose three genes from
Chromobacterium violaceum, vioB, vioA and vioE, which
together are capable of catalyzing the conversion of tryp-
tophan to prodeoxyviolacein (40). In C.violaceum, the
genes vioC and vioD normally convert prodeoxyviolacein
to violacein, a compound of interest due to its antibiotic
and antitumor properties (41); in their absence, however,
prodeoxyviolacein undergoes spontaneous oxidation and
dimerization to produce an insoluble green compound,
deoxychromoviridans (40). The absorbance of deoxychro-
moviridans, therefore, provides a simple assay for the ac-
tivity of the first three steps in the violacein pathway (42).

To optimize deoxychromoviridans production, we used
the same strategy as in Figure 2 to vary the expression of
vioB, vioA and vioE independently. We built part vectors
containing each of the three genes and a [TB1006]

2-TT7

terminator (pJT369, 371, 375; Supplementary Table S3),
then cloned 6 BioFAB promoters into each. The resulting
18 parts were assembled into pDestET (Figure 3A) to
generate a 216-member pathway library and transformed
into TOP10 E. coli, yielding colonies with clear differences
in pigmentation (Figure 3B). Sixty colonies were chosen at
random, sequenced, and tested for insert size, OD595 and
deoxychromoviridans production by A650 (see ‘Materials
and Methods’). The pathway assembled efficiently
(Figure 3C; in all, 95.2% of inserts were the correct size
by densitometry or �57/60 clones, and at least 52/60
clones contained expected promoter upstream regions as
evaluated by sequencing), and the chosen clones exhibited
a wide range of deoxychromoviridans yields in liquid
culture (Figure 3C).

Analysis of deoxychromoviridans production by these
clones showed a distribution of yields that varied accord-
ing to the strengths of their promoters (Figure 3D). High-
production strains clustered in a region of expression

Figure 4. Facile construction of genetic circuits for integration into
mammalian chromosomes. (A) Construction of an AND gate circuit.
Four parts were assembled into pDestRmceBAC, a BAC modified to
enable site-specific chromosomal integration in mammalian cells. Parts
A and B in all constructs are an HS4 insulator alone and an AND-
gated reporter construct plus HS4, respectively. Parts C and D are the
two inputs to the AND-gated reporter, but different versions were con-
structed to verify AND gate functionality; these parts also contain HS4
sequences (striped boxes). (B) Analytical restriction digests of
assembled AND gate circuit variants with XhoI. Except for ABC1D2-
1 and ABC2D3-3, all clones yielded the expected digest pattern (18/20
correct).
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space with low expression of VioA and moderate expres-
sion of VioB and VioE (Figure 3D). This local optimum
indicated that strong expression of all three genes—
a typical first approach to the design of novel metabolic
pathways—was not an optimal design strategy. Moreover,
it suggested that strong expression of vioA may be toxic;
indeed, the two vioA part vectors with the strongest pro-
moters had small colony sizes compared with the lower
promoter strength VioA parts (data not shown). These
results demonstrated the potential of UNS-guided
assembly to identify local production optima in gene
expression space and to identify pathway features that
may limit activity.

Assembly of AND-logic gates for genomic integration
into mammalian stem cells

Mammalian genetic circuits are of interest due to their
potential for analytical, therapeutic and diagnostic appli-
cations (8,11), but they are challenging to assemble and,
for most practical applications, must be integrated into the
genome. We previously used UNS-guided assembly to
assemble two- and three-input split-TALE AND gate
circuits into a single bacterial artificial chromosome
(BAC) engineered to facilitate mammalian chromosomal
integration (33). Here we present the construction meth-
odology used to generate those circuits.

Figure 4 shows the approach taken to construct several
AND gate variants in BACs designed to facilitate chromo-
somal integration. Variants of the requisite four parts
were first cloned into part vectors (pFL part vectors;
Supplementary Table S3), then assembled in different com-
binations into pDestRmceBAC (Supplementary Table S3),
which carries the sequences required for recombination-
mediated cassette exchange (RMCE)-based single-copy in-
tegration (43, 44) (Figure 4A). In all constructs, parts A
and B contained an HS4 insulator sequence (45) and an
AND-gated reporter construct, respectively. Parts C and D
contained the two inputs to the AND-gated reporter, and
different versions of the AND gate were assembled with
different versions of C and D. For instance, parts D1 and
D2 encoded one of the two AND gate inputs, but D2 con-
tained a loss of function mutation; AND gates constructed
with D2 could, therefore, be used as a negative control for
AND gates constructed with D1. Likewise, other part
variants helped confirm that the AND gate behaved as
expected (33). It is worth noting that all parts contained
identical HS4 insulator sequences at their termini to
minimize undesirable part interactions, and therefore
required UNSes for assembly.

Analytical restriction digests of 20 clones from 4 unique
AND gate assemblies showed that 18 (90%) of the clones
had assembled successfully (Figure 4B). Site-specific inte-
gration of correctly assembled constructs into mouse
embryonic stem cells was then carried out (33). We note
that some AND gates were also assembled into BACs
containing the PiggyBac transposase (Supplementary
Table S3), allowing random but highly efficient integra-
tion into the genome (46). As part vectors can easily
be modified and reassembled, UNS-guided assembly is
an attractive approach for the rapid prototyping,

modification and integration of genetic circuits into mam-
malian cells.

DISCUSSION

In this work, we computationally designed 40-bp UNSes
and used them to perform isothermal assembly of
multipart bacterial metabolic pathways and mammalian
genetic circuits. Importantly, we demonstrated that our
designed UNSes did not substantially affect local bacterial
promoters, and enabled tight insulation by facilitating the
assembly of parts with repeated sequences such as termin-
ators and HS4 insulators. Insulation is an important
design principle in synthetic biology and greatly simplifies
circuit design, as well-insulated parts have predictable
functions and can be assembled in a modular way to ra-
tionally modify existing circuits or to build new ones (15).
To facilitate assembly, we also generated a series of

standard part and destination vectors so that individual
parts could be easily modified and reused. Standardization
is important because it greatly reduces the time and
effort required to modify, optimize or repurpose existing
circuits for novel applications (24). We also designed our
part vectors to facilitate integration with BioBrick and
BglBrick standards, as a wide range of Bricks are
publicly available, but these generally cannot be used for
simultaneous multipart assembly.
We note that although methods based on type II S

restriction sites (47) or PCR (48,49) also enable simultan-
eous assembly of multiple parts, the former is commonly
found in natural coding sequences, and the latter can
introduce point mutations, both of which pose challenges
for the construction of large circuits (30).
During preparation of this article, work was published

demonstrating a facile UNS-based assembly strategy for
mammalian genes, in which multiple fluorescent reporters
were assembled as a proof of principle (30). Our study
extends this work by demonstrating that appropriately
designed UNSes do not affect nearby expression cassettes,
that they can be used to assemble well-insulated parts with
repeated terminator or insulator sequences, and that this
approach can be used to titrate gene expression levels in a
modular way (Figure 2). We also demonstrate the use
of our method to efficiently construct and optimize
insulated functional circuits such as biosynthetic
pathways (Figure 3) and transcriptional logic gates (33)
(Figure 4). Future efforts to systematically test and identify
UNS design principles will be valuable in further improv-
ing assembly efficiency and insulation, and may enable
the construction of more complex pathways and genetic
circuits.
We optimized deoxychromoviridans biosynthesis in

E. coli by using UNS-guided assembly to vary multiple
promoter strengths. This approach is attractive because
it can identify design principles by which to improve
yield in the next round of assembly (17). As an example,
our results suggested that too much expression of VioA,
the first enzyme in the pathway from tryptophan to
deoxychromoviridans, is toxic. This toxicity may be due
to protein burden, to VioA rapidly depleting cellular
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tryptophan, or because the product of VioA, IPA imine
(40), is itself toxic. This information can then be integrated
into predictive models to rationally improve biosynthetic
pathways or genetic circuits (50). In principle, one can also
use UNSes to experimentally find local optima in expres-
sion space, for instance by modifying and re-assembling
part vectors with increasingly narrow ranges of promoter
strengths. Given the rapid pace at which part vectors can
be modified and reassembled (Figure 1C), such design-
build-test cycles could be completed as frequently as
twice per week. By including additional part vectors in
subsequent assemblies, existing circuits can also be
repurposed for more complex applications.
We also used UNSes to construct mammalian transcrip-

tional AND gates with repeating HS4 insulation
sequences (Figure 4). These were assembled in BACs
modified to facilitate site-specific genomic integration,
and used both to verify AND gate function and to
optimize their performance when integrated into the
genome of embryonic stem cells (33). Our approach is
therefore attractive as a means of speeding the design-
build-test cycle of genomically integrated synthetic
circuits, which have potential in diagnostic and thera-
peutic applications (8,11,12).
The methodology we describe is straightforward, effi-

cient and modular. It permits assembly of repetitive,
tightly insulated parts and can be easily adapted to
diverse genetic engineering applications. Part and destin-
ation vectors designed for various bacterial applications
have been constructed (Supplementary Table S3), as are
destination vectors for mammalian cell transfection, trans-
position and site-specific integration (33) (Supplementary
Table S3). Moreover, the sequences required to generate
new part and destination vectors are small enough to
be synthesized at low cost (<200 bp). As UNS-guided
assembly can speed the design-build-test cycle for complex
circuits with repeated promoters, terminators and insula-
tors, we anticipate application of this approach to a wide
range of applications where multigene assembly and insu-
lation are desired. These include the construction and
optimization of complex metabolic pathways, the devel-
opment of genetic timers and counters and the construc-
tion of multi-input logic gates.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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