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Abstract

Genetic algorithms (GAs) have been used to find efficient solutions to numerous fundamental and applied problems. While
GAs are a robust and flexible approach to solve complex problems, there are some situations under which they perform
poorly. Here, we introduce a genetic algorithm approach that is able to solve complex tasks plagued by so-called ’’golf-
course’’-like fitness landscapes. Our approach, which we denote variable environment genetic algorithms (VEGAs), is able to
find highly efficient solutions by inducing environmental changes that require more complex solutions and thus creating an
evolutionary drive. Using the density classification task, a paradigmatic computer science problem, as a case study, we show
that more complex rules that preserve information about the solution to simpler tasks can adapt to more challenging
environments. Interestingly, we find that conservative strategies, which have a bias toward the current state, evolve
naturally as a highly efficient solution to the density classification task under noisy conditions.
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Introduction

Natural evolution has a demonstrated ability to solve complex

problems and to build on existing solutions. The power of the

evolutionary approach inspired a number of computer scientists to

study evolutionary systems culminating in the invention of genetic

algorithms (GAs) by John Holland (see Mitchell [1] for a brief

history). Holland’s work [2,3] set the stage for much of the later

studies of the foundations of GA and related evolutionary

computation approaches.

In spite of their success and of the on-going work on

determining the best encoding of a candidate solution into a

chromosome or the best set of parameter values for population

size, selection of reproducing individuals, and crossover, inversion

and mutation rates [4], there are still many situations under which

simple GAs fails to find good solutions. To understand why, recall

that GAs explores a given search space — the set of all possible

candidate solutions — trying to optimize the fitnesses of the

evolving individuals in the population.

The idea that some optimization problems may not be

addressed with simple GAs was formalized with the so called

’’no free lunch’’ theorems [5]. Specifically, difficulties arise when

the fitness landscape (i) is too rugged, in which case the numerous

local fitness maxima make it difficult to discover the global

maximum and may lead to trapping in a non-optimal solution, or

(ii) is too flat — the so-called ’’golf-course-like’’ landscape [6] — in

which case the lack of a significant gradient in the fitness landscape

means that there is no driving bias toward fitness maxima. While

heuristic strategies for addressing the former are well known,

strategies for tackling the latter are still being actively investigated.

Different approaches have been proposed to improve on

classical GAs, including co-evolution [7], dynamic environments

[8] and incremental complexification [9]. The challenge is that if

the fitness landscape is flat, fitness selection is blind. If,

additionally, the density of maxima is very low, then one would

need an extremely large population size in order to have a non-

negligible chance that at least one individual has a genome close to

a fitness maximum.

In order to address the challenges posed by phenomena

characterized by golf-course-like fitness landscape, we draw

inspiration from nature. Specifically, we note that the evolution

of complex traits has occurred in steps. For example, the evolution

of the eye — i.e. a structure able to convert electromagnetic

radiation into information about the surrounding environment —

did not occur in a single event [10]. The first proto-eyes were likely

only able to detect changes in light intensity. In the same spirit, we

propose that in order to obtain solutions to problems characterized
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by golf-course-like fitness landscapes one must first solve simpler,

but related, problems.

Additionally, we note that natural evolution appears to occur

faster at transition zones between different environments. Indeed,

numerous studies show that bacteria can develop antibiotic

resistance faster in the presence of concentration gradients [11–

14]. In the same spirit, we propose the use of varying

environments to evolve populations highly fit for challenging

environments.

Density Classification
As a case study, we consider here the density classification task

[15] in noisy environments [16]. Density classification is a

paradigmatic information aggregation problem [1]: the agents in

the population initially hold information in the form of a binary

value. The goal is for all agents to reach a consensus on the binary

value that was initially in the majority, while only sharing

information with a ’’small’’ number of neighbors.

Numerous studies have used GA to solve the density classifi-

cation task [17]. The ’’genetic materials’’ being evolved in this case

are one-dimensional Boolean functions (Fig. 1a). The fitness of a

given genomic sequence is quantified by the encoded rule’s

efficiency in solving the density classification task. The smaller the

difference d in the fraction of agents initially holding the majority

and the minority states, the more challenging the task. Moreira

et al. [16] showed that the majority rule with noisy communication

and small-world connections among agents is able to solve the

density classification task for d%1 as long as the number of agents

is large enough.

Moreira et al. [16] also found that, in order to efficiently

complete the density classification task, the number of neighbors

k{1 considered when using the majority rule must increase as the

magnitude of the noise increases. Noise is implemented as follows:

with probability g=2 an input from a neighbor is replaced by the

opposite value. That is, when noise acts an agent will perceive its

neighbor to be in the opposite state. Note, however, that the noise

does not change the state of the agents; agents always known their

own state. If a certain agent is connected to k{1 neighbors, noise

may or may not act over each of these signals. Rules with k~3
only perform efficiently if the communication noise is smaller than

0:2, whereas if k~5, the majority rule is efficient for g as large as

0.45. These results are consistent with the intuition that more

complex rules, i.e. rules with more bits, are able to solve more

challenging problems.

Navely, thus, it would seem to be a good strategy to start with a

large genome allowing the GA to find the more robust solutions.

However, as the number of bits increases, so does the size of the

space of candidate solutions. While for rules considering the state

of 2 neighbors there are 223

~256 candidate solutions, for rules

considering the state of 8 neighbors there are 229

&10154. While

for well-behaved fitness landscapes such a large space of candidate

solutions is not a problem, for the density classification task the

vast majority of candidate solutions have zero fitness, meaning that

fitness selection is effectively blind (Fig. 1b).

The magnitude of the challenge is made clear in Figs. 1c and d.

If the initial population of rules is chosen at random from the set of

candidate solutions, then the number of generations necessary to

obtain an efficient rule grows super-exponentially with k. As a

consequence, no efficient rule can be obtained for k~9 even after

10,000 generations of the GA.

Figure 1. The evolutionary challenge posed by golf-course-like fitness landscapes. (A) For the density classification task, we can order the
Boolean functions that specify the genomes to be evolved by the decimal representation of their binary sequences. (B) Fitnesses of the possible
binary genomes for k~3 when g~0:1 and r~0:5. In this case, there are 223

~256 different rules of which 208 (81.1%) have a fitnesses of zero, while
47 (18.4%) have fitnesses greater than zero but smaller than 0.5. For k~3, only Boolean function 232, the majority rule, has a large fitness. As k
increases, the fraction of large fitnesses genomes decreases rapidly. (C) The total number of possible genomes grows super-exponentially with k. (D)
The number of generations necessary for a classical genetic algorithm to find a large fitness genome also grows super-exponentially. This slow
convergence is due to the fact the fraction of zero fitnesses genomes is growing with k. For this reason, it is not possible to use classical GAs to find
solutions to complex problems when the fitness landscape is mostly flat.
doi:10.1371/journal.pone.0078401.g001

Optimization on Golf-Course Fitness Landscapes
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Variable Environment Genetic Algorithms
In order to solve problems characterized by golf-course-like

fitness landscapes, we propose a schema that we denote variable

environment genetic algorithms (VEGAs). The core of our approach is

that simple versions of the problem of interest can be easily solved

even if the fitness landscape is mostly flat and that the solutions to

the simple problem can be used as stepping stones for finding more

robust solutions able to solve more challenging problems.

Our algorithm comprises two main stages (Fig. 2). The first

stage, which we denote the generalization step, takes a selected

genome with k{1 neighbors and creates a copy, but now with

instructions for taking into consideration the information from two

additional neighbors (see Fig. 2a for an example). Since the

generalized genomes contain the ’’base’’ genomes, there is no

evolutionary pressure to change any of its bits because they already

have maximum fitness. After generalization of the selected

genomes, we implement the second stage of the algorithm: We

make the environment more demanding, creating an evolutionary

pressure on the longer genomes.

Simulation Details
We investigate systems with N agents arranged in a ring and

initially connected to their k{1 nearest neighbors. Next, we

randomly select N(k{1)r=2 pairs of connections between agents

and switch the end nodes of those connections, thus creating a

small-world topology [18,19].

For generation zero, we assign the same randomly-selected 32-

bit (k~5) Boolean function — that is, the same genome — to each

of the N agents in a system. We repeat this step for each of the

M~100 genomes in the population.

At time zero, we assign to each agent the majority state,

N(1zd)=2 times, or the minority state, N(1{d)=2 times. In each

successive time step, all agents in a system interact synchronously

according to the common Boolean function. Importantly, we

implement communication noise in the connections between

agents. Concretely, there is a probability g=2 that an input from a

neighbor is replaced by the opposite value. Note that the noise

only affects the communication of the value of the state, not the

actual state [16].

Figure 2. Implementing variable environment genetic algorithms. (A) To promote a rule with k to kz2, we include 2 extra neighbors
keeping the same output with any combination of these two new neighbors. On the left we see a possible input and its respective output for a k~5
rule. On the right there are the respective possible outputs after generalization. Note that in the generalized rule the new inputs do not affect the
rule’s output. However, inter-generational mutation and crossover of the genetic material will yield changes in output that make the states of the
new neighbors relevant. (B) Flowchart of the variable environment genetic algorithms. See the text for a more detailed description.
doi:10.1371/journal.pone.0078401.g002

Optimization on Golf-Course Fitness Landscapes
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The density classification task is completed successfully if the

states of all automata converge to the initial majority state — no

partial credit is given. We define the fitness of a genome FC as the

fraction of initial conditions with a given task difficulty d for which

agents possessing genome C converge to the correct consensus

within 2N time steps. The introduction of noise in the dynamics

results in a degree of randomness in the evolution of the

interacting units. For this reason complete consensus may never

emerge, therefore we assume that the task is completed successfully

when, at the end of the evolution, any deviation from the correct

classification is caused by these fluctuations, meaning that, if the

noise were ’’turned off’’ at that moment, all the units would

converge to the correct state in the next time step. This criteria

works for finite systems, but if we considered N?? perfect

consensus may never be achieved in a noisy environment. Moreira

et al [16] showed that FC depends on the noise magnitude g, the

rewiring probability r, the number N of agents in a system, and

the task difficulty d.

We perform the density classification task 100 times for each

genome with parameters N~299, d~0:2, g~0:1, and r~0:3.

To assure an unbiased sampling of initial conditions, half of the

realizations were started with 60% of the agents in state zero and

the other half with 60% of the agents in state one. We define the

fitness of a genome as the fraction of times that the system of

agents sharing that genome converged to the correct consensus,

that is, at the end of the process all agents hold the same state as

the initial majority. Also, to reduce fluctuations, the set of initial

conditions is the same for each genome, changing only after that

generation step is completed.

After estimating their fitnesses, we rank the M genomes and

discard the bottom 80% of genomes. We then generate 0:8M new

genomes through crossover and mutation of randomly selected

genomes from among the top 20% fittest genomes [1]. For

gv0:45, the GAs evolves genomes with fitnesses of nearly 100%

after just a few tens of generations.

Whenever a genome with fitness greater than 0.98 evolves, we

increase g by 0.01, and re-estimate the fitness of all M genomes in

the population. Since there is a threshold value gt(k) of the noise

for which a genome with 2k bits can have high fitness — for

gwgt(k) no fit genomes can evolve. Thus, if the GA cannot evolve

an highly efficient genome after 50 generations, we consider again

the set of high fitness genomes that evolved for gt(k){0:01 and

generalize them (Fig. 2a).

The generalization step creates new genomes that are canalized

[20] by the state of just k{1 neighbors but that incorporate the

ability to consider the state of two additional neighbors. After

generalizing the genomes, we set g~gt(k) and use the traditional

GA approach to evolve a high fitness genome (Fig. 2b).

Results

We show in Fig. 3 the highest fitness in the population for 650

generations of the VEGAs process. While traditional GA would

require about 3,000 generations to evolve a high fitness genome

for k~7, we see that already after only 130 generations of the

VEGA process, we have evolved a highly fit genome with k~7.

Remarkably, in only 600 generations, VEGA evolves a genome

with k~11 — that is, with 2048 bits — that displays high

efficiency in solving the density classification task for g as high as

0.7. Extrapolating from the data in Fig. 1d, we would expect

traditional GA to require on the order of 1012 generations to

accomplish the same.

Interestingly, the evolved rule is more robust against commu-

nication noise than the majority rule (Fig. 4). This increased

robustness recalls the findings of Seaver et al. [21] reporting that

conservative strategies — that is, strategies that give greater weight

to an agent’s state than to the information received from the

neighbors — display greater robustness again communication

noise than the corresponding majority rule. In order to investigate

whether the higher fitness of the evolved rules mirrors the

conservative strategy discussed in Seaver et al. [21], we calculate

the average updated state of an agent using a VEGA evolved

genome as a function of the agent’s initial state and of the number

of neighbors in state one.

Since the evolved rules consider not only how many, but also

which neighbors are in a given state, even without noise, the same

number of neighbors in a given state can yield different outputs.

For this reason, we obtain an average output of a class of inputs by

Figure 3. The Variable Environment Genetic Algorithm dramatically speeds up the evolution of solutions to the density
classification task. (A) Highest fitness in the population and (B) noise magnitude g as a function generation number. We start simulations with 100
randomly selected populations of agents having genomes with 32 bits, that is, k = 5 and g~0:1. When a genome reaches a fitness of 0:98, we
increase the magnitude of the noise by 0:01. In the beginning of the process the most efficient rules are guessers, that have efficiency about 0.5. At
some generation an innovative rule evolves that can classify both kinds of consensus, and in a few more generations the desired efficiency is
achieved. The noise then increases rapidly until it reaches a critical level (about g~0:43). Then, no rule achieves the desired efficiency even after 50
generation. At this point, we promote the population of rules to include 2 extra neighbors. The doted lines in the panels mark these moments. The
promoted rules are essentially identical to the previous ones, with the extra neighbors acting as silent inputs, that is, the extra information does not
affect the rule dynamics. The GA, by mutation and crossover, should make use of these new inputs to evolve more efficient rules. Eventually,
members of the population will achieve the desired efficiency, noisy increases until it reaches another level that can not be surmounted by rules with
this value of k. The rules are promoted again, and the process continues with noise and complexity of the rules co-evolving until we obtain highly
complex rules (k~11) that sustain high noise levels (g~0:7).
doi:10.1371/journal.pone.0078401.g003
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counting the fraction of these outputs that turn the agent to state 1

for a noiseless system (Fig. 4b) and for g~0:7 (Fig. 4c).

It is noteworthy that an agent’s new state strongly depends on its

prior state. When, for instance, the agent is initially in state 1, even

for only 4 out of 10 neighbors in state 1, it still keeps its initial state

with approximately 90% of chance, while the majority rule would

necessarily switch its state to conform with the majority. As a

result, agents using the evolved rules tend to keep their own states,

unless the overwhelming majority of their neighbors ’’disagrees’’

with them (Fig. 4b). These results show that to effectively perform

the density classification task in noisy environments an agent

becomes increasingly conservative, that is, it assigns greater

importance to its own state than to the input from its neighbors.

Discussion

Much of the literature on Monte Carlo sampling and

optimization focuses on algorithms with improved performance

in rugged landscapes. For instance, parallel tempering and

simulated annealing algorithms draw inspiration from physics by

introducing a ’’temperature’’ parameter. Higher temperature

systems correspond to smoothed versions of the target landscape,

in which exploration between multiple modes is facilitated [22,23].

Other related methods belong to a broad class known as graduated

optimization, in which solutions to simpler optimization problems

define the starting point for progressively more difficult ones [24].

While smoothing is one powerful way to simplify the optimization,

when the vast majority of the search space has zero gradient,

smoothing will actually make the search more challenging.

However, in some problems when exploration in high dimensional

landscapes is intractable, optimization of sub-problems in a lower

dimensional subspace is often feasible [25]. Likewise, the power of

our method comes from the fact that we drastically reduce the

initial size of this space of possible solutions, by simplifying the

problem being solved.

Our study demonstrates that variable environment genetic

algorithms have the potential to find very efficient solutions to

complex problems characterized by flat fitness landscapes. While

we consider, for illustration purposes, a case in which VEGAs

increase task difficulty by controlling the noise level, one could

easily generalize the process to cases in which the size of the system

or the complexity of the interactions are increased.

Interestingly, our results may have some significance for the

understanding of abiogenesis. One major open question in

abiogenesis is how living cells arose from a concentrated soup of

non-living complex organic polymers. A particularly challenging

point in abiogenesis is to assign distinct fitnesses to different

assemblies of organic polymers. In the absence of differences in

fitness, life would have to have appeared as the result of random

drift [26,27], a possibility with a prohibitively low probability (as is

exemplified by the data in Fig. 1). If an assembly of organic

polymers is auto-catalytic, then it would be endowed with

differential fitness based on how strong the reinforcement is. Such

auto-catalytic networks would have their evolution driven by

natural selection toward complexity and life. Our numerical results

demonstrate that the solution of simple tasks that provide stepping-

stones toward the solution of an ’’impossibly’’ complex problem

can, in fact, lead to reductions by tens of orders of magnitude of

the time needed to find efficient solutions.

Our study also provides support for the natural emergence of

conservative strategies as a response to the challenge of infor-

mation integration in complex environments. Many experiments

show that individuals easily fall prey to peer pressure and change

their opinion to conform to the majority view. But some studies

also show that conservatism is a widespread human tendency. For

example, in the Asch conformity experiments [28], the number of

opposing opinions necessary to change an individual belief is

always close to the total number of actors. Being conservative,

Figure 4. Robustness of the evolved genomes again commu-
nication noise. (A) Comparison of the fitness of the genomes evolved
using VEGA against the fitness of the majority rule for k~5, 7 and 11. It
is visually apparent that for kw5 the evolved genomes are more robust
against communication noise than the majority rule. (B) Average
updated state of an agent with a high fitness evolved genome with
k~11 as a function of the number of neighbors in state one for g~0:0.
The red circles show the updated state of the agent when the initial
state is one, and the red dashed line shows results for the majority rule
for comparison. The empty circles show the updated state of the agent
when the initial state is zero, and the black full line shows results for the
majority rule. (C) Same as b, but for g~0:7. It is visually apparent that
the evolved genomes are more conservative than the majority rule —
they require larger majorities of neighbors on the opposite state in
order to change state.
doi:10.1371/journal.pone.0078401.g004
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therefore, may act as an efficient countermeasure to noisy

information and scenarios where neighbors’ opinions are not

necessarily reliable.
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