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Autism is a neurodevelopmental disorder in which white matter (WM) maturation is affected. We assessed
WM integrity in 16 adolescents and 14 adults with high-functioning autism spectrum disorder (ASD) and
in matched neurotypical controls (NT) using diffusion weighted imaging and Tract-based Spatial Statistics.
Decreased fractional anisotropy (FA) was observed in adolescents with ASD in tracts involved in emotional
face processing, language, and executive functioning, including the inferior fronto-occipital fasciculus and
the inferior and superior longitudinal fasciculi. Remarkably, no differences in FA were observed between
ASD and NT adults.
We evaluated the effect of age on WM development across the entire age range. Positive correlations between FA
values and agewere observed in the right inferior fronto-occipital fasciculus, the left superior longitudinal fasciculus,
the corpus callosum, and the cortical spinal tract of ASD participants, but not in NT participants.
Our data underscore the dynamic nature of brain development in ASD, showing the presence of an atypical
process of WM maturation, that appears to normalize over time and could be at the basis of behavioral
improvements often observed in high-functioning autism.

© 2012 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Autism Spectrum Disorders (ASD) are complex neurodevelop-
mental disorders affecting as many as 1 in 88 children (CDC 2012).
Individuals with ASD are characterized by early onset impairments
in communication and reciprocal social interaction as well as by the
presence of repetitive and stereotyped behaviors.
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There is evidence that brain development in individuals with
ASD follows a different trajectory than that of neurotypicals (NT). At
birth, brain size of individuals later diagnosed with ASD is normal
(Courchesne et al., 2003; Lainhart et al., 1997). However, in contrast
to typically developing children, brain size rapidly increases during
the first few years of life up to ages 2 to 4 years in children with
autism, particularly in frontal regions (Courchesne et al., 2001; Hazlett
et al., 2011; Sparks et al., 2002). The observed increase tends to stabilize
during adolescence, resulting in a normal brain size in adulthood
(Redcay and Courchesne, 2005), but see Piven et al. (1996). Brain
enlargement has been associated with increases in WM volume (Ben
Bashat, 2011; Hazlett et al., 2011; Herbert et al., 2004).

WM developmental changes have been studied using Diffusion
Tensor Imaging (DTI), a method based on local microstructural char-
acteristics of water diffusion (Basser and Jones, 2002; Basser and
Pierpaoli, 1996; Le Bihan et al., 2001). Direction-dependent diffusivity
of watermolecules is reflected in fractional anisotropy (FA) (Basser and
Pierpaoli, 1996), a quantitative indexwhich is sensitive to developmen-
tal and pathological differences, such as axon myelination, diameter
distribution, axon density, and architecture of WM fibers (Beaulieu,
2002; Pierpaoli et al., 2001).

To date, three main approaches have been used to analyze DTI
data (Jones, 2010). The first method, widely used in autism research,
served.
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is voxel-based statistics of FA images (VBM-like), in which a voxel-
by-voxel group-wise comparison of anisotropy is performed on
a common space (Ben Bashat et al., 2007; Bloemen et al., 2010;
Cheung et al., 2009; Conturo et al., 2008; Groen et al., 2010; Ke
et al., 2009; Keller et al., 2007; Lee et al., 2007; Noriuchi et al., 2010;
Thakkar et al., 2008). A major shortcoming of this approach, however,
is the lack of a satisfactory standard registration algorithm for
aligning FA images of multiple subjects (Smith et al., 2006).

The second approach, Diffusion Tensor Tractography (DTT),
compares diffusion measures along WM tracts, computed from the
direction of maximal diffusion in each voxel. DTT has been used to
investigate the integrity of specific WM tracts in individuals with
autism in several studies (Catani et al., 2008; Knaus et al., 2009;
Kumar et al., 2010; Pugliese et al., 2009; Sahyoun et al., 2010b;
Sundaram et al., 2008; Thomas et al., 2011; Weinstein et al.,
2011). This approach has however been criticized for potentially
resulting in erroneous and completely artifactual pathways bear-
ing no correspondence with the underlying neuroanatomy (Jones,
2010).

A third, novel method, tract-based spatial statistics (TBSS), has
been introduced to overcome these difficulties via carefully tuned
automated nonlinear registration, followed by projection onto an
alignment-invariant tract representation, the mean FA skeleton
(Smith et al., 2006). Given these advantages, TBSS was the method
of choice for the current study in order to assess FA values in
long-range connections. TBSS has been applied to autism research
in recent studies performed in children and adolescents (Ameis
et al., 2011; Barnea-Goraly et al., 2010; Cheng et al., 2010; Kumar
et al., 2010; Sahyoun et al., 2010a; Shukla et al., 2011a; Weinstein
et al., 2011).

Previous DTI studies have shown that WM development is not
a linear process. Moreover, the rate of change in FA values
and other WM indices varies across the brain. Nevertheless in typical
development, there is a general trend toward an increase in FA values
during early childhood, especially during the first 12 months (Gao
et al., 2009; Hermoye et al., 2006). FA values continue to increase,
albeit at a slower rate during late childhood and adolescence
(Barnea-Goraly et al., 2005; Schmithorst et al., 2002; Schmithorst
and Yuan, 2010), and, in adulthood, tend to decrease with age (Abe
et al., 2008; Barrick et al., 2010; Madden et al., 2004; Pfefferbaum
and Sullivan, 2003; Sullivan et al., 2001; Sullivan and Pfefferbaum,
2006).

In this study we assessed WM integrity in younger (from 10 to
20 years old) and older (from 21 to 43 years old) participants
with ASD compared to NT. Developmental changes were then
investigated by studying the effect of age on FA in each group.
By studying a wide age range spanning from 10 to 43 years old,
we aimed to determine whether differences in WM reported in
previous studies in children and adolescents with autism persist
in adulthood. We hypothesize that WM maturation in high-
functioning autism could normalize over time, reflecting a delay
in maturation. Finally, we searched for possible associations be-
tween social/communication skills as well as autism traits and
WM structure.
Table 1
Demographic data (mean±SD).

Age (years) PIQ AQ ADOS (COM) Gender (M/

ASD adolescents 15.5±2.8 108.1±13.5 30.3±8.5 4.7±1.6 15/1
NT adolescents 15.5±2.0 111.8±13.7 15.3±13.9 17/1
p Value 0.96 0.43 b0.001
ASD adults 28.1±6.5 110.3±15.8 27.6±5.7 3.5±1.3 12/2
NT adults 28.6±5.6 112.3±8.5 15.4±5.9 16/3
p Value 0.81 0.67 b0.001
2. Material and methods

2.1. Participants

The Lausanne University Hospital ethics committee approved all
procedures, and written informed consent was obtained from all par-
ticipants or their legal guardians and all adolescents gave their assent.

Thirty-one individuals with high-functioning ASD and 36 NT par-
ticipated in the study. We had to exclude 4 ASD and 4 NT from the
analysis due to technical reasons. Twenty-seven individuals with
high-functioning ASD and 32 NT were included in the final analysis.
Participants were divided into two groups, following the NIH criteria:
adolescents (≤20 years old) and adults (>20 years old). ASD diagno-
ses were confirmed by an experienced clinician based on current
presentation and developmental history of ASD participants using
the Autism Diagnostic Observation Schedule using modules 3 and 4
(ADOS) (Lord et al., 2000) and the Autism Diagnostic Interview-
Revised (ADI-R) (Lord et al., 1994).

The adolescent group consisted of 16 high-functioning individuals
with ASD (mean age±SD: 15.5±2.8 years; range: 10.1–19.9) and
18 NT (15.5±2.0 years, range: 12.2–18.8). Adolescents with ASD
were diagnosed with autism (8 participants) or Asperger syndrome
(8 participants).

The adult group consisted of 14 high-functioning individuals with
ASD (28.1±6.5 years; range: 20.8–39.6), diagnosed with autism
(4 participants), Asperger syndrome (8 participants), or pervasive
developmental disorder not otherwise specified (2 participants)
and 19 NT (28.6±5.6 years; range: 22.2–42.9). Performance Intelli-
gence Quotient (PIQ) was assessed using the Wechsler non-verbal
scale (Wechsler, 1997; Wechsler and Naglieri, 2006). All participants
completed the Autism Quotient (AQ) self-report questionnaire
(Baron-Cohen et al., 2006; Woodbury-Smith et al., 2005).

Both adolescent and adult groups were matched for age and IQ
(see Table 1 for participants' characteristics).

2.2. Data acquisition

Data were acquired using a 3 T high-speed echoplanar-imaging
device (Tim Trio, Siemens, Erlangen). Head stabilization was achieved
by foam padding, and all participants wore earplugs to attenuate
noise. Diffusion-weighted data with 70 directions (60 diffusion-
weighted+10 T2) were acquired using a 12-channel matrix coil. 72
2 mm-thick axial slices were obtained with the following parameters:
TR/TE=7920/83 ms, b=700 s/mm2, voxel size: 2×2×2 mm, acqui-
sition matrix 128×128, scan time 11:57.

2.3. Tract-based Spatial Statistics

DTI data processing was carried out using FMRIB's Diffusion
Toolkit (FDT), part of FSL v.4.1.6 (FMRIB software Library) (Smith et
al., 2004; Woolrich et al., 2009). Motion and eddy current correction
was performed and diffusion tensors were fitted onto corrected
data. The six independent elements of the diffusion tensor were cal-
culated from each diffusion-weighted image. The resulting diffusion
F) ADOS (SOC) ADOS (TOT) ADI (SOC) ADI (COM) ADI (REP) ADI (TOT)

8.6±2.2 15.3±4.6 20.1±4.7 15.3±4.2 4.9±1.7 43.3±9.2

6.4±2.3 11.4±3.7 22.1±2.8 13.1±4.6 4.6±1.9 42.4±7.9



Table 2
Regions with significant (pb0.05, corrected for multiple comparisons) reduced frac-
tional anisotropy (FA) in adolescents with ASD vs. NT, after correction for age, gender,
and brain size.

MNI coordinates

x y z

Inferior fronto-occipital fasciculus L −28 13 4
R 36 −29 0

Inferior longitudinal fasciculus L −41 −24 −5
R 39 −25 −2

Superior longitudinal fasciculus L −35 −20 30
R 33 −17 33

Uncinate fasciculus L −29 12 −4
R 33 0 −10

Anterior thalamic radiation L −6 −7 0
R 11 −23 −10

Cingulum (hippocampus) R 26 −29 −13
Cingulum (cingulate gyrus) L −7 4 33

R 9 −5 35
Corticospinal tract L −26 −18 34

R 25 −19 14
Genu of corpus callosum L −1 21 13

R 15 22 20
Body of corpus callosum L −13 −5 32

R 16 −14 35
Splenium of corpus callosum L −19 −36 29

R 15 −35 25
Forceps major 26 −53 7
Forceps minor 14 26 17
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tensor is expressed in terms of three eigenvectors and eigenvalues. FA
was calculated using eigenvalues of tensor: λ1>λ2>λ3. Subjects' FA
data were aligned into a common space using the nonlinear registra-
tion tool FNIRT (Andersson et al., 2007a, b), which uses a b-spline
representation of the registration warp field (Rueckert et al., 1999).
In the next step, the mean FA image was created and thinned to
create a mean FA skeleton representing the centers of all tracts
common to the whole study group. To exclude gray matter or CSF,
Fig. 1. Coronal (panel a), horizontal (panels b,c) and sagittal (panels d,e,f) sections showing
with age-matched controls, displayed on the MNI template brain. There are no regions w
highlighted on the mean FA skeleton (green) in colored voxels (scale ranging from blue to
MNI coordinates of each panel are as follows: a: y=106; b: z=96 c: z=86; d: x=123; e: x
longitudinal fasciculus; SLF: superior longitudinal fasciculus; SplCC: splenium of corpus call
UNC: uncinate; CINh: cingulum, hippocampal region; CINc: cingulum, cingulate region; CC
the mean FA skeleton was thresholded at 0.2. This threshold parame-
ter also controls for cross-subject variability. Each subject's aligned FA
data was then projected onto this WM skeleton. First, between-group
analyses were conducted in adolescents and adults. The skeletonized
FA data were fed into voxel-wise cross subject statistics. Age, brain
size, and gender were entered as additional covariates, in order to
remove potential effects due to differences in those factors between
the two groups (ASD vs. NT). To calculate brain size, total intracranial
volume (TIV) was used. TIV was found after deleting non-brain tissue
from T1-image of the whole head, using FSL Brain Extraction Tool
(BET) (Smith, 2002). Given that previous studies have shown that
the distribution of FA data is substantially non-Gaussian (Jones et
al., 2005; Smith et al., 2006), a non-parametric two-sample permuta-
tion test was performed to study between-group (ASD vs. NT) differ-
ences using the randomise tool available in FSL (http://www.fmrib.ox.
ac.uk/fsl/randomise/index.html), using 5000 permutations. Threshold-
free Cluster Enhancement (TFCE) was performed in order to enhance
cluster-like structures without prior definition of a cluster-forming
threshold or extensive data smoothing (Smith and Nichols, 2009). In
order to control for multiple voxel-wise comparisons, family-wise
error correctionwas performed and the resulting significance threshold
was pb0.05, corrected for multiple comparisons.

In order to assess whether WM maturation was different between
groups (ASD and NT), we tested if an interaction group×age was
present. A model was created such that age was entered as a covariate
split according to groups, but demeaned across groups. The contrasts
of interest, which consisted of the positive correlations between FA
and age for each group [ASD: 0 0 1 0; NT: 0 0 0 1], and the group×age
interactions [ASD>NT: 0 0 1−1; ASDbNT: 0 0−1 1] were computed
using a 2-sample t-test.

In order to examine the relationships between WM integrity and
behavior, we looked at correlations between FA values and scores in
the ADOS and the ADI-R in adolescents and adults, separately.

Finally, to assess the influence of autism traits, measured with AQ,
we examined the correlations between FA and AQ values in the entire
population studied (ASD and NT, across all ages).
areas of significantly decreased FA (pb0.05, corrected) in ASD adolescents compared
here FA is significantly higher in the ASD group. Regions of decreased FA in ASD are
light blue). For visualization purposes, the stats images are ‘thickened’ with tbss_fill.
=64; and f: x=81. CT: cortico-spinal tract; BCC: body of corpus callosum; ILF: inferior
osum; Fm: forceps minor; FM: forceps major; IFOF: inferior fronto-occipital fasciculus;
: corpus callosum.

http://www.fmrib.ox.ac.uk/fsl/randomise/index.html
http://www.fmrib.ox.ac.uk/fsl/randomise/index.html
image of Fig.�1


Table 3
Regions in which fractional anisotropy (FA) is positively correlated with age across the
entire age range (combined adolescents and adults), and group (ASD and NT)×age
interaction.

Group MNI coordinates t-Peak Size

x y z

ASD R Anterior thalamic radiation 11 −9 10 7.05 466
L −3 −11 4 6.66 465
R Cingulum (hippocampus) 23 −27 −14 4.04 141
L −19 −40 −5 5.21 130
R Inferior fronto-occipital fasciculus 33 8 −1 4.90 136
L Superior longitudinal fasciculus −50 −10 19 3.69 104
L Corticospinal tract −21 −21 −2 5.72 52
R 18 −15 −6 3.02 32
R Cingulum (cingulate) 8 −20 34 4.01 37
L Body of corpus callosum −8 −28 25 4.26 33
R 15 −22 31 4.26 23

Splenium of corpus callosum 6 −37 11 5.31 32
NT L Anterior thalamic radiation −9 −17 8 5.15 502

R 8 −12 16 6.37 303
R Cingulum (hippocampus) 27 −21 −22 4.67 45
L −20 −35 −10 4.04 42
L Cingulum (cingulate gyrus) −9 9 30 4.84 37
R 9 8 31 4.46 26

Group×age
ASD>NT R Body of corpus callosum 13 −15 32 4.38 84

L Superior longitudinal fasciculus −42 −40 31 4.28 30
R 28 −32 35 3.89 32

ASDbNT None
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Significance thresholdwas pb0.001, corresponding to a t value>3.0,
combined with a cluster size≥23 voxels (5000 permutations without
variance smoothing.)

Anatomical location was determined using the JHU White-Matter
Tractography and JHU ICBM-DTI-81 White-Matter Labels atlases.

3. Results

3.1. Between-group (ASD vs. NT) FA analysis

3.1.1. Adolescents (Table 2, Fig. 1)
Adolescents with ASD showed decreased FA values bilaterally over

a very large region (1 cluster of 35,405 voxels) compared to NT.
Within this large cluster, peaks showing significant differences com-
pared to NT were observed in tracts specified in Table 2. Decreased
FA values were found bilaterally in the inferior fronto-occipital
Fig. 2. Correlations between age and FA in ASD and NT in the body of CC and the SLF. Blue
(CON). Left panel: SLF, ASD: r=0.41, p=0.03; NT: r=0.02, p=ns. Right panel: body of CC
fasciculus (IFOF), the inferior longitudinal fasciculus (ILF), the superi-
or longitudinal fasciculus (SLF), the uncinate fasciculus (UNC), the an-
terior thalamic radiation (ATR), the cingulum in its cingulate section,
the corticospinal tract (CT) and in the corpus callosum (CC), as well as
in the right forceps major and minor, and in the right hippocampus
section of the cingulum (see Fig. 1).

3.1.2. Adults
Remarkably, there were no significant differences in FA values in

any tract between ASD and NT adults.

3.1.3. Age group comparisons (adolescents vs. adults)
In addition, a direct comparison was conducted between the two

age groups in both NT and in ASD.
In NT, significant differences between adolescents and adults were

found in several large clusters located bilaterally in the ATR, the CT,
the IFOF as well as in the left ILF and SLF.

In ASD, significant differences between adolescents and adults
were found bilaterally in the ATR, CT, cingulum (cingulate) IFOF, ILF,
SLF, UNC, body and splenium of CC, as well as in the right cingulum
(hippocampus), the right genu of CC, the forceps major and the
forceps minor.

3.2. Developmental changes of FA — correlation between FA and age
(Table 3, Fig. 2)

We examined the interaction between FA and age in ASD and
NT, across the entire age range. In NT, positive correlations
between FA values and age were found bilaterally in the ATR, as
well as in the hippocampal and the cingulate divisions of the
cingulum.

In participants with ASD, positive correlations between FA
values and age were observed bilaterally in the ATR, the cingulum
(hippocampus), the CT, the body and splenium of the CC, as well
as in the right cingulum (cingulate) and IFOF, and the left SLF.

Significant group×age interactions were found for the contrast
ASD>NT. They were located in the body of the CC and the SLF (see
Fig. 2).

3.3. Correlations between FA and behavioral measures

3.3.1. ASD adolescents
In adolescents with ASD, FA values in the IFOF were negatively

correlated with communication scores in both ADOS and ADI-R. In
squares and line represent values for ASD, red circles and line represent value for NT
, ASD: r=0.38, p=0.04; NT: r=−0.04, p=ns.

image of Fig.�2


Table 4
Regions in which fractional anisotropy (FA) is negatively correlated with ADI and ADOS scores in ASD adolescents.

Correlation with behavioral measures

Behavioral score Correlation MNI coordinates t-Peak Size

x y z

ADOS(COM) Negative R Inferior fronto-occipital fasciculus 40 −40 −4 5.17 23
ADOS(SOC) Negative L Inferior longitudinal fasciculus −42 −39 −7 5.39 59

R 41 −44 −3 4.05 25
ADI-R(COM) Negative L Corticospinal tract −23 −19 37 3.86 65

L Superior longitudinal fasciculus −29 −28 38 4.76 63
L Inferior fronto-occipital fasciculus −35 −27 −1 4.64 29

ADI-R(SOC) Negative L Corticospinal tract −22 −18 37 4.9 71
L Hippocampus −28 −25 −23 4.02 40
R Inferior longitudinal fasciculus 38 −53 −2 4.26 28
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addition, the left SLF was also negatively correlated with communica-
tion scores in the ADI-R. The ILF FA values were negatively correlated
with social scores in both ADOS and ADI-R (Table 4).

3.3.2. ASD adults
In adults with ASD, FA values in the IFOF were negatively correlated

with communication scores in the ADOS, and with social scores in the
ADOS and the ADI-R. The FA values in the ILFwere negatively correlated
with social scores in the ADOS, and those of the splenium of the CCwith
the ADI-R communication scores (Table 5).

3.3.3. ASD and NT, all ages, correlation with AQ
Higher AQ scores, corresponding to a higher presence of autistic

traits, were correlated with lower FA in the right SLF (48, −45, −5;
t=4.06), the left cingulum (hippocampus) (−18, −39, −5; t=3.02)
and the left CT (−23, −19, 43; t=3.35) (Table 6).

4. Discussion

In this study, we examined neurodevelopmental changes in WM
tracts in adolescents and adults with high-functioning ASD compared
to age- and IQ-matched NT controls, using TBSS, an automated
tract-based analysis. To our knowledge, this is the first TBSS study
investigating WMmaturation and integrity in both adults and adoles-
cents with ASD.

DTI studies using other approaches than TBSS in adults with ASD
are limited to a few reports (Bloemen et al., 2010; Catani et al.,
2008; Pugliese et al., 2009; Thakkar et al., 2008; Thomas et al.,
2011). Absence of differences in FA measurements in adults with
ASD (Thomas et al., 2011) and Asperger syndrome (Pugliese et al.,
Table 5
Regions in which fractional anisotropy (FA) is correlated with ADI and ADOS scores in adu

Behavioral score Correlation

ADOS(COM) Negative R Forceps major
L Inferior fronto-occipital fasc
R

ADOS(SOC) Negative L Inferior longitudinal fascicu
R Forceps major
R Inferior fronto-occipital fasc

ADI-R(COM) Positive L Corticospinal tract
Negative R Splenium of corpus callosum

ADI-R(SOC) Positive L Corticospinal tract
R

Negative R Inferior fronto-occipital fasc
L Hippocampus
2009), and decreased FA values in the cerebellum have been reported
(Catani et al., 2008), using DTT. Using whole brain approach and VBS,
reduced FA in large clusters in the brain has been described (Bloemen
et al., 2010). However, as underlined by the authors, this method does
not allow associations with specific tracts.

In the present study, we observed an alteration of WM reflected
by a decreased FA in adolescents with ASD in several tracts including
the IFOF, ILF and SLF. In adults, however, no significant differences
were observed between groups. These findings suggest the presence
of an abnormal pattern of WM development in ASD that normalizes
over time.

In addition, positive correlation between FA value and age
persisting into adulthood was observed in individuals with ASD, in
the right IFOF, the left SLF, the bilateral CT and CC, while this was
not the case in NT.

Finally, we showed that behavioral difficulties in the social and
communicative domainswere correlatedwith the FA values in specific
tracts sustaining these functions.
4.1. Processing and regulation of emotions

Decreased FA was found in adolescents with ASD bilaterally in
the ILF, a pathway connecting the occipital cortex with the anterior
temporal lobes and amygdala. FA values in the ILF were negatively
correlated with ADOS social scores in both adolescents and adults.
Decreased FA was also found in the IFOF, connecting the occipital
cortex through the uncinate fasciculus, and terminating in the
orbitofrontal cortex (Catani et al., 2002; Catani et al., 2003), and a
negative correlation between FA in IFOF was found with ADOS
and ADI-R communication scores in adolescents and in adults. These
lts with ASD.

MNI coordinates t-Peak Size

x y z

16 −85 22 4.4 73
iculus −40 −23 −10 5.35 42

37 −22 −7 4.35 39
lus −46 −9 −14 8.53 46

16 −85 22 4.35 38
iculus 38 −22 −8 5.24 23

−22 −24 30 4.67 95
21 −46 7 5.47 43

−22 −28 46 8.6 46
19 −27 53 6.4 37

iculus 20 −87 −4 3.75 51
−23 −28 −16 3.13 23



Table 6
Regions in which fractional anisotropy (FA) is correlated with AQ scores in the entire population studied (NT and ASD, across all ages).

MNI coordinates t-Peak Size

Behavioral score Correlation x y z

AQ Negative L Corticospinal tract −23 −19 43 3.35 50
R Superior longitudinal fasciculus (temporal part) 48 −45 −5 4.06 30
L Hippocampus −18 −39 −5 3.02 27
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pathways play an important role in the feed-forward cascade of face
information conveyed from the occipito-temporal regions, including
the Fusiform Face Area (FFA) anteriorly to emotion-related regions,
including the amygdala and the orbitofrontal cortex (Philippi et al.,
2009). The right ILF plays an important role in the recognition of emo-
tional facial expressions (Kleinhans et al., 2008; Pugliese et al., 2009)
and damages to the right ILF after a stroke have been associated with
emotion recognition impairments (Philippi et al., 2009). Damage to
the right IFOF results in overall facial emotion recognition impairment,
specifically for sadness, anger and fear, and it has been suggested that
impairment in fear recognition can result from a damage to the IFOF
(Philippi et al., 2009).

In line with previous studies (Barnea-Goraly et al., 2010; Jou
et al., 2011; Noriuchi et al., 2010; Shukla et al., 2011a, but see
Weinstein et al., 2011), we found a reduced FA in the cingulum in
adolescents with ASD. The cingulum is medial to the cingulate
gyrus and connects the medial frontal cortex to the posterior cingu-
late (part of the limbic system), precuneus, and thalamus (van den
Heuvel et al., 2008), and plays a key role as a mediator between
the different components of the limbic system and in emotion
regulation.

4.2. Language processing

A decreased FA was found in adolescents with ASD bilaterally
in the ILF. Abnormalities in the ILF in ASD have been observed in
other studies (Brito et al., 2009; Jou et al., 2011; Pugliese et al.,
2009; Shukla et al., 2011a; Sundaram et al., 2008). The left ILF is
involved in language (Mandonnet et al., 2007). Decreased ILF
volume has been reported in high-functioning children with ASD
(Waiter et al., 2005), and a decreased FA in this region was
reported by Jou et al. in children with ASD (Jou et al., 2010; Jou
et al., 2011).

In adolescents with ASD, alterations in myelin structure were
also observed bilaterally in the SLF, a pathway connecting the frontal
lobes to temporal and parietal lobes (Wakana et al., 2004). The SLF is
involved in the integration of the auditory and speech areas of the
brain. The left SLF is important for information exchange between
Broca's and Wernicke's areas. Slower neural transmission in this
region, due to altered myelin structure, has been reported in recent
studies (Shukla et al., 2011b; Weinstein et al., 2011), and may be at
the basis of language deficits in ASD (Levy et al., 2010). In adolescents,
FA values in the left SLF were positively correlated with ADI-R com-
munication scores. Abnormalities in the right SLF have also been asso-
ciated with attention deficits (Konrad et al., 2010). Our findings
replicate data from other groups showing abnormalities in the SLF
in children with ASD (Barnea-Goraly et al., 2010; Jou et al., 2010;
Noriuchi et al., 2010; Weinstein et al., 2011). In addition, we observed
that across all participants, FA values in the right SLF were correlated
with autistic traits.

4.3. Executive functioning

A positive correlation between FA in the SLF and executive
function (EF) performance has been shown in typically developing
children, independent of age (Vestergaard et al., 2011). Executive
functions (EF) include skills required for action planning and execu-
tion, inhibition, organization, self-monitoring, cognitive flexibility and
set-shifting. The EF hypothesis is one of the proposed theories to ex-
plain the triad of impairments in autism (Hughes and Russell, 1993;
Ozonoff et al., 1991), and EF impairments have been documented in
ASD (Bennetto et al., 1996; Hughes et al., 1994; Just et al., 2007;
Minshew et al., 2002; Ozonoff and Jensen, 1999; Ozonoff and
McEvoy, 1994; Ozonoff et al., 1991). A few studies have investigated
the nature and extent of developmental changes in EF. In a 3-year
follow-up study, no significant improvements were observed in
planning efficiency and perseverative responses of young children
with autism (mean age 12.4 years) (Ozonoff and McEvoy, 1994).
Griffith et al., reported the same finding regarding perseverative
errors in autistic children (mean age 4.3 years) over a 1-year period
(Griffith et al., 1999). In a recent study examining a 3-year period,
Pellicano showed that children (mean age 5.6 years) with ASD
obtained significantly lower planning scores than typical controls.
Over time, although EF abilities improved significantly in both groups,
children with ASDmade significantly more gains in planning tasks than
typical children (Pellicano, 2010). In line with the behavioral develop-
mental results described above, we observed WM differences in the
SLF in the younger group. Those differences were absent in the adult
group, pointing to amaturational aspect, rather than to persistent struc-
tural abnormalities.

A reduced FA in the CT, also reported in Brito et al. (2009) and
Shukla et al. (2011a) may be related to the clumsiness often reported
in ASD.

In accordance with several DTI studies (Alexander et al., 2007;
Brito et al., 2009; Keller et al., 2007; Kumar et al., 2010; Noriuchi
et al., 2010; Shukla et al., 2011a), we observed a reduced FA in adoles-
cents with ASD in the genu, body and splenium of the CC. Differences
in callosal size has been reported in children with autism, with the
rostral body tending to normalize by mid-adolescence (Frazier et al.,
2012). Here we also found a negative correlation between the splenium
of the CC and the ADI-R communication scores in adults. Correlation
with age in the CC was significantly different between groups when
considering the entire age range. The corpus callosum is involved in
the interhemispheric connection of multiple brain areas and is impor-
tant for motor coordination, as well as for higher-order cognition and
emotional and social functioning (Paul et al., 2007).

Developmental studies report a gradual increase of the FA from
childhood until twenties in the CC, the ILF, the SLF and the IFOF in
typical development (Lebel et al., 2008; Snook et al., 2005). Matura-
tion of the brain is heterogeneous and variable during post-natal de-
velopment (Gogtay et al., 2004; Golarai et al., 2007; Luna et al., 2004;
Scherf et al., 2007) and may be especially sensitive to factors affecting
the speed of neuronal maturation as well as myelin development,
which may play a major role in autism etiology (Chomiak et al.,
2010; Rodier, 2004). Our data indicate that in adolescents with ASD,
the substrate of higher integrative functions (including areas in-
volved in speech processing, executive functions, and the processing
and regulation of emotions) may be particularly altered during devel-
opment. A recent comprehensive review reporting the results of all
DTI studies in autism between 2004 and 2012 (Travers et al., 2012)
underlines the atypical developmental trajectory of white matter in
autism.
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5. Conclusion

During typical development, maturation of WM tracts is accompa-
nied by an increase in FA. Our data showed a reduced FA in WM in
adolescents with ASD compared with age-matched controls. Addi-
tionally, DTI indices of fiber tracts involved in language, executive
functions, as well as in facial and emotional processing showed a
clear positive correlation with age in ASD. Differences of WM were
however absent in adults. Several studies report a decrease of the be-
havioral difficulties experienced by high-functioning individuals with
ASD as they enter adulthood (Howlin et al., 2004; Seltzer et al., 2003;
Shattuck et al., 2007). The present results, showing a normalization of
diffusion indices over time, may represent one of the mechanisms un-
derlying this behavioral amelioration. Moreover, the present data
suggest that it is the time trajectory, rather than a qualitative differ-
ence, that differentiates brain maturation in ASD. Further histological
studies should confirm that normalization observed in the MRI pa-
rameters corresponds to WM normalization.
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