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Abstract

Background: HIV Gag-specific CD4+ and CD8+ T-cell responses are important for HIV immune control. Pulsing overlapping
Gag peptides on autologous lymphocytes (OPAL) has proven immunogenic and effective in reducing viral loads in multiple
pigtail macaque studies, warranting clinical evaluation.

Methodology: We performed a phase I, single centre, placebo-controlled, double-blinded and dose-escalating study to
evaluate the safety and preliminary immunogenicity of a novel therapeutic vaccine approach ‘OPAL-HIV-Gag(c)’. This
vaccine is comprised of 120 15mer peptides, overlapping by 11 amino acids, spanning the HIV Gag C clade sequence
proteome, pulsed on white blood cells enriched from whole blood using a closed system, followed by intravenous
reinfusion. Patients with undetectable HIV viral loads (,50 copies/ml plasma) on HAART received four administrations at
week 0, 4, 8 and 12, and were followed up for 12 weeks post-treatment. Twenty-three people were enrolled in four groups:
12 mg (n = 6), 24 mg (n = 7), 48 mg (n = 2) or matching placebo (n = 8) with 18 immunologically evaluable. T-cell
immunogenicity was assessed by IFNc ELIspot and intracellular cytokine staining (ICS).

Results: The OPAL-HIV-Gag(c) peptides were antigenic in vitro in 17/17 subjects. After vaccination with OPAL-HIV-Gag(c), 1/
6 subjects at 12 mg and 1/6 subjects at 24 mg dose groups had a 2- and 3-fold increase in ELIspot magnitudes from
baseline, respectively, of Gag-specific CD8+ T-cells at week 14, compared to 0/6 subjects in the placebo group. No Gag-
specific CD4+ T-cell responses or overall change in Rev, Nef, Tat and CMV specific responses were detected. Marked,
transient and self-limiting lymphopenia was observed immediately post-vaccination (4 hours) in OPAL-HIV-Gag(c) but not in
placebo recipients, with median fall from 1.72 to 0.67 million lymphocytes/mL for active groups (P,0.001), compared to
post-placebo from 1.70 to 1.56 lymphocytes/ml (P = 0.16).

Conclusion/Significance: Despite strong immunogenicity observed in several Macaca nemestrina studies using this
approach, OPAL-HIV-Gag(c) was not significantly immunogenic in humans and improved methods of generating high-
frequency Gag-specific T-cell responses are required.
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gov/ct2/results?term = OPAL-HIV-1001&Search = Search
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Introduction

A therapeutic HIV vaccine would add both a novel class of

treatment and a potential alternative to life-long pharmaceutical

therapy. However, despite approximately 3 decades of research,

the goal of prophylactic and therapeutic HIV vaccines remains

unfulfilled. The primary objective of a therapeutic vaccination is to

induce (or boost pre-existent) antiviral T-cell responses to improve

control of infection. HIV-specific CD8+ T-cell responses are

critical for the control of virus replication during acute [1] and

chronic infection [2], irrespective of the restricting HLA allele.

Gag-specific CD8+ T-cell responses provide a major contribution

to viral control [3,4,5] by direct activity against virally infected

cells [6,7,8,9].

A number of strategies have been employed to elicit such a

desired immune response. Naked DNA vaccines have shown

limited immunogenicity [10,11,12,13] and adenoviral vectors that

have been immunogenic [14] have been hampered by pre-existing

vector-specific immunity [15,16]. Second generation vaccines

using chimpanzee or rare human adenovirus-based vectors, or

cytomegalovirus vectors have shown promising results in non-

human primates and humans [17,18,19,20]. Delivery of peptides

on the surface of professional antigen presenting cells, such as

dendritic cells, circumvents the problems of vector-specific

immunity [21] and has shown induction of both CD4+ and

CD8+ T-cell responses [22,23,24,25,26]. However, generation of

dendritic cells ex vivo for human vaccination is labour-intensive,

costly, and requires specialised laboratory facilities for in vivo

administration [27,28]. This precludes broad dissemination of this

treatment modality in most areas with high HIV seroprevalence,

such as Sub-Saharan Africa.

OPAL (pulsing Overlapping Peptides on Autologous Lympho-

cytes) is a novel approach that has generated high-frequency and

boostable, polyfunctional CD4+ and CD8+ T-cell responses in

non-human primates [29,30,31]. In particular, re-infusion of fresh

autologous PBMCs pulsed with overlapping SIV Gag peptides in

SIV-infected macaques resulted in a 10-fold reduction of viral load

set point after discontinuation of antiretroviral therapy (ART)

sustained for 6 months. The peptides used can be manufactured to

span all epitopes within the protein of interest and prior knowledge

of the particular MHC class I molecules expressed is not required.

Here, we present the immunogenicity data from the first-in-

human administration of OPAL-HIV-Gag(c).

Methods

Study design
The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Checklist S1 and

Protocol S1. This was a phase I, single centre, placebo-controlled,

double-blind, dose-escalating study of the safety and preliminary

immunogenicity of OPAL-HIV-Gag(c) in HIV positive adults

receiving stable ART.

Ethics statement
The OPAL-HIV-1001 study was conducted at a single site in

the United Kingdom under the Medicines and Healthcare

products Regulatory Agency (MHRA) Clinical Trials Authorisa-

tion (CTA) scheme. The EudraCT number for the study was

2008-005142-23. Receipt of acknowledgment from the MHRA for

the study was obtained prior to study commencement on 26 Feb

2010. Approval for conduct of the study was obtained from the

Independent Ethics Committee (IEC), The Royal Marsden

Research Ethics Committee, St Georges University of London,

Blackshaw Road, Tooting, London SW17 0RE, United Kingdom,

associated with the study site before study commencement. In

addition to the approval for the conduct of the study from the IEC

associated with the site, the protocol was submitted to the local

Institutional Review Board (IRB) of Partners Human Research

Committee, Massachusetts General Hospital, Boston, Massachu-

setts, United States of America. Expedited approval and notifica-

tion of the determinations of the MHRA and IEC were sufficient

without the requirement for full review by this IRB. The IRB also

received all amendments to the protocol, annual reports, the

Investigators Brochure (IB), all Serious Adverse Events (SAEs) and

communications of the Data Safety Monitoring Board (DSMB).

Medicines Development was study Sponsor, as defined in the US

Code of Federal Regulations, Title 21, Chapter I, Subchapter D,

Subpart D, Part 312.50.

Figure 1. Study subject disposition and allocation to dosing cohorts. (A): Thirty eight subjects were screened for the study, with 23
randomised and 18 completing the study. (B): Diagram showing the planned study allocation to dose escalating cohorts (5:2) and with sentinel
cohorts (1:1) shown for the 12 mg, 24 mg and 48 mg dose groups.
doi:10.1371/journal.pone.0074389.g001
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Study subjects
Subjects were required to be: between 18 and 60 years of age;

receiving stable ART for a minimum of 2 months prior to baseline

(Day 0), undetectable (,50 copies/mL) plasma viral load for 6

months prior to baseline; CD4 T-cell counts .350 cells/mL at

screening with a nadir .100 cells/mL and a positive ex vivo or 10

day cultured IFNc ELIspot assay to OPAL-HIV-Gag(c) peptides.

Patients were excluded for receipt of immunomodulatory agents/

vaccine 60 days prior to screening or any blood products within 6

months prior to screening. The full entry criteria are available at

www.clinicaltrials.gov NCT01123915. All patients provided

written informed consent.

OPAL-HIV-1001 vaccine preparation and administration
Subjects were randomised and sequentially allocated to 12 mg,

24 mg or 48 mg OPAL-HIV-Gag(c) or matching placebo in a

ratio of 2:1 (6 active and 3 placebo recipients) (Fig. 1). Subjects

were stratified by clade (C or non-C) of HIV infection.

OPAL-HIV-Gag(c) was comprised of 120 15mer peptides

spanning the Durban consensus sequence of Clade C Gag,

overlapping by 11 amino acids (see below). The peptides were

manufactured according to the current Good Manufacturing

Practice (cGMP) as defined by United States 21 Code of Federal

Regulations by CS Bio Co. (Menlo Park, CA, United States, US).

For administration, OPAL-HIV-Gag(c) was reconstituted in 4%

volume/volume DMSO Eu Pharm/USP and water for injection

(USP). Placebo was DMSO Eu Pharm/USP only (4% volume/

volume). Human PBMCs were unaffected by this concentration of

DMSO in vitro [32].

Blinded study vaccine or matching placebo was administered by

drawing 120 mL of whole blood and enriched ex vivo for white

blood cells by centrifugation using a closed system cell preparation

device (Sepax S-100, Biotest). This method generated a range of

253 to 712 million white blood cells concentrated in a 20 mL

volume. After enrichment, 12 mg, 24 mg or 48 mg of OPAL-

HIV-Gag(c) or placebo, equivalent to 0.6 mg/ml, 1.2 mg/ml,

2.4 mg/ml or 0 mg/ml, respectively, was incubated with the

enriched white blood cells for 1 hour at 37uC prior to intravenous

reinfusion without wash. The lowest dose equated to the molar

exposure shown to be efficacious in non-human primates. The

peptide pulsing and cell separation process resulted in median

32.7 mg and 50.3 mg of total peptide per million white blood cells,

which is equivalent to 0.27 mg and 0.42 mg for each of the 120

15mer overlapping peptides per million white blood cells for the

12 mg and 24 mg dose groups, respectively.

Table 1. HIV-1 seropositive subjects under HAART treatment used for ‘Opal-HIV-Gag(c)’ vaccine administration.

HIV-1 seropositive subjects under HAART treatment used for ‘Opal-HIV-Gag(c)’ vaccine administration

HLA class I

Subject ID Dose A1 A2 B1 B2 Cw1 Cw2
CD4
[cells/mL]a

HIV RNA
[copies/mL]a HAART

HIV
Clade

Age
[yrs]a Sex

002 0 mg 3001 3104 4201 4501 0602 1701 362 ,20 yes C 42 F

003 0201 3601 1503 5301 0210 0401 904 ,20 yes C 47 F

109 0201 0201 nd nd 0303 0702 469 ,20 yes B 46 M

011 0101 0302 3501 5701 0602 0602 1421 ,20 yes C 56 M

013 2902 3001 0702 0801 0702 0702 406 ,20 yes C 47 M

018 0101 2601 0702 5201 0702 1202 483 ,20 yes B 39 M

median 476 ,20 47

001 12 mg 0201 3402 3501 3910 1203 1601 433 ,20 yes C 43 M

004 0201 2301 0702 4901 0701 0702 480 ,20 yes C 56 F

005 0205 0301 1402 5001 0602 0802 370 ,20 yes C 32 F

006 2902 3201 1302 4403 0602 1601 760 ,20 yes B 44 M

007 0201 0301 1402 5703 0802 0802 395 ,20 yes A1 45 M

008 3301 6601 1402 5301 0401 0802 472 900 yes BF 37 M

median 453 ,20 44

010 24 mg 0201 0201 1301 1501 0102 0304 696 ,20 yes C 28 M

012 0202 2902 4901 5703 0701 0701 611 ,20 yes C 34 F

014b 3402 3601 4403 5301 0401 0401 556 ,20 yes C 36 F

015 0201 0205 0705 4901 0701 0701 740 ,20 yes B 41 M

016 0101 2402 3508 5201 0401 1202 1074 ,20 yes B 33 M

017 0201 0201 1501 2705 0202 0303 361 ,20 yes B 43 M

median 654 ,20 35

019b 48 mg 0201 0201 1801 3501 0401 0701 859 ,20 yes C 46 M

024b 0101 0301 4101 4901 0602 0701 481 ,20 yes B/D 54 M

median 670 ,20 50

aValues obtained at baseline defined as day of first vaccination.
bWithdrawn from study after two administrations (014) or after one administration (019 and 024).
doi:10.1371/journal.pone.0074389.t001
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Figure 2. Magnitude and expansion potential of pre-existing OPAL-HIV-Gag(c) specific responses. Eighteen subjects completing the
study were tested for IFNc ELIspot responses expressed as SFU per million inpuT-cells to OPAL-HIV-Gag(c) peptides or mock (media only) from fresh
ex vivo PBMCs (A) or from 10 day cultured OPAL-HIV-Gag(c) peptide expanded PBMCs (B) from screening samples available at 2–6 weeks prior to
baseline. The expansion capacity was determined as the fold change of magnitude for the cultured ELIspot over the ex vivo ELIspot (C). ND not done.
doi:10.1371/journal.pone.0074389.g002
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Study subjects received vaccine administrations at Weeks 0, 4, 8

and 12. Peripheral blood for immunogenicity testing was drawn at

Weeks 0, 10, 12, 13, 14 and 16.

Lymphocyte, CD4 counts, HLA typing and viral load
measurement

Lymphocyte count, CD4 count and viral load were measured

throughout the study. HLA was typed as previously described [5].

Peptides
For functional immunogenicity assays, four different HIV

specific peptide pools were used (Gag, Rev, Nef and Tat) and

one CMV specific peptide pool consisting of 15 amino acids long

and overlapping by 11 amino acids spanning the CMV pp65

protein. The Gag peptides were identical to OPAL-HIV-Gag(c).

Rev, Nef, and Tat peptides were obtained from the AIDS reagent

repository, USA and CMV peptides were obtained from the

International AIDS Vaccine Inititative (IAVI) and used for

functional assays only.

Ex vivo and cultured interferon gamma ELIspots
We used a previously validated IFNc ELIspot assay [33] to

determine peptide specific responses before and after vaccination.

Briefly, for the ex vivo ELIspot stimulations, peptide pools at

1,5 mg/peptide/mL or no peptide (cell media only) control was

used for 16 to 24 hours stimulation of 200,000 freshly isolated

PBMCs per well. The number of specific spot forming units (SFU)

was calculated by subtracting the mean number of spots counted

in the no peptide control wells from the number of spots counted

in each peptide stimulated well performed in triplicates. For the

cultured ELIspot assay, 1–2 million PBMCs were added to a 24

well plate in a total volume of 1 mL R10 supplemented with 25 ng

of recombinant human (rh) interleukin (IL)-7 (R&D). Cells were

stimulated by adding 1.5 mg/mL of each peptide from the OPAL-

HIV-Gag(c) pool or media alone at Day 0. By Day 3 all wells were

supplemented with 100 units rhIL-2 (Roche) per mL. On Day 7,

culture media were replenished by removing 0.5 mL and

replacing with 1.5 mL fresh R10/IL-2. On Day 10, cells were

recovered to falcon tubes, washed twice in R10 and rested in 1 mL

R10 for 24 to 30 hours in 37uC humidified in 5% CO2. On Day

11, ‘OPAL-HIV-Gag(c)’ and ‘no peptide’ line were used in the

validated IFNc ELIspot assay as described for the ex vivo ELIspot

assay. We used 100,000 cells in each well and reported the number

of SFU per million cells. Based on OPAL-HIV-Gag(c) stimulation

using a sample size of n = 34 HIV-negative individuals (data not

shown), the cut-off for a positive OPAL-HIV-Gag(c) response was

determined to be .20 SFU (mean 2.4 SFU, ,9.97 SFU 99.9%

Figure 3. OPAL-HIV-Gag(c) peptide pool specific responses before and after vaccination. All six subjects from each dose group (0 mg,
12 mg and 24 mg) were tested for OPAL-HIV-Gag(c) specific or no peptide (mock) responses by IFNc ex vivo ELIspot performed from fresh cells at
week 0, 10, 12, 13, 14 and 16 after first vaccination expressed as the mean SFU per million cells of triplicate stimulations (A) and expressed as median
values within dose groups with error bars representing inter quartile ranges (B).
doi:10.1371/journal.pone.0074389.g003
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CI) and .300 SFU (mean 76 SFU, ,300 SFU 0.88–0.99% CI)

per million PBMCs, for the ex vivo and cultured IFNc ELIspot

assays, respectively. Viable counting of all PBMC and peptide lines

cells were standardised by use of an automated cell counter (Vi-cell

XR, Beckman Coulter) to standardise cell counts. We used an AID

ELIspot reader to count the number of SFU in each well and

presented the data by GraphPad Prism version 5.0d.

Intracellular cytokine staining
We used intracellular cytokine staining (ICS) assay to detect

peptide specific CD4+ and CD8+ T-cell responses before and after

vaccination at Week 0, 13 and 14 from primary PBMCs processed

from frozen. The principles of this assay are previously described

[34]. Briefly, frozen PBMCs were thawed and rested overnight

and stimulated with either no peptide (cell media, R10), Gag,

CMVpp65 peptide pools (2 mg/peptide/mL) or positive control

stimulation (staphylococcal enteroxin B, SEB) (1 mg/mL) (Sigma)

in the presence of anti-human CD107a-PE-Cy5 (75 ml/mL) (BD)

degranulation marker costimulatory antibodies CD49d, CD28

(1 mg/mL) (BD) and brefeldin A (10 mg/mL) (Sigma) for 6 hours

at 37uC in a 5% CO2 incubator and stored overnight in 5uC. All

stimulations were performed in triplicates except SEB stimulation.

The day after stimulation, cells were surface stained with live/dead

cell marker (Invitrogen), anti-human CD3-PacificOrange (Invitro-

gen), CD4-Qdot605 (Invitrogen), CD8-PacificBlue (BD),

CD45RA-AlexaFlour700 (BD), CCR7-PE (R&D) then fixed and

permeabilised using cytofix/cytoperm kit (BD) and stained

intracellularly with anti-human IFNc-PE-Cy7, IL-2-APC and

MIP1b-FITC (R&D) and fixed in 2% paraformaldehyde. All

antibodies were pre-titrated before use. Cells were acquired on a

LSRII flow cytometer within 24 hours post staining. FlowJo

version 8.8.2 was used for data analysis with the following gating

strategy; singletsRlymphocytesRlive cellsRCD3+Reither CD4+

or CD8+RIFNc+/MIP1b+ double positive cells to ensure low

background. Double positive IFNc/MIP1b+ values were depicted

using GraphPad prism version 5.0a.

Statistical analysis
The Mann-Whitney U test was used to compare median values

for immunogenicity testing between different weeks for both IFNc
ELIspot and ICS assays and for comparing percentage change of

lymphocyte counts to Baseline. The Spearman rank correlation

coefficient was determined to test correlation of IFNc ELIspot to

ICS assays.

Figure 4. OPAL-HIV-Gag(c) and CMV peptide pool specific CD8+ T-cell responses before and after vaccination. All six subjects from
each dose group (0 mg, 12 mg and 24 mg) were tested for OPAL-HIV-Gag(c) specific or no peptide (no stimulation) responses by ICS shown as
IFNc+/MIP1b+ double positive CD8+ T-cells processed from frozen PBMCs derived at week 0, 13 and 14 after first vaccination expressed as the mean
of triplicate stimulations (A) and expressed as median values within dose groups with error bars representing inter quartile ranges for OPAL-HIV-
Gag(c) (B) and for CMV specific CD8+ T-cell responses (C).
doi:10.1371/journal.pone.0074389.g004
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Results

Characterisation of recruited individuals for OPAL-HIV-
Gag(c) vaccination

Overall, 38 subjects were screened and 23 satisfied the inclusion

and exclusion criteria and were randomised to receive 12 mg

(n = 6), 24 mg (n = 7), 48 mg (n = 2) or placebo (n = 8) (Fig. 1). Five

subjects withdrew from the study: 1 due to equipment failure prior

to treatment administration (this patient was replaced); 1 receiving

48 mg withdrew due to a serious adverse event (SAE) leading to

early study termination and three subjects (n = 1 48 mg, n = 2

placebo) were required to withdraw when the study was

terminated (see Jackson, A. et al PlosOne 2013). In addition,

one subject with elevated ALT due to concurrent therapy

withdrew from treatment but remained on the study. Because

the adverse event occurred in the first subject to receive 48 mg,

and led to study discontinuation, there were no subjects in the

48 mg cohort available for immunological assessment. Of the

placebo, 12 mg or 24 mg OPAL-HIV-Gag(c) cohorts, the median

CD4 T-cell counts were 476, 453 and 654 per mL, respectively,

and HAART suppressed plasma viral loads ,20 HIV RNA

copies/mL at Baseline (Table 1). Each cohort had one individual

expressing the protective allele HLA-B*57 and the 24 mg cohort

also included one individual expressing the protective allele HLA-

B*27:05. All three cohorts represented HLA-B alleles known to

restrict at least one or more Gag epitopes. Thus, the three cohorts

completing the trial exhibited similar characteristics of protective

HLA alleles, CD4+ T-cell counts, treatment suppressed viral load,

HIV clade, age and sex distribution.

Pre-existing OPAL-HIV-Gag(c) specific responses could be
boosted in vitro

All of the 18 enrolled subjects showed pre-existing Gag specific

responses, measured either ex vivo or by 10 day cultured IFNc
ELIspot, 2 to 6 weeks before Baseline with median OPAL-HIV-

Gag(c) specific responses of 55 (range 12–753) and 2335 (range

457–4523) SFU/million PBMCs, respectively (Fig. 2A and B). We

detected low-frequency ex vivo responses to Rev, Nef and Tat

(median 8, 55, 5 SFU/million PBMCs, respectively) (Fig. S1) and

the expected high-frequency CMV-specific responses (median

1518, range 233–3098 SFU/million PBMCs) (data not shown). To

test whether the pre-existing Gag specific response from each of

the enrolled individuals found in the ex vivo ELIspot assay had the

Figure 5. OPAL-HIV-Gag(c) and CMV peptide pool specific CD4+ T-cell responses before and after vaccination. All six subjects from
each dose group (0 mg, 12 mg and 24 mg) were tested for OPAL-HIV-Gag(c) specific or no peptide (mock) responses by ICS shown as IFNc+/MIP1b+
double positive CD4+ T-cells processed from frozen PBMCs derived at week 0, 13 and 14 after first vaccination expressed as the mean of triplicate
stimulations (A) and expressed as median values within dose groups with error bars representing inter quartile ranges for OPAL-HIV-Gag(c) (B) and for
CMV specific CD4+ T-cell responses (C).
doi:10.1371/journal.pone.0074389.g005
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potential to be boosted in vitro, we compared the ex vivo Gag-

specific responses to the 10 day in vitro expanded responses and

found each of the responses was significantly boosted (median fold

increase 30, range 5–106-fold increase) (Fig. 2C). Thus, all of the

enrolled subjects had detectable pre-existing OPAL-HIV-Gag(c)

specific responses, which could be boosted in vitro, suggesting

proliferative functional capabilities for in vivo boosting with OPAL-

HIV-Gag(c).

Limited boosting of Gag specific CD8+ T-cell responses
after OPAL-HIV-Gag(c) vaccination

No boost of Gag-specific responses was observed following

vaccination in the placebo or in the 12 mg or 24 mg dose cohorts,

comparing median SFU/million PBMCS at baseline with Week

13, Week 14 or Week 16 for placebo, 12 and 24 mg dose cohorts

(45 vs 38, 206 vs 224, 67 vs 66 SFU/million PBMCS, respectively)

(Fig. 3). Individual results were variable. For two subjects in the

12 mg dose group, responses in subject 001 decreased from 803 to

317 SFU/million PBMCs and in subject 004 responses increased

from 277 at Baseline to 438 SFU/million PBMCs at Week 16; and

in one subject in the 24 mg dose group, responses in Subject 014

increased from Baseline of 171 to 668 SFU/million PBMCs at

Week 16. However, Subject 014 only received two doses (Week 0

and 4) due to an increase in ALT (see Jackson et al, 2013). When

we examined antigen specific responses to Rev, Nef, Tat or CMV,

which were not contained in the OPAL-HIV-Gag(c) vaccine, we

did not detect any change in magnitude of responses in any of the

groups. (Fig. S2). In conclusion, the OPAL-HIV-Gag(c) adminis-

trations did not have a significant effect on Gag specific responses

as measured by the IFNc ELIspot assay, despite 6 of the 12

subjects in the active groups having pre-existing Gag responses of

more than 125 SFU/million PBMCs.

When we applied an intracellular cytokine staining (ICS) assay

to detect IFNc+/MIP1b+ producing antigen specific CD8+ T-cell

responses at Week 0, 13 and 14, we found similar intersubject

patterns of CD8+ Gag-specific responses as observed for the IFNc
ELIspot assay (Fig. 4A and Fig. S3A) with a strong correlation

between these two assays (Spearman R = 0.84, P,0.0001, data not

shown), indicating that most of the responses detected by IFNc
ELIspot are derived from CD8+ T-cells. Specifically, we detected

a small increase in Gag specific CD8+ T-cell magnitudes in subject

Figure 6. Transient and treatment specific lymphopenia after vaccination. Total lymphocyte counts were performed before, during and at
follow up after vaccination as indicated on the x-axis for the three groups (0 mg, 12 mg and 24 mg) and shown as mean values (million lymphocytes
per ml whole blood) for the 6 subjects within each group with normal high and low values for HIV positive individuals indicated by dotted lines (A).
Arrows indicate vaccinations. The percent (%) change of lymphocyte count from baseline (week 0) is shown as mean values for the three dose groups
with error bars representing standard error of mean (SEM) (B). Only one subject (024) was available for the 48 mg dose group at week 0 and 4.
doi:10.1371/journal.pone.0074389.g006
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005 (0.3% vs 0.8% at Week 0 vs Week 13, respectively) dominated

by triple positive IFNc+/MIP1b+/CD107a+ producing cells, but

with no IL-2 production (Fig. S3B), and with no change in

memory cell subsets (CCR7 and CD45RA) during vaccination

(data not shown). Subject 008 and 014 also showed small increases

in magnitude comparing Week 0 and Week 14, whereas 001 had a

decreased response. Overall and consistent with the ELIspot data,

we did not see any change of Gag-specific responses in the placebo

or in the two treatment groups, median % IFNc+/MIP1b+ CD8+
T-cells at baseline vs week 14 for placebo, 12 and 24 mg dose

groups being 0.03 vs 0.02, 0.16 vs 0.11, 0.04 vs 0.03, respectively

(not significant) (Fig. 4). We detected CMV specific CD8+ T-cell

responses (.0.1%) in all individuals except subject 008 (Fig. S4)

and did not observe any overall change in magnitudes of CMV

specific CD8+ T-cell responses at week 0, 13 and 14 (Fig. 4C)

consistent with the CMV specific data obtained from the IFNc
ELIspot assays (Fig. S2). All of the subjects responded to the

positive control SEB (data not shown). Thus, we did not see any

overall boost of OPAL-HIV-Gag(c) specific CD8+ T-cells after

vaccination.

Lack of OPAL-HIV-Gag(c) specific CD4+ T-cell responses
The use of 15 amino acid long peptides had previously boosted

CD4+ T-cell responses in the macaque model [29,30,31,35].

Therefore, we undertook ICS assays to determine CD4+ T-cell

responses at week 0, 13 and 14 for the three dose cohorts (Fig. 5).

We did not detect any CD4+ T-cell responses specific for the

vaccine peptides OPAL-HIV-Gag(c) (Fig. 5A and B), but

detectable CMV specific CD4+ T-cell responses (.0.1%) were

found for 10 out of the 18 subjects (Fig. S5) with no overall change

in magnitude of CMV specific CD4+ T-cell responses over the

three time points measured (Fig. 5C). Seventeen out of 18 subjects

responded (.0.1%) to the positive control SEB (data not shown).

Thus, the OPAL-HIV-Gag(c) vaccinations did not boost or induce

Gag specific CD4+ T-cell responses in vivo.

Transient lymphopenia immediately after OPAL-HIV-
Gag(c) vaccination

We measured the lymphocyte count at: screening, pre-

vaccination, post-vaccination (4 hours after vaccination), discharge

(24 hours after vaccination), during follow up weeks 2, 6, 10, 13,

14, 16 and at study exit week 24 for the placebo and OPAL-HIV-

Gag(c) dose groups (Fig. 6A). No change was observed within the

placebo group (PBMCs pulsed with placebo containing DMSO

but no peptide) median 1.7-1.56 million lymphocytes per ml

(P = 0.16) (29% change from Baseline), but a significant OPAL-

HIV-Gag(c)-induced reduction of lymphocytes was observed

4 hours post each vaccination (median 1.72 down to 0.67 million

lymphocytes per ml (P,0.0001) (280% change from baseline)

(Fig. 6B)). The lymphocytes started re-emerging to pre-vaccination

levels between 4 and 24 hours post-vaccination and fully resolved

within 2 weeks post vaccination (measurements were not made

between 24 hrs post-vaccination and 2 weeks afterwards). The

rapid rebound of lymphocytes suggests that the lymphocytes are

not depleted, but temporarily migrated out of the peripheral blood

and subsequently re-emerge within 2 weeks.

Discussion

The OPAL method was shown to be highly immunogenic and

effective in reducing viral load in SIV infected pigtail macaques

[30,31,35] and, thus, an attractive candidate for testing in humans.

However, OPAL-HIV-Gag(c) treatment in the clinic showed no

boosting effect on Gag-specific CD8+ or CD4+ T-cells. Subjects

were able to mount an in vitro response to OPAL peptides and a

biological effect was observed: subjects receiving OPAL-HIV-

Gag(c) but not placebo exhibited a transient, self-limiting

lymphopenia immediately post-dose. This study was prematurely

terminated due to a single serious adverse event and a cause other

than the study product could not be identified, as described

elsewhere (see Jackson A. et al. PlosOne 2013).

This Phase I, first-in-human study had a primary endpoint of

safety with a secondary endpoint to assess immunogenicity.

Therefore, the study population used here was chosen specifically

to the primary endpoint rather than a stage of HIV infection to

mimic the non-human primate studies. Key differences included

the timing of vaccination relative to initial infection and the

presence or absence of concurrent ART. In the macaque studies,

ART control of acute viraemia was induced 3 weeks post infection,

thereby preserving a healthy CD4+ T-cell pool [36], including

fresh primed SIV specific CD4+ and CD8+ T-cell responses. In

contrast, the human volunteers for this study were chronically

infected before initiation of ART. By definition, they had met the

criteria to start ART because their immune system was

compromised, and absolute CD4 counts depleted, although nadir

CD4 counts in each case was more than 100 cells/mL. Nonetheless

an absolute CD4 count as low as 100 cells/mm3 represents

relatively severe immunocompromise. In addition, although the in

vitro expansion of Gag-specific CD8+ T-cells during cultured

ELIspot assays (Fig. 2) suggested a capacity for proliferation and

augmentation of the Gag-specific response by OPAL-HIV-Gag(c)

administration, these assays included IL-2 addition to the culture

medium which may not have been present in vivo. However, it was

possible to boost SIV-specific responses in chronically infected

macaques using this approach [35] suggesting that the absence of

responses observed in this human trial is not entirely explained by

the timing of ART initiation in the human study subjects.

The OPAL-HIV-Gag(c) treatment induced lymphopenia was

treatment specific, since it did not occur in the placebo group, was

transient, with partial recovery of peripheral lymphocyte counts

within 24 hours and full recovery by next measurement (2 weeks).

The precise kinetic of recovery of the peripheral lymphocyte

numbers are unknown as there were no measurements between

4 hours and 2 weeks post-treatment. However, the indications of

rapid recovery suggest redistribution of lymphocytes. One may

speculate that changed patterns of cell trafficking resulted via

peptide induced expression of homing receptors, such as CCR7, a

ligand for CCL21 expressed on high endothelial venules, facilitates

altered cell migration, especially on CCR7 positive naı̈ve T-cells

[37].

It is necessary to test effective non-human primate vaccines in

human clinical trials in search for signals to an effective HIV

vaccine. However, this OPAL-HIV-Gag(c) first-in-man study did

not replicate the high T-cell immunogenicity observed in the

promising pigtail macaque studies [30,31,35] and further dosing

was limited by a serious adverse event. Inconsistency between pre-

clinical non-human primate and human clinical trials has been

frequently reported [10,11,12,13,38,39]. The failure of the HIV

efficacy STEP trial [15] arose despite prior efficacy observed from

non-human primate studies [14,40,41,42] and immunogenicity in

HIV negative individuals [43,44]. Although this current trial was

intended to evaluate the safety as a primary endpoint, we conclude

that the lack of immunogenicity (secondary endpoint) observed

here warrants emphasis on alternative vehicle delivery systems for

the HIV Gag immunogen.

Gag Peptide Vaccination of Infected Individuals

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e74389



Supporting Information

Figure S1 Magnitude of pre-existing HIV Rev, Nef and
Tat specific responses. Eighteen subjects completing the study

were tested for IFNc ELIspot responses expressed as SFU per

million inpuT-cells to HIV peptide pools Rev, Nef, Tat or mock

(media only) from fresh ex vivo PBMCs obtained from screening

samples available at 2–6 weeks prior to baseline.

(TIFF)

Figure S2 HIV Rev, Nef, Tat and CMV peptide pool
specific responses before and after vaccination. All six

subjects from each dose group (0 mg, 12 mg and 24 mg) were

tested for HIV Rev, Nef, Tat and CMV peptide specific responses

or no peptide by IFNc ex vivo ELIspot performed from fresh cells

at week 0, 10, 12, 13, 14 and 16 after first vaccination expressed as

median values within dose groups with error bars representing

inter quartile ranges.

(TIFF)

Figure S3 FACS plots showing CD8+ T-cell gating strategy (top

panel) with effecter producing CD8+ T-cells shown after no

stimulation, OPAL-HIV-Gag(c) or SEB stimulation at week 13 for

subject 005 (A) and shown as boolean gated polyfunctional pie

charts examining CD107a/IFNc/IL2/MIP1b producing total

CD8+ T-cells at 3 time points for subject 005 (B).

(TIFF)

Figure S4 Subject individual CMV peptide pool specific
CD8+ T-cell responses before and after vaccination. All

six subjects from each dose group (0 mg, 12 mg and 24 mg) were

tested for CMV specific responses by ICS shown as IFNc+/

MIP1b+ double positive CD8+ T-cells processed from frozen

PBMCs derived at week 0, 13 and 14 after first vaccination

expressed as the mean of triplicate stimulations and shown for

each individual.

(TIFF)

Figure S5 FACS plots showing CD4+ T-cell gating strategy (top

panel) with effecter producing CD4+ T-cells shown after no

stimulation, OPAL-HIV-Gag(c) or SEB stimulation at week 13 for

subject 005 (A) and in (B) All six subjects from each dose group

(0 mg, 12 mg and 24 mg) were tested for CMV specific responses

by ICS shown as IFNc+/MIP1b+ double positive CD4+ T-cells

processed from frozen PBMCs derived at week 0, 13 and 14 after

first vaccination expressed as the mean of triplicate stimulations

and shown for each individual.

(TIFF)

Checklist S1 Consortium checklist.
(DOCX)

Protocol S1 Trial protocol.
(PDF)
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