
 

Global Metabolomic Profiling Reveals an Association of Metal
Fume Exposure and Plasma Unsaturated Fatty Acids

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Wei, Yongyue, Zhaoxi Wang, Chiung-yu Chang, Tianteng Fan, Li
Su, Feng Chen, and David C. Christiani. 2013. “Global
Metabolomic Profiling Reveals an Association of Metal Fume
Exposure and Plasma Unsaturated Fatty Acids.” PLoS ONE 8 (10):
e77413. doi:10.1371/journal.pone.0077413.
http://dx.doi.org/10.1371/journal.pone.0077413.

Published Version doi:10.1371/journal.pone.0077413

Accessed April 17, 2018 4:37:50 PM EDT

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11878835

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28946736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/11878835&title=Global+Metabolomic+Profiling+Reveals+an+Association+of+Metal+Fume+Exposure+and+Plasma+Unsaturated+Fatty+Acids&community=1/4454685,1/4454687&collection=1/4454686,1/4454688&owningCollection1/4454686&harvardAuthors=1ad7ed6f3f89bcf9b388df7c059df67d,c6c4e1725bcf04ae992082da8b1d285c,null,033f9e473967eb845643646d2cbfe36d,8102c8388192dcec5f9a0ca47d8baaa3,null,d6df35d6914dfcdb4698c3bb5466e970&department=NONE
http://dx.doi.org/10.1371/journal.pone.0077413
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Global Metabolomic Profiling Reveals an Association of
Metal Fume Exposure and Plasma Unsaturated Fatty
Acids
Yongyue Wei1,2., Zhaoxi Wang1., Chiung-yu Chang1, Tianteng Fan1, Li Su1, Feng Chen2,

David C. Christiani1*

1Department of Environmental Health, Harvard School of Public Health, Harvard University, Boston, Massachusetts, United States of America, 2Department of

Epidemiology and Biostatistics, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China

Abstract

Background: Welding-associated air pollutants negatively affect the health of exposed workers; however, their molecular
mechanisms in causing disease remain largely unclear. Few studies have systematically investigated the systemic toxic
effects of welding fumes on humans.

Objectives: To explore the effects of welding fumes on the plasma metabolome, and to identify biomarkers for risk
assessment of welding fume exposure.

Methods: The two-stage, self-controlled exploratory study included 11 boilermakers from a 2011 discovery panel and 8
boilermakers from a 2012 validation panel. Plasma samples were collected pre- and post-welding fume exposure and
analyzed by chromatography/mass spectrometry.

Results: Eicosapentaenoic or docosapentaenoic acid metabolic changes post-welding were significantly associated with
particulate (PM2.5) exposure (p,0.05). The combined analysis by linear mixed-effects model showed that exposure was
associated with a statistically significant decline in metabolite change of eicosapentaenoic acid [b̂b(95%

CI) =20.013(20.022,20.004); p= 0.005], docosapentaenoic acid n3 [b̂b(95% CI) =20.010(20.018,20.002); p= 0.017], and

docosapentaenoic acid n6 [b̂b(95% CI) =20.007(20.013,20.001); p= 0.021]. Pathway analysis identified an association of
the unsaturated fatty acid pathway with exposure (pStudy22011 = 0.025; pStudy22012 = 0.021; pCombined = 0.009). The functional
network built by these fatty acids and their interactive genes contained significant enrichment of genes associated with
various diseases, including neoplasms, cardiovascular diseases, and lipid metabolism disorders.

Conclusions: High-dose exposure of metal welding fumes decreases unsaturated fatty acids with an exposure-response
relationship. This alteration in fatty acids is a potential biological mediator and biomarker for exposure-related health
disorders.
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Introduction

The impact of welding-associated air pollutants on the health of

exposed workers remains a major concern in occupational

medicine and public health [1]. Exposure to fine particles

(PM2.5) in ambient air increases the risk for acute disorders [2–

5] and chronic diseases [6–10]. Ultra-fine and fine welding

particles often contain various metals as a result of combustion;

these include iron, nickel, sulfur, copper, vanadium, cadmium, and

their oxides [11–13]. Metal particles may induce diverse biological

effects, including activation of mitogen-activated protein kinase

[14], DNA damage and cell apoptosis [5,15,16], lipid peroxidation

[16,17], and alteration of gene expression [18]. Further, fine metal

particles inhaled into the respiratory tract translocate to blood

circulation, which ultimately deposits particles in other organs and

produces systemic toxic effects.

Recently, metabolomics has attracted increasing interest in the

field of toxicology because it is a fast and reproducible method that

directly reflects biological events [19,20]. Metabolomics uses a

non-targeted approach to obtain an accurate representation of the

metabolome, including small molecules involved in highly

complex biochemical networks; global changes in the metabolome

may relate to particular diseases or phenotypes [21,22]. The use of

peripheral fluids, such as plasma or urine, for metabolomic
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analysis makes it an attractive method for studying the toxic effects

of various exposures such as welding fumes. To date, however, few

studies have investigated the systemic toxic effects of welding

fumes on humans.

Taking advantage of our well-established occupational cohort of

male boilermaker (welder) construction workers, we performed an

exploratory metabolomics study using a two-stage, self-controlled

design to explore the systemic toxic effects of welding fumes

measured as metabolic changes. This study identified biological

biomarkers for health risk assessment of welding fume exposure.

Materials and Methods

Ethics Statement
The Institutional Review Board at the Harvard School of Public

Health approved the study protocol, and informed written consent

was obtained from each adult prior to participation.

Study Design and Population
Eleven non-smoking, non-diabetic boilermakers at an appren-

tice welding school (Union Local 29, Quincy, MA) were recruited

in 2011 to participate in a discovery study (Study-2011); five of the

same subjects from Study-2011 and three new subjects were

recruited in 2012 (Study-2012) for validation. All participants were

selected from the well-characterized occupational cohort of male

boilermaker construction workers in Eastern Massachusetts as

previously described [23]. The welding school consists of a large,

temperature-controlled room outfitted with ten workstations

where the welders receive instruction and perform welding,

cutting, and grinding techniques. Boilermakers primarily per-

formed shielded metal arc (stick) and gas metal arc welding (TIG),

using base metals of mild steel (manganese alloys) and stainless

steel (manganese, chromium, and nickel alloys) with electrodes

composed mainly of iron with variable amounts of manganese

(1,5%). The same breakfast and lunch including turkey, chicken,

ham sandwiches and vegetables was provided for each participant

during workshop to control the inter-subject variability.

Data Collection
Peripheral blood samples were collected before (pre) and

immediately after the ,5 h welding workshop (post) from all

subjects. Samples were inventoried and immediately stored at

280uC. Samples of personal, integrated, gravimetric particulate

matters with an aerodynamic diameter of #2.5 mm (PM2.5) were

collected over the duration of the welding workshop. A self-

administered questionnaire collected information on medical

history, medication use, demographics, and smoking history as

previously described [13].

Metabolite Profiling
Sample preparation. Frozen samples were sent to Metabo-

lon, Inc. (Durham, NC) and accessioned into the Metabolon

LIMS system by a unique identifier associated with the original

source only. Samples were prepared using the automated

MicroLab STARH system (Hamilton Company, Reno, NV).

Recovery standards were added prior to the first step in the

extraction process for quality control purposes. Sample prepara-

tion used a proprietary series of organic and aqueous extractions to

remove proteins while allowing maximum recovery of small

molecules. The resulting extract was divided into two fractions:

Table 1. Characteristics of the study population.a

Characteristic Study-2011 (n=11) Study-2012 (n=8)b

PM2.5 total exposure 74.2627.4 114.9659.7

Age (years)c 49.1610.2 46.1611.7

BMI (kg/m2) 26.562.9 28.163.7

Male 11 8

Race White 9 6

Black 1 0

Hispanic 1 2

Medical history 3 4

Diabetes 0 0

Asthma 0 1

High blood pressure 1 1

High cholesterol hyperlipidemia 2 2

Medication use 4 4

Simvastatin for high cholesterol 2 1

Omeprazole for acid reflux 1 1

Lisinopril for high blood pressure 0 1

Fexofenadine for allergy 1 1

Ibuprofen for headaches 1 0

Albuterol for asthma 0 1

Oxycodone for fractured back 0 1

aValues presented either as mean6SD or n;
bFive subjects participated in both studies;
cAt study entry.
doi:10.1371/journal.pone.0077413.t001
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one for analysis by liquid chromatography (LC), and one for

analysis by gas chromatography (GC). Samples were placed briefly

on a TurboVapH (Zymark, Westborough, MA) to remove organic

solvents, frozen, and dried under vacuum. Extracted samples were

split into equal parts for analysis by gas chromatography/mass

spectrometry (GC/MS) and liquid chromatography/mass spec-

trometry (LC/MS) platforms. Several technical replicate samples

were created from a homogeneous pool containing a small amount

of each sample.

Instrument variability control. Instrument variability was

determined by calculating the median relative standard deviation

(RSD) for internal standards added to each sample prior to mass

spectrometer injection (RSD=5%). Overall process variability was

determined by calculating the median RSD for all endogenous

Figure 1. Flowchart for single-compound analysis. Metabolite changes (post-welding workshop – pre-welding workshop) for 333 compounds
were analyzed by regression with PM2.5 total exposure in Study-2011 (A) and Study-2012 (B), and by linear mixed-effects model in the combined
dataset of both studies (C). The y-axis represents the coefficients of exposure in regression models. The x-axis represents the metabolites ordered by
the effects of exposure from discovery analysis. Thirty biochemical metabolic changes significantly associated with exposure (p,0.05) in Study-2011.
Three of the thirty changes were validated in Study-2012 (p,0.05) and remained significant in combined analysis: eicosapentaenoic acid (EPA) and
docosapentaenoic acids (DPAn3, DPAn6).
doi:10.1371/journal.pone.0077413.g001

Metal Fume Exposure and Unsaturated Fatty Acids
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metabolites (i.e., non-instrument standards) present in pooled

technical replicates (RSD=14%). Both RSD values meet

Metabolon’s acceptance criteria.

Data extraction and quality assurance. Raw MS data files

were loaded into a relational database. Peaks were identified using

Metabolon’s proprietary peak integration software, and compo-

nent parts were stored in a separate and specifically designed

complex data structure.

Compound identification. Compounds were identified by

comparison to library entries of purified standards or recurrent

unknown entities. Identification of known chemical entities was

based on comparison to the over 1,000 commercially available,

purified standard compounds registered in LIMS for distribution

to both LC and GC platforms.

Normalization. For studies spanning multiple days, data

normalization was performed to correct variation resulting from

instrument inter-day tuning differences. Each compound was

Figure 2. Scatter plots of metabolic changes by exposure of EPA and DPA. Scatter plots illustrate the biochemical compounds that had a
metabolic change significantly associated with welding fume exposure: A1) eicosapentaenoic acid (EPA); A2) EPA after removal of a potential outlier
(subject ID: 358); B) docosapentaenoic acid n3 (DPAn3); and C) docosapentaenoic acid n6 (DPAn6). The x-axis represents total PM2.5 exposure during
the welding workshop, while the y-axis represents biochemical metabolic change (post-welding workshop – pre-welding workshop). Black circles
represent data from Study-2011; red triangles represent data from Study-2012. Each mark is labeled with the subject ID.
doi:10.1371/journal.pone.0077413.g002

Metal Fume Exposure and Unsaturated Fatty Acids

PLOS ONE | www.plosone.org 4 October 2013 | Volume 8 | Issue 10 | e77413



corrected in run-day blocks by equalizing the medians to 1.00 and

normalizing each data point proportionately. Normalized metab-

olites were used for analysis.

Statistical Analysis
Demographics were presented by frequencies for categorical

variables and means 6 standard deviation (mean 6 SD) for

continuous variables. The change of each metabolite during

welding day (D=post-pre) was calculated for each subject. The

permutation test with 10,000 perturbations was used to test global

metabolic changes between post- and pre-welding workshop

samples.

To investigate the association between metabolic change and

PM2.5 exposure, univariate linear regression was used in Study-

2011 (Eq. 1). Compounds with p#0.05 were further validated in

Study-2012 using the same statistical model, followed by combined

analysis of both studies using linear mixed-effects model (LMM)

given a random slope of exposure for each study and

autoregressive correlation structure (Eq. 2). The multiple compar-

ison was adjusted by false discovery rate (FDR) [24]

Di~b:PM2:5total exposureizei ð1Þ

where i=1, …, 11 in Study-2011 and i=1, …, 8 in Study-2012.

Dij~azb1j
:PM2:5total exposureij

zb2
:ageijzb3

:medication useijzeij
ð2Þ

where i~1, …, 14 to represent each subject; j~1or 2 to denote

each study (1 = Study-2011; 2= Study-2012).

For pathway-level association analysis, principal component

analysis (PCA) was performed to generate the first principal

component (PC1) from all metabolites of each pathway. PC1 was

used as the response to perform linear regression with exposure in

Study-2011 and Study-2012 separately, and perform LMM for

combined analysis with adjustment for age and medication use.

LMM analysis was performed by R ‘‘nlme’’ package. All statistical

analyses were performed using R Version 15.0 (http://cran.r-

project.org).

The functional network was built using MetaCoreTM online

software (GeneGo Inc., Carlsbad, CA) to illustrate potential

biological connections of significant compounds and interactive

genes. Enrichment analysis for disease-associated genes was

conducted for each network in MetaCoreTM. The p value for

enrichment analysis was calculated using Eq. 3:

p~
R!n!(N{R)!(N{n)!

N!

Xmin (n,R)

i~max (r,Rzn{N)

1

i!(R{i)!(N{R{nzi)!

ð3Þ

where N denotes the total number of genes that were causally

associated with all diseases and disorders in MetaCoreTM; n

denotes the total number of genes that were causally associated

with the intersecting disease of interest (e.g., lipid metabolism

disorders); R denotes the total number of genes/proteins visible in

the network; and r denotes the total number of genes/proteins

visible in the network intersecting with the disease of interest.

Table 2. Metabolites associated with PM2.5 metal welding fume exposure.

Baseline D (post - pre)

Metabolite Study-2011 Study-2012 Study-2011 Study-2012

Eicosapentaenoate (EPA; 20:5n3) 1.0660.44(0.45,1.89) 1.4260.67(0.70,2.88) 20.0660.58(21.08,0.78) 0.0661.28(20.86,3.15)

Docosapentaenoate (DPAn3; 22:5n3) 1.2960.71(0.45,2.68) 1.0960.29(0.65,1.48) 20.3160.98(21.83,1.01) 20.1560.56(21.07,0.87)

Docosapentaenoate (DPAn6; 22:5n6) 1.3260.60(0.52,2.4) 1.1060.33(0.70,1.67) 20.3060.75(21.83,0.74) 20.3560.49(21.31,0.22)

*Values presented as mean 6 SD (min,max).
doi:10.1371/journal.pone.0077413.t002

Table 3. Association of PM2.5 metal welding fume exposure with metabolite change.

Association analysis a Combined analysis a,b

Study-2011 Study-2012 Univariate analysis Multivariate analysis

Metabolite b(95% CI) p b(95% CI) p b(95% CI) p qc b(95% CI) p qc

Eicosapentaenoate (EPA; 20:5n3) 20.013(20.026,
20.001)

0.038 20.014(20.027,
20.001)

0.033 20.013(20.022,
20.004)

0.005 0.249 20.014(20.023,
20.006)

0.003 0.229

Docosapentaenoate (DPAn3; 22:5n3) 20.025(20.044,
20.005)

0.018 20.007(20.013,
20.002)

0.017 20.010(20.018,
20.002)

0.017 0.313 20.010(20.019,
20.001)

0.020 0.398

Docosapentaenoate (DPAn6; 22:5n6) 20.016(20.032,
20.0002)

0.048 20.006(20.012,
20.0005)

0.038 20.007(20.013,
20.001)

0.021 0.313 20.021(20.013,
20.001)

0.029 0.418

aTotal PM2.5 exposure as predictor, metabolite change as response;
bLinear mixed-effects model was used with/without adjustment for age and medication use;
cq represented FDR adjusted p value using Benjamini & Hochberg method.
doi:10.1371/journal.pone.0077413.t003

Metal Fume Exposure and Unsaturated Fatty Acids
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Results

Study-2011 consisted of eleven male boilermakers with a mean

age of 49.1610.2 years, average body mass index (BMI) of

26.562.9, and of whom 82% were white (Table 1). Three

participants reported medical history, two with hyperlipidemia

and one with hypertension; four participants reported medication

use for high cholesterol, seasonal allergy, asthma, etc. Eight

boilermakers were recruited in Study-2012 for validation; the

characteristics of this cohort did not significantly differ from Study-

2011 (Table 1). No participants reported metal fever during

welding workshop.

Single Biochemical Analysis
Plasma samples were collected from each participant prior to

and after a welding workshop for metabolomic profiling. We

identified 333 compounds of known biochemical identity that

comprised the analysis dataset. In Study-2011, 30 of 333 detected

compounds were significantly associated with a metabolic change

during welding workshop (D) with total PM2.5 exposure (p#0.05);

Table 4. Association of PM2.5 metal welding fume exposure with metabolite pathways.

Study-2011d Study-2012d Combined analysisf

Pathway Na N2
b N3

c VPC1
e p VPC1

e p VPC1
e p padj

Unsaturated fatty acid 7 7 6 0.84 0.025 0.81 0.021 0.77 0.009 0.013

Phenylalanine & tyrosine metabolism 13 8 1 0.29 0.013 0.36 0.547 0.24 0.425 0.480

aNumber of biochemical compounds within the same pathway;
bNumber of biochemical compounds that have the same coefficient direction when regressed by exposure both in Study-2011 and Study-2012;
cNumber of biochemical compounds with association p,0.05 in combined dataset analyzed by linear mixed model with adjustment of age and medication use;
dFirst principal component (PC1) was used as response, with PM2.5 total exposure as predictor in linear regression model or linear mixed-effects model;
eProportion of variance explained by PC1;
fPC1 was used as response in the linear mixed model with random slope with or without adjustment of age and medication use.
doi:10.1371/journal.pone.0077413.t004

Figure 3. Functional network for EPA and DPA. Network analysis revealed that intracellular and extracellular eicosapentaenoic acid (EPA)
interact with 19 genes, while docosapentaenoic acid (DPA) interacts with 7 genes; EPA, DPAn3, DPAn6, and 24 regulated genes were used to build the
illustrated functional network. The green line represents activation; the red line represents inhibition; the gray line represents unspecified effects.
doi:10.1371/journal.pone.0077413.g003

Metal Fume Exposure and Unsaturated Fatty Acids
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however, only three passed validation in Study-2012 by the criteria

of consistent effect direction of exposure and p#0.05 (Figure 1,

Table 2). The combined LMM analysis showed that total PM2.5

exposure associated with a statistically significant (p,0.05) decline

in metabolic change of eicosapentaenoic acid (EPA) (b̂b=20.013/

mg/m3; 95% CI=20.022,20.004; p=0.005; q=0.249), doc-

osapentaenoic acid n3 (DPAn3) (b̂b=20.010/ mg/m3; 95%

CI=20.018,20.002; p=0.017; q=0.313), and docosapentae-

noic acid n6 (DPAn6) (b̂b=20.007/ mg/m3; 95%

CI=20.013,20.001; p=0.021; q=0.313) (Figure 2). Adjust-

ment for age and medication use did not affect significance

(Table 3). LMM application with random intercepts for each study

provided consistent results; however, the model did not reach

convergence when random intercept and random slope were

simultaneously considered.

In Study-2012, one subject (ID: 358) exhibited EPA metabolic

changes much larger than others. These data were therefore

removed for subsequent sensitivity analysis, which displayed a

consistent trend while losing statistical significance (p=0.447); the

combined analysis remained statistically significant in univariate

analysis (p=0.030) and multivariate analysis (p=0.041) (Figure 2-

A2).

The five subjects who participated in both studies were also

separately assessed by sensitivity analysis using an LMM with

random slopes for each subject. Borderline statistical significance

remained for EPA (pStudy-2011 = 0.070; pStudy-2012 = 0.088; pCom-

bined = 0.042; pCombined = 0.012 with adjustment for age and

medication use) and DPAn3 (pStudy-2011 = 0.041; pStudy-

2012 = 0.031; pCombined = 0.003; pCombined = 0.066 with adjustment

for age and medication use). LMM with random intercepts for

each subject yielded similar results.

Conversely, sensitivity analysis was performed excluding the five

subjects from Study-2011 who participated in both studies; this

analysis included six subjects for Study-2011 and eight subjects for

Study-2012. Combined analysis remained significant or borderline

significant for EPA (p=0.046), DPAn3 (p=0.064), and DPAn6

(p=0.020), even after adjustment for age and medication use.

Pathway Analysis
EPA, DPAn3, and DPAn6 participate in the biosynthesis of

unsaturated fatty acids (KEGG entry: map01040). To explore

whether this pathway connects metabolites associated with PM2.5

metal fume exposure, we performed PCA to integrate multiple

biochemicals within each pathway. While two of 63 pathways

significantly associated with PM exposure (p#0.05) in Study-2011,

only the unsaturated fatty acids pathway was replicated in Study-

2012 (pStudy-2011 = 0.025; pStudy-2012 = 0.021) and appeared in the

combined analysis (p=0.009, q=0.145; padj = 0.013, q=0.204)

(Table 4). Seven biochemical molecules were detected in the

unsaturated fatty acids pathway for which metabolic change

negatively associated with exposure dosage; six of the seven

molecules were statistically significant by combined analysis of

both studies (Table S1).

Functional Network Analysis
To explore interactions of EPA and DPA with specific genes, we

performed a functional network analysis. EPA extracellular and

intracellular metabolites interacted with 19 genes; DPA interacted

with 7 genes. All metabolite compounds and 24 interactive genes

were then used to build a network (Figure 3). Using a priori

knowledge, the top five diseases that associated with the most

interactive genes within the network (21/24 genes) were endocrine

system diseases (p=1.6610260), neoplasms (p=2.0610259), lung

disease (p=2.0610259), respiratory tract diseases (p=2.0610259),

and digestive system diseases (p=2.0610259). Additionally, 16 of

24 genes associated with cardiovascular disease (p=1.3610241),

and 9 of 24 genes associated with lipid metabolism disorders/

hyperlipidemias (p=2.2610227). These disease enrichment pro-

files remained significant when all seven compounds were used to

build a network by the same approach.

Discussion

A challenge to understand the adverse effects of welding fume

exposure is the complex nature of environmental and behavioral

influences. Metabolic profiles are greatly affected by diet, smoking

behavior, medical history, or even time [25–29]. Kuo et al.

recruited non-smoking, non-alcohol drinking welders for a

metabolomic study, but intra-subject variation was not considered

[30]. Here, we excluded smoking or diabetic boilermakers to

reduce such confounding effects. A self-controlled design elimi-

nated intra-subject variation, and a two-stage design avoided

chance findings in our limited sample size.

The main finding of this study is that unsaturated fatty acids are

consistently reduced by respirable welding fume exposure, with a

significant negative exposure-response relationship. To date, many

studies have investigated the beneficial effects of EPA and DHA in

neural function [31], tumor suppression [32], cardiovascular event

risk reduction [33], diabetes mellitus [34,35], anti-inflammatory

activity [36], and blood lipid reduction [37]. Although the roles of

DPA have not yet been systematically examined because of the

lack of available pure DPA, there is some evidence that DPA has

stronger beneficial health effects than EPA and DHA in vitro [38].

We also detected a global metabolite change, which may be

explained by diet during work shift, circadian variation [30], or

PM2.5 exposure.

Surprisingly, the functional network built from unsaturated fatty

acids includes 24 genes that showed very intense biological

functions related to various diseases, including those involving

endocrine system diseases, respiratory diseases, neoplasms, car-

diovascular diseases, and lipid metabolism disorders. Intracellular

EPA activates peroxisome proliferator-activated receptors (PPARs)

[39], which are implicated in the pathology of numerous diseases

including obesity, diabetes, atherosclerosis, and cancer (RefSeq,

Jul 2008). EPA also inhibits COX-1/COX-2 [40], which encode

proteins that may promote cell proliferation during tumor

progression (RefSeq, Sep 2012). DPA activates RXRG [41], a

member of the retinoid X receptor family that is involved in

mediating the anti-proliferative effects of retinoic acid and is

down-regulated in several types of human cancers, including lung

cancer [42]; DPA also activates cysteine-aspartic acid protease

(Caspase) family members, which are involved in cancer cell

apoptosis [43]. The functional network analysis strengthens the

hypothesis that the decline of unsaturated fatty acids is a potential

mediator of multiple health disorders in boilermakers.

Previous studies demonstrate the association of welding fume

exposure on decline of heart rate variability (HRV), an important

indicator of cardiovascular disease morbidity [4,44,45]. Interest-

ingly, several recent studies show that supplementation of EPA

and DPA benefit HRV in healthy adults, cardiovascular disease

risk populations, or in cardiovascular disease patients [46–50].

These results strongly indicate that the metabolic change of

unsaturated fatty acids is an important biological mediator of

exposure-related decreases in HRV.

Despite these findings, we recognize limitations to the study: we

lack metabolite information from a non-welding day, and p values

were not small enough to pass multiple comparison correction due

Metal Fume Exposure and Unsaturated Fatty Acids
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to small sample size. However, pathway-based analysis showed an

acceptable FDR (q,0.2), and the two-stage, self-controlled study

design helped reduce chance findings.

In summary, this exploratory study shows evidence that high

dose exposure of metal welding fumes decreases unsaturated fatty

acids with an exposure-response relationship. The metabolic

change in unsaturated fatty acids is a potential biomarker for

exposure-related health disorders for which further studies are

encouraged.
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