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There is a rapidly growing body of evidence that production of microvesicles (MVs)
is a universal feature of cellular life. MVs can incorporate microRNA (miRNA), mRNA,
mtDNA, DNA and retrotransposons, camouflage viruses/viral components from immune
surveillance, and transfer cargo between cells. These properties make MVs an essential
player in intercellular communication. Increasing evidence supports the notion that MVs
can also act as long-distance vehicles for RNA molecules and participate in metabolic
synchronization and reprogramming eukaryotic cells including stem and germinal cells. MV
ability to carry on DNA and their general distribution makes them attractive candidates for
horizontal gene transfer, particularly between multi-cellular organisms and their parasites;
this suggests important implications for the co-evolution of parasites and their hosts. In
this review, we provide current understanding of the roles played by MVs in intracellular
pathogens and parasitic infections. We also discuss the possible role of MVs in co-infection
and host shifting.

Keywords: microvesicles, exosomes, miRNA, parasite, metabolism synchronization, horizontal gene transfer,

co-infection, Plasmodium

INTRODUCTION
Production of membrane-enclosed microvesicles (MVs) is a uni-
versal feature of cellular life and has been demonstrated for organ-
isms as diverse as Proteobacteria, Archaea, plants, and animals
(Ellis and Kuehn, 2010; Silverman and Reiner, 2012; Deatherage
and Cookson, 2012). Several distinct categories of membrane-
enclosed MVs exist, including exosomes, ectosomes, and apop-
totic bodies (in multi-cellular organisms). MVs are grouped based
on their size, density, method of isolation, and markers, and puri-
fied MVs usually represent a mixture of aforementioned vesicular
fractions.

Secretion of MVs is well-documented for prokaryotic and
eukaryotic cells (György et al., 2011; Silverman and Reiner,
2012), and in infected organisms they can contain both host
and parasitic antigens. Vesicles from a number of pathogens,
such as Leishmania, Cryptococcus, and Trypanosoma, may carry
on virulence factors and participate in their delivery to host

Abbreviations: 7-AAD, 7-aminoactinomycin D; EAE, experimental allergic
encephalomyelitis; EGFP, enhanced green fluorescent protein; GFP, green flu-
orescent protein; HDM, helminth defense molecules; HDP, host defense
peptide; HGT, horizontal gene transfer; LDLRAP1 protein, low density lipopro-
tein receptor adapter protein; MAPK/ERK pathway, mitogen-activated pro-
tein kinases/Extracellular signal-regulated kinases pathway; miRNA, microRNA;
mtDNA, mitochondrial DNA; MV, microvesicles; NETs, neutrophil extracellular
traps; NETosis, in vivo NETs are released during a form of pathogen-induced cell
death, which was recently named NETosis; ORF, open reading frame; PV, par-
asitophorous vacuole; PVM, parasitophorous vacuole membrane; ROS, reactive
oxygen species.

cells (Silverman and Reiner, 2011, 2012; Lambertz et al.,
2012; Torrecilhas et al., 2012), promoting dissemination of the
pathogen.

Though it has become clear that MVs possess immunomod-
ulatory features, little is known about the role of MVs in host-
parasite co-existence and co-evolution. We anticipate that recent
findings regarding the participation of MVs in the transfer of
genetic information will expand the functions attributed to MVs
in the host-parasite evolution. We will hypothesize about the role
MVs play, as a vehicle for regulatory molecules important for syn-
chronization of host and parasite metabolism, and for delivery of
nucleic acids.

MICROVESICLES ARE IMPORTANT INTERCELLULAR
COMMUNICATORS
MVs are considered a universal transport vehicle for intercellu-
lar communication. MVs incorporate peptides, proteins, lipids,
miRNA, and mRNA, all of which can be transferred and become
functional in target cells (Ratajczak et al., 2006; Valadi et al.,
2007; Skog et al., 2008; Iglesias et al., 2012). MVs bind to cells
through receptor-ligand interactions, fuse with target cell mem-
branes, and deliver their cargo to the cytoplasm of the target
cell. As has been observed with tumor-derived MVs, MVs can be
enriched in specific coding and non-coding RNAs, chromosomal
and mitochondrial DNA, retrotransposon RNA, and Alu trans-
poson elements (Ronquist et al., 2009, 2012; Guescini et al., 2010;
Balaj et al., 2011; Rak and Guha, 2012; Waldenstroem et al., 2012).
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Transfer of functional genetic information by MVs was initially
shown in the experiments with a reporter mRNA encoding GFP
(Deregibus et al., 2007), where intact RNA transcripts capable of
serving as templates for protein translation were enriched in shed
MVs (Li et al., 2012).

MVs are considered the major “miRNA transporter” between
cells, since most extracellular miRNAs are found in vesicles (Gallo
et al., 2012; Xu et al., 2013). miRNAs have been identified in
helminthes and in protozoa possessing Argonaute/Dicer genes,
while they are absent in protozoa lacking enzymes required
for RNAi-based interference, such as Plasmodium spp and
Cryptosporidium (Baum et al., 2009; Manzano-Roman and Siles-
Lucas, 2012). MV-mediated export of miRNA is selective (Zhang
et al., 2010a; Jaiswal et al., 2012; Vickers and Remaley, 2012).
mRNA and miRNA packaged in vesicles appear to be more sta-
ble and resistant to RNAse digestion in the body fluids, due to
the lipid membrane of MVs (Li et al., 2012; Vickers and Remaley,
2012).

During their release, MVs may incorporate components
that are originally alien to the cell, such as proteins and
nucleic acids that are transiently or constitutively expressed via
plasmid or viral vector. Recently, it was shown that exoge-
nous plant miRNA is present in human plasma and animal
tissues. These results invoked the idea that miRNAs could
regulate gene expression across the kingdoms (Kosaka and
Ochiya, 2011; Zhang et al., 2012). We speculate that miRNA
derived from the bacterial gut community may be pack-
aged by epithelial cells into MVs and then delivered to dif-
ferent parts of the body, starting with the liver. A recent
intriguing finding by two independent groups of the exoge-
nous RNAs of different origin in human plasma samples
(Bacteria and Archaea, Fungi, Plants—Wang et al., 2012; micro-
bial RNA sequences—Semenov et al., 2012) supports this
assertion.

Overall, MVs as vehicles for miRNA and other regulatory
molecules, such as regulatory sequences of mRNA, may play
important role in the synchronization of metabolism between the
host and its parasites.

MICROVESICLE PROTEOMICS
The production of MVs rises sharply in many parasitic and
infectious diseases (Campos et al., 2010; Barteneva et al.,
2013; Table 1). Proteins identified in these MVs were related
to vesicle trafficking, signaling molecules and transmem-
brane small channels and transporters (Rodrigues et al., 2008;
Silverman et al., 2010a). We recently showed that signifi-
cant percentage of proteins identified in MVs during malaria
infection belong to classical and alternative complement path-
way, components of cytoskeleton, glycolysis and lipid transport
(Mantel et al., 2013). Metabolic enzymes related to glycoly-
sis constitute the largest protein family in excretory/secretory
proteome of helminth E.caproni (Sotillo et al., 2010). Some
glycolytic enzymes in parasitic MVs have separate function
that make them important for parasite survival and dissem-
ination (for example, binding of plasminogen for enolase in
Leishmania) (Chandra et al., 2010). Furthermore, the MVs-
production may explain the presence of atypical proteins lacking

classical secretion signal peptides, like enolase, in the parasite
secretions.

Parasite-induced MVs also contain constituent host proteins
different depending on the species of parasite. For example, while
mucin-2 was found in E. caproni vesicles, only CD19 and the con-
stant region of the IgA heavy chain were found in Fasciola hepatica
vesicles (Wilson et al., 2011; Marcilla et al., 2012). Conversely,
the same helminth species when develops in several intermediate
hosts exhibit host adaptation via differential expression of certain
gene families (example: antigen B gene family from E. granulosa)
in subsequent life cycle stages (Mamuti et al., 2007; Zhang et al.,
2010b), however, no parasite proteomes from MVs produced in
different intermediate hosts are currently available. MVs produc-
tion increased during different developmental stages of parasites
and proportion of specific antigens may be changed [as shown for
RESA-antigen, during ring-stage, trophozoite and shizont stages
of P. falciparum development (Natakamol et al., 2011)].

In sum, extracellular MVs contain parasite-specific excre-
tory/secretory proteins (Silverman et al., 2010a; Marcilla et al.,
2012), often lacking signal sequences (Leishmania), and partic-
ipate in delivery of virulence factors and regulation of parasite
virulence (Silverman and Reiner, 2011; Torrecilhas et al., 2012).
Majority of proteome studies of parasite-produced MVs identi-
fied virulence factors in the MVs proteomes (Geiger et al., 2010;
Silverman et al., 2010a; Bayer-Santos et al., 2013). MVs deliver vir-
ulence factors such as toxins, proteases, adhesins (Amano et al.,
2010; Torrecilhas et al., 2012), Entamoeba histolytica rhomboid
protease (EhROM1) (Baxt et al., 2008), participate in regulation
of gene expression and help to escape immune evasion (Lambertz
et al., 2012).

IMMUNOMODULATORY ACTIVITIES OF MICROVESICLES
AND MOLECULAR MIMICRY
Parasites have developed many strategies that support their trans-
mission and allow them to survive and reproduce, such as devel-
opment of novel cellular pathways that enable invasion into
different hosts and diverse immune evasion strategies includ-
ing: alteration of host antigens, establishment of self-tolerance,
functional immune inactivation, immunosuppression, molecular
mimicry between parasite polypeptides and host antigens, acqui-
sition of sialic acid motifs from host cells and adsorption of host
serum sialoglycoconjugates leading to the modulation of NETosis
(Hahn et al., 2013), and antigenic variability regulated by parasite
methyltransferases (Figueiredo et al., 2008). Production of MVs
appears to be involved in many of these processes.

Molecular mimicry as a strategy for host manipulation and
evasion of immune response is well-known in viruses because
of their ability to acquire host proteins or genetic material dur-
ing virion assembly (Alcami, 2003; Bernet et al., 2003). There is
significant evidence that autoimmune disease can develop after
bacterial or parasitic infection, such as Chagas disease, where a
cross-reaction between cardiac muscle cells and T. cruzi occurs
(Acosta and Santos-Buch, 1985; Sepulveda et al., 2000). Recently,
molecular mimicry between a family of peptides produced by
trematode helminthes, and human defense peptides, including
defensins and cathelidicins was found (Robinson et al., 2011).
This family of helminth defense molecules (HDMs) is conserved
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Table 1 | Microvesicles produced in response to different parasitic pathogens.

Pathogen Type of microvesicles (according to publication authors) References

FUNGI

Cryptococcus neoformans Exosomes Yoneda and Doering, 2006; Rodrigues et al., 2008;
Nicola et al., 2009; Panepinto et al., 2009; Oliveira et al.,
2010; Huang et al., 2012

Malassezia sympodialis Exosomes Gehrmann et al., 2011

Paracoccidiodes Conditioned medium(secreted proteins and vesicles) Weber et al., 2012

Paracoccidiodes brasilensis Vallejo et al., 2011, 2012a,b

PROTOZOA

Giardia lamblia Secretory vesicles Benchimol, 2004; Gottig et al., 2006

Leishmania Exosomes from infected macrophages Silverman et al., 2010a,b; Silverman and Reiner, 2011;
Figuera et al., 2012; Hassani and Olivier, 2013

Plasmodium vivax Plasma-derived MPs Campos et al., 2010

Plasmodium berghei Plasma-derived MPs (from infected mice) Combes et al., 2005; Couper et al., 2010

Plasmodium falciparum Vesicles(60–100 nm); microvesicles (100–1000 nm) Trelka et al., 2000; Bhattacharjee et al., 2008; Mantel
et al., 2013; Regev-Rudzki et al., 2013

Plasmodium yoelii Plasma-derived exosomes Martin-Jaular et al., 2011

Toxoplasma gondii Exosomes Bhatnagar et al., 2007

Trypanosoma brucei Exosomes Geiger et al., 2010

Trypanosoma cruzi Outer membrane-derived vesicles, exosomes Goncalves et al., 1991; Ouassi et al., 1992; Trocoli
Torrecilhas et al., 2009; Cestari et al., 2012; Bayer-Santos
et al., 2013

MYCOPLASMA

Mycoplasma Exosomes Quah and O’Neill, 2007; Yang et al., 2012

BACTERIA

Borrelia burgdoferi Ectosomes (outer membrane vesicles) Toledo et al., 2012

Brucella abortus Ectosomes (outer membrane vesicles) Pollak et al., 2012

Chlamydia trachomatis Exosomes, outer membrane vesicles Zhong, 2011; Frohlich et al., 2012

Francisella novacida Pierson et al., 2011

Legionella pneumophila Membrane vesicles Galka et al., 2008

Mycobacterium tuberculosis Exosomes; shedding microvesicles Giri et al., 2010; Ramachandra et al., 2010; Singh et al.,
2011, 2012; Duarte et al., 2012

Mycobacterum avium Exosomes Bhatnagar and Schorey, 2007

Mycobacterium bovis Exosomes Giri and Schorey, 2008

Salmonella thyphimurium Outer membrane-derived vesicles Yoon et al., 2011

HELMINTHS

Caernorhabditis elegans Exosomes Liegeois et al., 2006

Echinostoma caproni Exosomes Andresen et al., 1989; Marcilla et al., 2012

Echinococcus multilocularis Vesicles derived from metacestodes Eger et al., 2003; Walker et al., 2004; Huebner et al.,
2006; Nono et al., 2012

Fasciola hepatica Exosomes Marcilla et al., 2012
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throughout trematodes, and these proteins participate in the
host immune response modulation and anti-inflammatory action
(Robinson et al., 2011).

Infections caused by intracellular pathogens and parasites are
often chronic and lead to significant immunomodulation of
host immune response by the parasite. MVs produced during
protozoan infections were shown to participate in this process
(Bhatnagar and Schorey, 2007; Bhatnagar et al., 2007; Barreto
et al., 2010; Silverman et al., 2010a; Hassani and Olivier, 2013).
For example, during Plasmodium infection, there are increased
quantities of MVs in plasma, and they contain a significant
amount of parasite material. These MVs induce neutrophil activa-
tion (Mantel et al., 2013) and strong pro-inflammatory activation
of macrophages as measured by CD40 and TNF up-regulation
(Couper et al., 2010). Besides, vesiculation, which utilizes host
cell machinery, is an important mechanism for parasite egress
in the case of P. falciparum, the cause of malaria and a mem-
ber of the phylum Apicomplexa (Lew, 2011). Secreted vesicles,
which in the case of helminthes, present among other parasite
secretion products, have been shown to modulate host immune
responses and strongly influence the outcome of infections to the
parasite’s advantage (Spolski et al., 2000; Allen and MacDonald,
1998; Silverman et al., 2010b).

In our recent publication more than thirty parasite proteins
in MVs derived from red blood cells infected with 3D7 or CS2
strains of P. falciparum were identified (Mantel et al., 2013). A
modified approach, first described by Ludin et al. (2011) was
employed, allowing for rigorous analysis of P. falciparum pro-
teins that may potentially contribute to the infectious process via
molecular mimicry of host molecules. Identified potential candi-
dates include erythrocyte-binding proteins 1, 2, and 3, liver-stage
antigen, and others (e.g., Rex2) (manuscript in preparation).
Figures 1A–C shows the similarity between the P. falciparum
short (119 amino acids) PEXEL (Plasmodium export element)-
negative ring-exported protein 2 (Rex2) and the H. sapiens Rac1
and Rac2 proteins, providing one example of possible molec-
ular mimicry and parasite-human HGT in parasitic invasion
(Figure 1D). It was previously demonstrated (Haase et al., 2009)
that a short sequence in the N-terminus and transmembrane
domain of the Rex2 protein are both required for parasite export.
The N-terminus of Rex2 exhibits significant similarity to the
human small GTP-ases Rac1 and Rac2. A number of stud-
ies have demonstrated that deleterious mutations in Rac2 lead
to defective chemotaxis, impaired phagocytosis, and decreased
pathogen killing by macrophages and/or neutrophils (Roberts
et al., 1999; Koh et al., 2005; Yamauchi et al., 2005; Zhang et al.,
2009). Because it has been reported that neutrophils from malaria
patients have reduced chemotactic activity (Nielsen et al., 1986;
Leoratti et al., 2012), a role for Rex2 in molecular mimicry of
Rac2 is likely. It is anticipated that in silico analysis of other
pathogen-derived MV-associated proteins will be helpful in fur-
ther understanding how MVs function as intercellular communi-
cators during disease states, and provide insights on what to base
future experimental studies on.

Molecular mimicry may be a more prevalent parasitic strategy
than was previously thought (Ludin et al., 2011). Acquisition of
complete nucleotide sequences or sequence motifs from the host

may happen at different stages of parasite-host co-existence, and
MVs may play a significant role in this molecular exchange.

DO MICROVESICLES PARTICIPATE IN CO-INFECTION?
Parasitic and symbiotic associations are ubiquitous and often life-
long relationships (Eckburg et al., 2005; Weiss and Aksoy, 2011).
Every mammal possesses complex microbial communities that
reside on all mucosal surfaces. The human gastrointestinal tract
harbors an estimated 1014 species of microbes from over 500 dis-
tinct microbial taxa (Eckburg et al., 2005). Although infectious
parasite biology research is still dominated by studies of single
infections poly-parasitism is very common in nature (Petney and
Andrews, 1998; Bordes and Morand, 2009). Infection with one
parasitic species can have a large impact on host susceptibility to
secondary infection, and this phenomenon is partially dependent
on the duration of infection (Telfer et al., 2010).

There is a growing body of evidence that concurrent para-
sitic infections can confer benefits to their hosts. For example,
Wolbachia, which is considered a reproductive parasite in arthro-
pods (Werren et al., 2008), can provide metabolic advantages to
their hosts during stressful conditions, such as increased haem
and riboflavin availability (Brownlie et al., 2009; Hosokawa et al.,
2010). There are a number of studies outlining associations
between different parasitic co-infections. Thus, helminth infec-
tion can prevent or suppress autoimmune and allergic diseases
depending on helminth burden (reviewed in Zaccone and Cooke,
2013). A similar finding has been described for malaria infec-
tion, where the disease can be asymptomatic or less severe, with
concomitant lower parasitaemia, in helminth-infected patients
(Adegnica and Kremsner, 2012). The infection of Schistosoma
haematobium is associated with protection against acute P. falci-
parum infection (Lyke et al., 2005).

The role of MVs as messengers between parasite and host
immune cells is well-established (Silverman and Reiner, 2012).
We have shown involvement of MVs in cross-communication
within a P. falciparum population (Mantel et al., 2013). The
exchange of MVs derived from different parasites as well as
from host cells can participate in the mechanisms of co-infection
(Figure 1E). However, there are currently no published reports
describing the communication of MVs derived from different
parasites and the issue deserves in-depth elucidation.

SEARCHING FOR NEW CLUES IN INTERCELLULAR
COMMUNICATION BY IN SILICO GENOMICS AND
PROTEOMICS
Amoebae, as well as other free-living protozoan hosts for bacte-
ria, fungi, giant DNA viruses and virophages are “melting pots”
for HGT exchanges (Hotopp et al., 2007; Moliner et al., 2010;
Raoult and Boyer, 2010; Lamrabet et al., 2012). Besides, DNA
exchange may also occur in reverse from microorganisms to pro-
tozoa (Ricard et al., 2006), and to animals (McNulty et al., 2010;
Dunning Hotopp, 2011). Examples of gene transfer from the ani-
mal host to the ancestor of the apicomplexan parasites include
genes encoding proteins involved in cell adhesion, O-linked gly-
cosylation and a major epigenetic regulator histone methyltrans-
ferase Set8 (Kishore et al., 2013). In many instances, interdomain
HGT involves transfers between endosymbiotic bacteria and their
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FIGURE 1 | Alignment and PSI-Blast analysis of Rex2 P. falciparum

protein. (A) ClustalW sequence alignment of Rex2 P. falciparum protein
(NCBI accession XP_001352224; Uniprot ID Q8I2GO_PLAF7) with Human
Rac1 protein (NCBI accession AAH04247; Uniprot ID RAC1_HUMAN) and
Ras-related C3 botulinum toxin substrate 2 RAC2_HUMAN. As follows from

the alignment (A) the N-terminus of the P. falciparum Rex2 protein shares
significant similarity with the Rac1 and Rac2 proteins. In the active
GTP-bound state these proteins regulate a variety of cellular responses, such
as secretory processes, phagocytosis of apoptotic

(Continued)
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FIGURE 1 | Continued

cells, and epithelial cell polarization. Rac2 activity also includes regulation of
human neutrophil NADPH oxidase and activation of the production of reactive
oxygen species (ROS). (B) Three-dimensional structure of human Rac2
(critical aminoacids are shown with numbers). (C) Sequence alignment
between P. falciparum Rex2 and Rac2 and Rac1 proteins reveals an exact
match in a number of functionally important amino acids positions, including
(a) Asp57. RAC2 Asp57Asn mutation has been shown to be associated with
severely impaired fMLP- or IL-8–induced neutrophil responsiveness, including
adhesion, chemotaxis, and superoxide production. The Asp57-mutant Rac2
does not bind GTP and was found to act in a dominant-negative fashion for
both Rac1 and Rac2 because of its tight GEF binding; (b) H103, which is
involved in Rac1-mediated oxidase activation, and (c) the ubiquitination sites
K96 and K123. The alignment also revealed exact matches found exclusively
between the Rac1 and Rex2 proteins, including G48, F90 and A151. However,
the functional impact of these amino acids is not yet known. (D) PSI-Blast

analysis of Plasmodium falciparum 3D7 Rex2 protein against NCBI
non-redundant database showed weak similarities to hypothetical proteins
from parasitic Apicomplexa Theileria annulata, ciliate Protozoa Oxytricha
trifallax, Felis catus (gi410982116), Drosophila virilis (gi195395466), as well as
mouse Nrde2 protein (gi|19344080). Multiple sequence alignment of these
proteins was developed using NCBI Cobalt (Papadopoulos and Agarwala,
2007). Maximum likelihood phylogenetic tree was developed using the iTOL
server and default parameters (Letunic and Bork, 2011). As it follows from the
tree the Rex2 protein most closely evolutionary relates to a hypothetical
protein from algae Heterosigma akashiwo and Human Rac2 protein.
Evolutionary relations between algae and Apicomplexa are well-established
(Lemgruber et al., 2013), however, relatedness to Human Rac2 protein
suggests HGT from parasite to Human. (E) A hypothetical scheme of MVs
exchange in parasite-host interaction. Host and multiple parasites produce
and exchange microvesicles, which transfer lipids, proteins, nucleic acids
such as miRNA, mRNA, DNA, and may camouflage virions.

hosts and from bacteria to asexual animals (Dunning Hotopp,
2011). For example, Wolbachia-to-arthropod HGT has been seen
in the genomes of the bean beetle (Coleoptera) (Kondo et al.,
2002), mosquitoes (Diptera) (Klasson et al., 2009; Woolfit et al.,
2009), and other arthropods, as well as HGT in the opposite
direction—from arthropod to Wolbachia (Duplouy et al., 2013).
Some Microsporidia species acquired a gene from arthropods that
encodes purine nucleotide phosphatase, though most HGT to
Microsporidia identified to date derives from prokaryotes (Selman
and Corradi, 2011).

Analysis of T. cruzi ribosomal proteins in silico identified sig-
nificant homology not only with members of the animal kingdom
(H. sapiens, C. elegans, D. melanogaster), but also with plants
and protozoa (Wayengera, 2009). Recent massive bioinformatics
analyses of whole genome sequences have shown that many intra-
cellular prokaryotes have the ability to manipulate the eukary-
otic ubiquitin system through molecular mimicry of the F-box
component of the SCF E3-ubiquitin ligase eukaryotic-like F-box
proteins (Price et al., 2009; Price and Kwaik, 2010).

The ability of MVs to serve as vehicles not only for proteins
and lipids, but also for nucleic acids (Ronquist et al., 2009, 2012;
Guescini et al., 2010; Balaj et al., 2011; Pisetsky et al., 2011;
Rak and Guha, 2012), make us hypothesize that MV production
and exchange are an important mechanisms in gene information
exchange between parasites and their hosts. As described above,
this is indirectly confirmed by a number of similarities between
parasite protein sequences and host molecules. Recent studies
of mammalian (equine) ovarian follicles revealed that intercel-
lular communication in the ovarian follicle may involve trans-
fer of miRNA and other bioactive molecules by MVs between
follicular fluid and granulosa cells (da Silveira et al., 2012).
In addition, the transfer of chromosomal DNA fragments by
prostate-derived MVs to human sperm (vertical transfer) was
described by Ronquist et al. (2009). Moreover, MVs camouflage
viruses from immune surveillance and facilitate their access to
cells (Kadiu et al., 2012).

Thus, we hypothesize that one of the important functions of
MVs in parasite-host and parasite-parasite co-evolution is their
participation in HGT. This hypothesis is based on the follow-
ing properties of MVs: (1) the ability to transfer nucleic acids,
including DNA; (2) the capability of MVs to protect and deliver

genetic information to different organs, including reproductive
organs in the case of multi-cellular organisms; and (3) the ability
to transfer cargo to alien cells and tissues (in the case of parasites).
Regev-Rudzki et al. (2013) recently provided additional support
to this hypothesis confirming that P. falciparum derived MVs are
capable of delivering genes between parasite populations inside
their host.

CONCLUDING REMARKS
MVs are emerging as critical players in HGT including small non-
coding RNAs. Major challenges in the field of extracellular vesicle
research include (1) development of new comprehensive meth-
ods for their isolation and characterization, and (2) isolation of
pure populations of specific MVs. Improved understanding of the
mechanisms involved in vesicle shuttling of genetic information
and proteins is crucial in order for new diagnostic and therapeutic
strategies to be designed and implemented.

Dissemination of parasite components with MVs provides (1)
a unique advantage in protection against host-mediated immune
responses and nucleases from blood and other body fluids, (2)
the possibility of reaching distant regions and evading immune
attacks due to their small size (<1 µm), and (3) the capability of
transferring genetic information long-distance—this may lead to
direct participation of pathogenic components in the regulation
of gene expression in the different host cells and metabolism syn-
chronization between host and parasite, as well as HGT. This may
contribute to further co-adaptation and co-evolution of the para-
site and its host. Remarkably, MV exchange may happen similarly
in dramatically different animal host cells, as well as in simple
multicellular organisms. This can lead to broader host ranges and
an increase in the virulence of certain parasites.

Our present knowledge of MVs derived from parasites comes
from studies involving limited numbers of parasites and hosts.
In the future our understanding of how parasite-host exchange
of regulatory molecules and genetic information happens may
change, especially when taking into account interactions between
multiple parasitic species within the same host organism.
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