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Abstract
Glioblastoma Multiforme (GBM) is an aggressive brain tumor for which there is no cure.
Overexpression of wild-type EGFR and loss of the tumor suppressor genes Ink4a/Arf and PTEN
are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been
clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at
modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering
endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a
unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic
conditional overexpression and chronic activation of wild-type EGFR in cooperation with
deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that
chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with
histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant
to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase
activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response
characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene
expression levels. We demonstrate that a key component of this pattern is the transcriptional
activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET
overcomes the resistance to EGFR inhibition in these cells. These findings provide important new
insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple
targets will be necessary to provide therapeutic benefit for GBM patients.
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Introduction
GBM is a highly malignant primary brain tumor with poor prognosis. The five-year relative
survival rate (~3%) has not improved significantly over the last five decades. This is because
GBM tumors are characterized by an uncontrolled cellular proliferation and a robust
infiltrative capacity and are notoriously resistant to all therapeutic interventions attempted so
far. This results in fatal recurrence in nearly all patients. Therefore, there is an urgent need to
develop and utilize appropriate experimental systems to understand mechanisms of
resistance, discover novel targets and test therapeutic agents.

The EGFR signaling pathway plays a crucial role in GBM pathogenesis, initiating the early
stages of tumor development, sustaining tumor growth and promoting infiltration.
Expression of EGFR and its ligands are observed in >65% of GBMs and are almost
exclusively associated with loss of the Cdkn2a (p16INK4A/p19ARF) tumor suppressor
locus and to a lesser extent with loss of the PTEN tumor suppressor (McLendon et al., 2008;
Verhaak et al., 2010). Given the importance of EGFR signaling in GBM, it is surprising then
that the use of EGFR tyrosine kinase inhibitors (TKIs) for GBM treatment has proven
inadequate (reviewed in (Huang et al., 2009)). The most significant challenge in using
EGFR TKIs clinically has been the intrinsic ability for GBMs to develop resistance to
receptor inhibition.

Loss of PTEN in EGFR-positive GBMs is thought to uncouple phosphatidylinositol 3-kinase
(PI3K) signaling from the control of EGFR (Friedman and Bigner, 2005; Mellinghoff et al.,
2007; Mellinghoff et al., 2005), an event that was considered predictive of TKI inefficiency.
However, subsequent work reported that the concomitant expression of activated EGFR and
PTEN does not correspond to improved survival in patients treated with an EGFR TKI (van
den Bent et al., 2009). These contradicting findings suggest that more complex molecular
events are associated with EGFR inhibition resistance and that there is a pressing need to
expand our understanding of these events to tackle resistance to therapeutic interventions in
GBM.

Recently, several groups have molecularly redefined the classification of GBM tumors
based on cataloged recurrent genomic abnormalities, robust gene expression-based
molecular classification and signaling network profiles (Brennan et al., 2009; Phillips et al.,
2006; Verhaak et al., 2010). GBMs are now categorized as classical, mesenchymal and
proneural with aberrant gene copy number, mutation and expression of EGFR, NF1, and
PDGFRA/IDH1 defining each subtypes respectively. A fourth category referred to as neural
is less well defined molecularly. These efforts now provide a clinically relevant molecular
framework for stratification of GBM tumors with important clinical ramifications. For
example, response to standard of care therapy was shown to differ by subtype, with the
greatest benefit being observed in classical GBMs and no benefit in proneural GBMs. Not
only does this work demonstrate that distinct molecular subtypes exist within GBMs, it also
raises the possibility that response to specific treatments may vary based on the molecular
subtype.

Our knowledge of EGFR signaling comes mostly from in vitro studies of acute and transient
ligand-stimulated activation of the receptor. This pattern is disparate from the clinical setting
where EGFR is chronically active in GBM as a result of autocrine and paracrine expression
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of EGFR and its ligands (Ekstrand et al., 1991; Mishima et al., 1998; Schlegel et al., 1990;
Tang et al., 1997). Therefore, studies of mechanisms of EGFR signaling and resistance to
treatment in clinically relevant contexts remain largely unexplored, particularly in germane
in vivo model systems.

Here, we describe a novel genetically engineered mouse model of EGFR-driven GBM based
on co-expression of wild-type EGFR (EGFRWT) and TGFα, an EGFR ligand expressed in
GBM. We established that a strict spatiotemporal expression and activation of EGFRWT

with loss of tumor suppressor genes p16Ink4a/p19Arf and PTEN efficiently induce
gliomagenesis in adults. Using these mice, we reveal a new and distinctive mechanism of
resistance to EGFR TKI treatment. EGFR inhibition causes a global change in the
transcription profile of GBM tumor cells, including expression and activation of the MET
tyrosine kinase receptor. The acquired MET activity results in the persistent activation of
downstream signaling pathways and pharmacological inactivation of MET reverses its
resistance function. Our results demonstrate that multi target inhibition is necessary to
overcome resistance in GBM.

Results
Sustained activation of EGFRWT and loss of tumor suppressor genes in mice form GBM
tumors

Ligand-receptor autocrine and paracrine loops are commonly observed between EGFR and
its ligands in GBMs (Ekstrand et al., 1991; Mishima et al., 1998; Tang et al., 1997). Having
established that somatic overexpression of EGFRWT in the CNS of adult mice is insufficient
to induce gliomagenesis (Zhu et al., 2009), we hypothesized that, similar to the clinical
setting, the presence of an EGFR ligand is necessary for receptor activation and cellular
transformation in vivo. Therefore, we developed a strategy to co-express EGFRWT and
TGFα, an EGFR ligand expressed in human GBMs (Maruno et al., 1991; Ramnarain et al.,
2006; Samuels et al., 1989; Schlegel et al., 1990; Tang et al., 1997; van der Valk et al.,
1997; Yung et al., 1990) in the adult mouse brain using a conditional lox-stop-lox EGFRWT

transgenic mouse strain (CAG-LSL-EGFRWT) in which overexpression of human EGFRWT

is Cre-dependent (Zhu et al., 2009). This strain was crossed to the InkΔ2/3−/− constitutive
Cdkn2a locus (p16Ink4a/p19Arf) knock out line (Serrano et al., 1996) and/or to a
conditional PTEN2lox knock out strain (Lesche et al., 2002) to generate genetically accurate
compound animals.

We created bicistronic lentiviral vectors designed to express TGFα and Cre recombinase
(Figure 1a). For control experiments, we used eGFP in lieu of TGFα. We somatically
induced the expression of EGFRWT with stereotactic intracranial injections of matched titers
of the TGFα and eGFP viruses in cohorts of CAG-LSL-EGFRWT;InkΔ2/3−/−, CAG-LSL-
EGFRWT;InkΔ2/3−/−;PTEN2lox and CAG-LSL-EGFRWT;PTEN2lox compound animals and
monitored tumor formation and survival over time (Figure 1b,c). Mice co-expressing
EGFRWT and TGFα in the context of p16Ink4a/p19Arf null conditions developed brain
tumors with a median survival of 10 weeks post injection (Figure 1c). Additional loss of
PTEN expression exacerbated this latency by half, suggesting a more aggressive tumor
progression in the absence of the PTEN tumor suppressor gene (Figure 1c). Expression of
TGFα-EGFRWT in the absence of PTEN also resulted in the formation of tumors albeit at a
much-reduced penetrance and longer latency when compared to either p16Ink4a/p19Arf null
and p16Ink4a/p19Arf;PTEN null backgrounds (Figure 1c). Finally, expression of EGFRWT in
the absence of a ligand (eGFP- EGFRWT) under p16Ink4a/p19Arf;PTEN null conditions did
not induce tumor formation in mice reaffirming the need for expression of an EGFR ligand
for gliomagenesis.
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InkΔ2/3 null and InkΔ2/3;PTEN null TGFα-EGFRWT tumors resemble human GBMs
histopathologically. All TGFα-EGFRWT tumors are composed of cells growing on a
fibrillary background with prominent pleomorphic nuclei (Figure 2a–i). Tumors invariably
display areas of pseudopallisading necrosis (Figure 2a–ii). In addition, tumor cells are highly
infiltrative, showing invasion along white matter tracks (Figure 2a–iii) and the perivascular
space distant from the bulk mass (Figure 2a–iv). Immunohistochemical staining of TGFα-
EGFRWT tumors for human EGFR protein reveals a robust membrane expression. Staining
for markers associated with astrocytic (GFAP and S100) and neuronal (NeuN)
differentiation reveals that these tumor cells express markers of astrocytic lineage only
(Figure 2b).

Molecular classification of TGFα-EGFRWT GBM tumors defines two subtypes
To gain insight into molecular similarities between our model and the different subtypes of
human GBMs, we carried out gene expression profiling on TGFα-EGFRWT;InkΔ2/3−/− and
TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor cells and performed a gene set enrichment
analysis (GSEA; (Subramanian et al., 2005)) using gene set lists defining the different
human GBM subtypes. We also used hierarchical clustering (pvclust; (Suzuki and
Shimodaira, 2006)) to further characterize the relationship between the mouse and human
gene expression data. GSEA was used to examine the distribution of the markers for each
human subtype in a list of genes arranged according to differential expression between
TGFα-EGFRWT;InkΔ2/3−/− and TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor types. The
most significant association was observed between the markers of the human classical
subtype and high expression in TGFα-EGFRWT;InkΔ2/3−/− tumors (Supplementary Figure
1a and Supplementary table 3). Clustering analysis further supports this association
(Supplementary Figure 1b). Gene expression data from our mouse GBMs were merged to
the unified TCGA GBM data and the data were summarized to a single value per gene, per
tumor group using averaging. The TGFα-EGFRWT;InkΔ2/3−/− tumor data clusters in a
highly supported clade with human classical tumors. In addition, our results classify the
TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumors as most similar to the mesenchymal subtype
(Supplementary Figure 1b).

EGFR kinase inhibitor treatment of TGFα-EGFRWT GBM cells
EGFR kinase inhibitors are inefficient at conferring clinical benefits to GBM patients. To
better understand the molecular basis for TKI resistance in GBM, we evaluated tumor cell
growth and signaling events under EGFR kinase inhibition in our GBM mouse model. We
derived a series of primary tumor cultures from InkΔ2/3 null and InkΔ2/3;PTEN null TGFα-
EGFRWT tumors. These primary cultures are stable, can proliferate in low serum
concentrations and are capable of unrestricted growth when orthotopically implanted as
allografts (data not shown).

Primary cultures of GBMs were incubated in low serum (0.1% FBS) media and treated
either with vehicle or with the EGFR kinase inhibitor gefitinib and analyzed for viable cell
growth (Figure 3a). After 24 hours of treatment, the TGFα-EGFRWT;InkΔ2/3−/− tumor
cultures (T1, T2, and T3) displayed a 50–80% reduction in number of cells whereas cells
derived from TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumors (T4, T5, and T6) did not show
significant reductions in viability (Figure 3a). To better understand these effects, we
analyzed gefitinib-treated cells for apoptosis with the apoptotic marker cleaved caspase-3
using flow cytometry. The levels of cleaved caspase-3 increased dramatically after 24 hours
of gefitinib treatment in TGFα-EGFRWT;InkΔ2/3−/− cells and remained low in TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor cultures (Figure 3b,c). We validated these results with
the EGFR TKI erlotinib and observed similar results (data not shown). These results
demonstrate that EGFR TKI treatment of TGFα-EGFRWT;InkΔ2/3−/− tumor cells is
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cytotoxic whereas identical treatment in TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor
cultures is cytostatic.

We characterized this cytostatic response by performing a cell cycle analysis on gefitinib-
treated TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor cells. Cells were treated as above and
flow cytometry was used to assess the extent of BrdU incorporation and the levels of 7-AAD
staining. EGFR inhibition induces a dramatic decrease in the percentage of cells in S phase
after 24 hour treatment, which is accompanied by an increase in the percentage of cells in
G1/G0 as well as a smaller increase in the percentage of cells in G2+M phases (Figure 3d).
Thus in TGFα-EGFRWT;InkΔ2/3−/−;PTENlox GBM cells, inhibition of EGFR mostly
induces a G1 arrest. We further analyzed TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor
cultures treated with gefitinib for the activation status of canonical MAPK (Mek1/2 and
Erk1/2), PI3K/Akt and mTOR pathways by immunoblot analysis (Supplementary Figure 2).
Treatment with gefitinib resulted in a robust attenuation of the MAPK signaling pathway
and to a much lesser extent that of the PI3K/Akt and mTORC1 signaling pathways.

We then ascertained the effect of EGFR inhibition treatment on TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumors in vivo. To allow for real-time monitoring of tumor
initiation and growth, we retrogressed a conditional luciferase reporter transgene
(Woolfenden et al., 2009) into our TGFα-EGFRWT;InkΔ2/3−/−;PTEN2lox strain. GBM
tumors were initiated as above and monitored for growth using bioluminescence imaging
(BLI). Once GBM tumors were established, animals were administered with vehicle or
erlotinib 150 mg/kg p.o. and sacrificed 24 and 72 hours later and processed for histology to
determine the extent of EGFR inhibition in vivo. Figure 4a shows that 24 hours after a single
dose of erlotinib, the levels of activated EGFR (as measured by the levels of
phosphotyrosine 1173) decrease to undetectable levels when compared to control treatment
whereas the levels of total EGFR remained identical. This inhibition continued for another
72 hours and is accompanied by a decrease in proliferation as measured by lower levels of
Ki-67 positive cells with no change in apoptosis as measured by TUNEL staining (Figure
4a,b).

To determine the clinical outcome of EGFR TKI therapy, we established cohorts of tumor
bearing animals as above and initiated treatment once GBM development was detected by
BLI. Animals treated with erlotinib initially responded to the drug as visualized by a
decrease in BLI output (Figure 4c). The response subsided and tumor growth eventually
resumed and proved to be fatal. This initial response translated into a prolongation in the
overall survival of the treated cohort (Figure 4d). To control for the responsiveness of the
system, we initiated and then suspended erlotinib treatment in a TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor bearing mouse and monitored tumor response by BLI
(Supplementary Figure 3). Withdrawal of erlotinib treatment resulted in a rapid resumption
of tumor growth that could be attenuated by recommencement of treatment (Supplementary
Figure 3).

Re-expression of PTEN in established tumor cells has no therapeutic consequences
Loss of PTEN in GBM is thought to confer resistance to EGFR TKI treatment by
uncoupling the dependence of PI3K activity from EGFR (Mellinghoff et al., 2007;
Mellinghoff et al., 2005). Similar to these clinical observations, we demonstrated that our
PTEN-null GBM tumor cells are resistant to EGFR TKI treatment. To determine if PTEN
directly functions in this resistance, we used a tetracycline-inducible lentiviral vector system
(Shin et al., 2006; Zhu et al., 2007) to conditionally re-express PTEN in TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor cells and assayed for sensitivity to EGFR TKI
treatment (Figure 5a). Parental and daughter cultures were treated with doxycycline to
induce PTEN expression and treated with gefitinib as described above. Immunoblot analysis
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of total cell lysates for cleaved PARP demonstrates that doxycycline-induced PTEN
expression does not confer sensitivity to EGFR kinase inhibitor-induced apoptosis (Figure
5b) and flow cytometry analysis of cleaved caspase-3 further confirms these results (Figure
5c). This demonstrates that re-expression of PTEN in TGFα-EGFRWT;InkΔ2/3−/−;PTENlox

GBMs, post tumor formation, does not sensitize them to gefitinib-induced apoptosis.

EGFR kinase inhibition induces gene expression profile changes in InkΔ2/3;PTEN-null
GBMs

To gain insight into the observed cytostaticity, we performed gene expression profiles of
vehicle- and gefitinib-treated TGFα-EGFRWT;InkΔ2/3−/− and TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor cells. Unsupervised hierarchical clustering of a 1000
random genes demonstrated that global gene expression remained unchanged in control
versus gefitinib-treated TGFα-EGFRWT;InkΔ2/3−/− tumor cells (Supplementary Figure 4a).
Pathway analysis from the gene profiling data failed to identify apoptosis-specific signature
pathway utilization (data not shown) suggesting that the rapid onset of apoptosis observed in
TGFα-EGFRWT;InkΔ2/3−/− tumor cells is less likely to be transcriptionally mediated.
Conversely, treatment of TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor cells with gefitinib
triggered significant changes in global gene expression (Supplementary Figure 4a). All three
gefitinib-treated TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor cultures clustered together
rather than clustering pair-wise with their vehicle treated controls. These extensive changes
in gene expression allowed us to hypothesize that the mechanism(s) responsible for the
observed gefitinib-induced cytostaticity might be reflected at the level of transcription of
one or several genes. First, we validated the array results on a subset of 24 of those genes
(10 downregulated and 14 upregulated, Supplementary Table 4) by qRT-PCR assays
performed on newly isolated RNA from gefitinib- and vehicle-treated cells (Supplementary
Figure 5a,b). Then, we focused our attention on genes whose expression is most
significantly up or down regulated upon gefitinib treatment (Supplementary Figure 4b).

Activation of c-met expression in response to EGFR inhibition leads to survival of GBM
tumor cells

We surveyed the genes with the most significant changes in expression levels upon gefitinib
treatment and concentrated on the c-met receptor tyrosine kinase (RTK) gene. We treated
TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor cell cultures with gefitinib for 16 hours and
harvested total RNA at different times and performed qRT-PCR to measure the relative
expression levels of c-met mRNA over time (Figure 6a). Our results demonstrate a biphasic
increase in the c-met mRNA levels upon gefitinib treatment. Within 30 min of treatment the
levels of c-met mRNA doubled and stayed constant for 3.5 hours, after which the levels
increased to over 5 folds after 16 hours. This latter increase in c-met mRNA levels
corresponded to the appearance of detectable levels of activated MET receptors (increase in
MET autophosphorylation sites Tyr1234/1235 levels) (Figure 6b). We also determined that
this induction in MET expression upon gefitinib treatment is irrespective of PTEN status
(Supplementary Figure 6).

Next, we investigated whether the increase in c-met mRNA levels upon gefitinib treatment
resulted from an enhanced transcription of the c-met gene by using a 3.5 kilobase (kb)
fragment of the c-met promoter region (Liang et al., 2004; Seol and Zarnegar, 1998) in a
firefly luciferase reporter gene assay. c-met promoter and control luciferase vectors were
transiently expressed in control NIH3T3 cells and in TGFα-EGFRWT;InkΔ2/3−/−;PTENlox

tumor cell cultures (T4–6), treated with vehicle or gefitinib and assayed for luciferase
activity 24 hours after transfection. Treatment of TGFα-EGFRWT;InkΔ2/3−/−;PTENlox

tumor cell cultures with gefitinib lead to a significant increase in the activity of the c-met
promoter (Figure 6c). Finally, we validated these observations in vivo by performing IHC
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against MET on GBM tumor sections from mice that have been treated with erlotinib.
Figure 6d demonstrates that treatment of GBM tumor-bearing mice with the EGFR TKI
erlotinib resulted in the expression of MET tyrosine kinase 72 hours post treatment.

Our work indicated that this gefitinib-induced increase in MET expression and activity is
responsible for sustaining a pro-survival Akt-based signaling. As such, we reasoned that co-
treatment of TGFα-EGFRWT;InkΔ2/3−/−;PTENlox tumor cells with gefitinib and the MET
inhibitor SU11274 may sensitize these cells to apoptosis. Treatment of TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor cell cultures with both gefitinib and SU11274 robustly
abrogated the levels of phospho MET Tyr1234/1235, indicating a complete inhibition of
MET activity (Figure 7a). Inhibition of MET activity paralleled a reduction in the activity of
Akt as measured by a decline in the levels of phospho Akt Thr308 (Figure 7b). To directly
address the role of MET activation on survival of gefitinib-treated TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor cells, we evaluated the effects of co-inhibition of
EGFR and MET kinase on cell viability. Dual treatment of TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor cells with gefitinib and SU11274 effectively decreased
cell viability compared to gefitinib or SU11274 treatment alone (Figure 7c). This decrease in
viability was accompanied by an increase in the levels of cleaved caspase-3 and cleaved
PARP suggesting that dual EGFR and MET inhibition resulted in the induction of apoptosis
(Figure 7d). Together, these results demonstrate that inhibition of EGFR kinase activity
channels signaling pathways to induce MET kinase expression and activation, which in turn
triggers the activation of survival signaling events that counteract the actions of EGFR
kinase inhibition.

Discussion
Several in vitro studies have unequivocally established that overexpression of wild-type
EGFR results in cellular transformation solely in the presence of ligands (Ciardiello et al.,
1990; Di Fiore et al., 1987; Di Marco et al., 1990; Di Marco et al., 1989; Rosenthal et al.,
1986; Shankar et al., 1989; Watanabe et al., 1987). This dual requirement for receptor and
ligand expression to elicit oncogenic transformation by EGFR is further exemplified in
animal models where receptor overexpression alone in various tissues, including glia, does
not result in tumor formation (Andl et al., 2003; Cheng et al., 2002; Ding et al., 2003). The
evidence thus suggests that physiologically relevant overexpression of wild-type EGFR is an
oncogenic event only in the presence of ligands. Here we demonstrate that sustained, TGFα-
mediated activation of EGFR is necessary for gliomagenesis in vivo, functionally
substantiating the clinical observation that EGFR-positive GBMs also express EGFR ligands
(Maruno et al., 1991; Ramnarain et al., 2006; Samuels et al., 1989; Schlegel et al., 1990;
Tang et al., 1997; van der Valk et al., 1997; Yung et al., 1990).

CNS expression of TGFα-EGFRWT and loss of Cdkn2a in mice lead to the formation of
neoplasms with molecular and histopathological characteristics of the classical subtype of
GBMs. The additional loss of PTEN resulted in tumor with mesenchymal molecular
features. Although the majority of EGFR positive GBMs belong to the classical subtype,
there are a considerable number of mesenchymal GBMs that are EGFR positive (Verhaak et
al., 2010). Our model suggests that those are likely to be PTEN deficient. The newly
established molecular stratification of GBMs reveals that response to treatments varies based
on tumor subtypes. We show that the GBM tumors from our models behave similarly, where
classical GBMs are sensitive to EGFR TKI therapy and mesenchymal tumors are not. Our
genetically-defined pre-clinical model systems thus offer a powerful means to study
responses to new therapies according to GBM subtypes.
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We show that p16Ink4a/p19Arf null TGFα-EGFRWT tumor cells are sensitive to EGFR
inhibition, undergoing rapid apoptosis upon gefitinib treatment. This is a response that is
reminiscent of EGFR-addicted non-small cell lung cancers (NSCLC) (reviewed in
(Engelman and Settleman, 2008)) and suggests that under Cdkn2a null conditions, GBMs
are addicted to EGFR signaling. TGFα-EGFR;InkΔ2/3−/−;PTEN null tumors on the other
hand displayed a cytostatic response both in vitro and in vivo under the same treatment.
Cytostatic responses resulting from EGFR inhibition in cancer have been reported to be
mediated by a p27KIP1-dependent G1 arrest (Busse et al., 2000; Ling et al., 2007; Peng et
al., 1996). Although the molecular mechanisms that link EGFR inhibition to induction of
p27KIP1 remain ill defined, it is conceivable that the combination of the sudden loss in the
proliferative MAPK signaling and a sustained Akt pro-survival activity resulting from the
PTEN null status induces p27KIP1 in our system.

On the surface, the cytostatic response to EGFR inhibition in our GBMs is analogous to the
resistance to TKI therapy displayed by PTEN null GBM patients (Fan et al., 2007; Guillamo
et al., 2009; Mellinghoff et al., 2007; Mellinghoff et al., 2005; Sarkaria et al., 2007). This is
not the case since re-expressing PTEN in GBM cells did not change their response to EGFR
inhibition nor did it sensitize them to gefitinib-induced apoptosis. Instead, our gene
expression profiling experiments revealed that the cytostatic effect we observed was
characterized by global changes in gene expression of which, MET was identified as an
integral component.

The transcriptional induction of the c-met gene as a result of growth factor inhibition has
never been described and it remains to be observed in GBM patients who underwent EGFR
TKI treatments. The paucity and difficult access to these samples makes such studies
difficult to carry out. However, co-expression of MET and EGFR has been reported in
GBM, NSCLC and breast cancer and suggested to play an important role in these cancers’
ability to escape single agent targeted therapy (Engelman et al., 2007; Huang et al., 2007;
Mueller et al., 2008; Mueller et al., 2010; Stommel et al., 2007; Turke et al., 2010).

In NSCLC, recent studies demonstrated that erlotinib resistance arises from acquisition of
MET expression after prolonged exposure to EGFR TKI thus defining a mode of secondary
or acquired resistance to TKI treatment (Engelman et al., 2007; Turke et al., 2010). In
contrast, breast cancer and glioma studies define an upfront or primary mode of resistance to
EGFR TKI treatment where MET expression and activation is already present prior to
EGFR TKI exposure (Mueller et al., 2008; Mueller et al., 2010; Stommel et al., 2007).
Although the mechanistic details of the resistance described herein differ from those
examples, together they nevertheless underscore a potent selection pressure for RTK
switching during the development of resistance to targeted therapeutic treatment in tumors.

This study reports a novel mode of resistance to EGFR targeted therapy in GBM. We
demonstrated that in a genetically accurate mouse model of GBM, resistance to EGFR
kinase inhibition is a dynamic process involving rapid and drastic changes in gene
expression profiles of which, induction of the c-met gene bears most of the resistance
phenotype. It remains to be determined whether a subset of patients would benefit from dual
MET and EGFR TKI treatment. Our work supports the notion that up front, multi-target
therapy represents a compelling approach towards the treatment of GBM and that the pre-
clinical mouse models presented here offer a unique platform to decipher and exploit the
mechanisms of action of therapeutic agents.
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Materials and Methods
EGFR conditional mice and procedures

All mouse procedures were performed in accordance with Tufts University’s
recommendations for the care and use of animals and were maintained and handled under
protocols approved by the Institutional Animal Care and Use Committee. Cre/Lox-mediated
conditional expression of the human EGFRWT was described elsewhere (Zhu et al., 2009).
Stereotactic intracranial injections of viruses and BLI monitoring are described in details in
the Supplementary Materials and Methods section.

Histology and immunodetection
Brains were excised and post-fixed and processed for histology as described in
Supplementary Materials and Methods. Immunodetection of markers of astrocytic and
neuronal differentiation was performed by IHC and immunoblots were performed using
standard protocols using antibodies listed in Supplementary Tables 1 and 2 and as described
in details in Supplementary Materials and Methods.

Survival assays and inhibitor treatments
Cell viability was measured by trypan blue exclusion assay as described in Supplementary
Materials and Methods. Drug (gefitinib (LC Labs) and SU11274 (Selleck chemicals LLC))
were added at the indicated final concentrations and incubated for 24 hours before the total
number of viable cells remaining post-treatment was determined by counting and reported as
percent of control treated.

Gene promoter reporter assays
The relative activity of the c-met promoter was assayed by transient co-transfection of
mMet-Luc and TK-renilla Luc plasmids in cells, incubated overnight followed by 24 hours
of vehicle or gefitinib. Cell lysates were harvested and assayed in a luminometer using a
dual glow luciferase kit (Promega). Promoter activity was calculated as the ratio of firefly
luciferase over renilla luciferase and is represented as Relative Light Units.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
EGFRWT cooperates with loss of tumor suppressor genes to form brain tumors. (a)
Schematic representation of the self-inactivating bicistronic lentiviral transducing vectors.
These vectors carry a cassette composed of either the human TGFα cDNA or enhanced
green fluorescent protein (eGFP) gene (for control experiments) followed by a human
poliovirus1 internal ribosomal entry site (IRES) and improved Cre recombinase (iCre)
cDNA (Shimshek et al., 2002) driven by the human elongation factor-1α (EF1α) promoter.
The message is stabilized by the presence of the bovine growth hormone poly adenylation
signal sequence. These lentiviral vectors were derived from a previously described vector
(Coleman et al., 2003). The presence of a central polypurine tract (cPPT)-DNA FLAP
element upstream of the multiple cloning site significantly improves the transduction
efficiency in CNS tissues (Follenzi et al., 2000; Zennou et al., 2001). LTR; long terminal
repeat. (b) Photomicrograph of an H&E-stained coronal section of a representative TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox brain tumor. Scale bar; 1.0 mm. (c) Survival (Kaplan-Meier)
analysis of conditional EGFRWT mice. Cohorts of mice of the indicated genotypes were
stereotactically injected in the striatum with titer-matched pTyf-TGFα-IRES-iCre or pTyf-
eGFP-IRES-iCre viruses and monitored for survival over time.
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Figure 2.
Representative photomicrographs of H&E-stained histological sections of TGFα-EGFRWT

tumors. (a) (i) Tumor cells are set on a fibrillary background and contain densely packed
cells featuring pleomorphic nuclei with prominent nucleoli. (ii) Tumors exhibit marked
pseudo pallisading necrosis. (iii-iv) The highly infiltrative nature of TGFα-EGFRWT tumor
cells is depicted. (iii) Tumor cells migrate and infiltrate parenchyma along white matter
tracks (corpus callosum CC) and (iv) migrate along blood vessels (BV) and invade the
perivascular space. Scale bars; 50 µm (i,iv), 125 µm (ii, iii). (b) TGFα-EGFRWT tumors
express markers of astrocytic differentiation. Representative photomicrographs of TGFα-
EGFRWT tumors stained for the indicated cell lineage markers using immunohistochemistry.
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Tumors stain positive for the astrocytic lineage markers glial fibrillary acidic protein
(GFAP) and S100 and negative for the neuronal lineage marker NeuN. Tumors also stain
positive for human EGFR, the proliferation marker Ki67 and for Olig2. EGFR, GFAP and
S100 sections were counterstained with hematoxylin and sections for the nuclear NeuN,
Olig2 and Ki67 markers were counterstained with eosin. N, normal brain; T, tumor. Scale
bars 50 µm.
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Figure 3.
Cytostaticity of EGFR kinase inhibition in TGFα-EGFRWT GBM tumor cells. (a) TGFα-
EGFRWT;InkΔ2/3−/− tumor cells are sensitive to gefitinib treatment whereas TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox cells are resistant. Viability assays of three independent
tumor cell cultures from the indicated genotypes after vehicle or gefitinib treatment (10 µM)
for 24 hours. Data is plotted as percentage of viable cells of treated over vehicle treatment
(mean ± SD; n=3 in each group). (b) Representative flow-cytometric analysis of vehicle-
and gefitinib-treated TGFα-EGFRWT;InkΔ2/3−/− and TGFα-EGFRWT;InkΔ2/3−/−;PTENlox

GBM tumor cells indicating an increase in cleaved caspase-3 positive cells upon EGFR
kinase inhibitor treatment. (c) Primary tumor cultures from TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox GBMs were incubated overnight in low serum (0.1% FBS)
media then challenged with 10 µM of gefitinib for 24 hours. BrdU incorporation and 7-AAD
levels were measured by flow cytometry to determine cell cycle profiles for treated and
untreated cultures. Representative plots for BrdU incorporation vs. 7-AAD levels for
determination of cell cycle profiles in vehicle and gefitinib-treated cells are shown. (d)
Graphical representation of the distribution (percentage) of cells in G2+M, S, or G1/G0 for
TGFα-EGFRWT;InkΔ2/3−/−;PTENlox GBM cultures T4, T5, and T6. The small percentage
of cells in sub-G1 is not included in this graph. (mean ± SD; n=3 in each group).
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Figure 4.
Inhibition of EGFR prolongs survival in mice. (a) Treatment of TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox mice with the EGFR TKI erlotinib inhibits EGFR activity.
Mice were treated with erlotinib formulated in Ora-Plus (Paddock Lab) and administered by
oral gavage daily Monday to Friday at 150mg/kg dose and sacrificed at the indicated times
and processed for histology. IHC of representative GBM tumors for total human EGFR
expression, activated EGFR (pTyr1173), the proliferation marker Ki-67 and for apoptosis by
TUNEL are shown. (b) Graphical representation of the quantification of proliferation
assayed by Ki-67 staining and for the percentage of apoptotic cells as measured by the
number of TUNEL positive cells. The Ki-67 staining data is presented as percentage of
Ki-67 positive cells in treated tumors over control tumors (*p<0.001, two-tailed t-test) and
quantification of apoptosis is presented as percentage of TUNEL positive cells per field of
view. (c) Bioluminescence imaging monitoring of treatment course.
EGFRWT;InkΔ2/3−/−;PTEN2lox mice were injected with pTyf-TGFα-IRES-iCre lentivirus
and 14 days later were imaged for presence of tumor. Once tumors were detected, animals
were imaged once a week. Initiation of treatment with erlotinib commenced once BLI values
surpassed 1.0 × 107 photons/sec/cm2/sr. Animals were treated with erlotinib on a schedule
of five days on 2 days off and monitored for response using BLI (d) Animals remained on
this treatment until moribund to establish overall survival. Kaplan-Meier survival curves of
control (red, n=6) and erlotinib-treated (blue, n=14) tumor bearing animals. The difference
in survival is significant, p<0.0001, Log-rank (Mantel-Cox) test.
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Figure 5.
PTEN re-expression in GBM tumor cells does not confer sensitivity to EGFR kinase
inhibition. (a) Schematic representation of the pSLIK-PTEN lentiviral vector for Tet-
inducible expression of PTEN. The original pSLIK vector (Shin et al., 2006; Zhu et al.,
2007) was modified to confer blasticidine resistance as described in Supplementary
Information. (b) Immunoblot analysis of total cell lysates from PTEN deficient GBM tumor
cell cultures (T4 & T5) re-expressing PTEN probed for cleaved PARP. Control cultured
cells sensitive to gefitinib-induced apoptosis are derived from a TGFα-EGFRWT;InkΔ2/3−/−

tumor. (c) Graphical representation of flow cytometry analysis of cleaved caspase-3 in
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PTEN deficient and isogenic PTEN re-expressing GBM tumor cell cultures (T4 & T5)
(mean ± SD; n=3 in each group).
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Figure 6.
Gefitinib treatment increases expression and activation of c-Met in PTEN deficient GBM
tumor cells. (a) Representative qRT-PCR from total RNA isolated from a TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor culture (T5) treated with gefitinib (10 µM) for the
indicated time. (b) Immunoblot of total cell lysates isolated from cells as in (a) and probed
using antibodies against the indicated proteins. (c) Graphical representation of luciferase
reporter assay results. A 3.5 kb fragment of the mouse c-Met promoter was used to drive the
expression of firefly luciferase. Control plasmid (pGL4.10[luc2]) was used as a negative
control. Firefly luciferase plasmids were co-transfected with TK-renilla luciferase internal
transfection efficiency control plasmid. Cells were treated with gefitinib (10 µM) for 24
hours and luciferase outputs measured using a luminometer. Relative Light Units represent
the ratio of firefly/renilla luc (mean ± SD; n=3 in each group). (d) Representative H&E and
IHC against MET on tumor brain sections from treatment of TGFα-
EGFRWT;InkΔ2/3−/−;PTENlox tumor-bearing mice with EGFR TKI (erlotinib, 150 mg/kg).
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Figure 7.
Inhibition of c-MET sensitizes PTEN deficient tumor cells to EGFR TKI-induced apoptosis.
PTEN deficient TGFα-EGFRWT;InkΔ2/3−/−;PTENlox GBM tumor cells were treated with
gefitinib (10 µM) and/or the c-MET kinase inhibitor SU11274 (10 µM). (a) Immunoblot
analysis of total cell lysates from TGFα-EGFRWT;InkΔ2/3−/−;PTENlox GBM tumor cells
treated with the indicated inhibitors using c-MET and c-MET phosphotyrosine 1234,1235
antibodies. Anti β-tubulin probing is used as an internal loading control. (b) Activation of
Akt is attenuated by inhibition of c-MET. Immunoblot analysis of total cell lysates against
phospho Akt (Thr308) in TGFα-EGFRWT;InkΔ2/3−/−;PTENlox GBM tumor cells. Anti
dynamin probing is used as an internal loading control. (c,d) Inhibition of c-MET induces
apoptosis. Co-treatment of TGFα-EGFRWT;InkΔ2/3−/−;PTENlox GBM tumor cells with
gefitinib and SU11274 causes a marked reduction in the relative viability of these cells (c).
This reduced viability corresponds to an increase in the rate of drug-induced apoptosis (d) as
demonstrated by immunoblot analysis of cleaved caspase 3 and cleaved PARP.
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