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Abstract

Background: Fine particle (PM2.5) pollution related to combustion sources has been linked to a variety of adverse
health outcomes. Although poorly understood, it is possible that organic carbon (OC) species, particularly those from
combustion-related sources, may be partially responsible for the observed toxicity of PM2.5. The toxicity of the OC
species may be related to their chemical structures; however, few studies have examined the association of OC
species with health impacts.

Methods: We categorized 58 primary organic compounds by their chemical properties into 5 groups: n-alkanes,
hopanes, cyclohexanes, PAHs and isoalkanes. We examined their impacts on the rate of daily emergency hospital
admissions among Medicare recipients in Atlanta, GA and Birmingham, AL (2006–2009), and Dallas, TX (2006–2007).
We analyzed data in two stages; we applied a case-crossover analysis to simultaneously estimate effects of individual
OC species on cause-specific hospital admissions. In the second stage we estimated the OC chemical group-specific
effects, using a multivariate weighted regression.

Results: Exposures to cyclohexanes of six days and longer were significantly and consistently associated with
increased rate of hospital admissions for CVD (3.40%, 95%CI = (0.64, 6.24%) for 7-d exposure). Similar increases were
found for hospitalizations for ischemic heart disease and myocardial infarction. For respiratory related hospital
admissions, associations with OC groups were less consistent, although exposure to iso-/anteiso-alkanes was
associated with increased respiratory-related hospitalizations.

Conclusions: Results suggest that week-long exposures to traffic-related, primary organic species are associated with
increased rate of total and cause-specific CVD emergency hospital admissions. Associations were significant for
cyclohexanes, but not hopanes, suggesting that chemical properties likely play an important role in primary OC toxicity.

Keywords: Emergency hospital admissions, Fine particles, Medicare, Primary organic particles

Background
Organic carbon (OC) particles are directly emitted in
the atmosphere (primary OC) or formed as a result of
photooxidation processes (secondary OC). Both primary
and secondary OC are mainly sub-micrometer particles,
with a bimodal mass distribution peaking at 0.2 μm and
1 μm [1].

*Correspondence: marianthi.anna@mail.harvard.edu
1Department of Environmental Health, Harvard School of Public Health,
Boston, MA, USA
Full list of author information is available at the end of the article

In polluted areas, total OC contributes 10-40% to PM2.5
mass [1]. In a study in Los Angeles, total OC contributed
25-45% to PM2.5 and 55-75% to ultrafine particle (UFP)
mass, across seasons and sites [2]. In general, combustion
sources play a major role in the primary OC emissions
[3-6], with motor vehicles the main source of many OC
compounds, such as hopanes, steranes and cyclohexanes
[3,7,8]. For instance, motor vehicle OC comprised approx-
imately 14% of total OC and 5% of PM2.5 in Toronto
and Vancouver, Canada [9]. Biogenic contributions are
also important for the ambient concentrations of specific
alkane and PAH species [10,11].

© 2013 Kioumourtzoglou et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Epidemiologic studies have shown that OC modifies
previously reported associations between PM2.5 and spe-
cific health outcomes [12], suggesting a role for OC in
PM2.5-related toxicity. Furthermore, given recently pub-
lished associations between combustion sources-related
PM2.5 and adverse health impacts [13-15], primary OC
compounds and their chemical groups specifically, such
as hopanes and traffic-related PAHs, have become the
focus of health studies [16,17]. This focus is enhanced
by findings from toxicological studies showing impacts of
diesel exhaust and UFP on oxidative stress to be medi-
ated by adsorbed organic chemicals rather than the par-
ticles themselves [18]. Although these findings suggest
that traffic-related organic species play a significant role
in the observed PM2.5-related toxicity, further research is
needed to understand whether and through which species
OC may impact human health.

To address this issue, we accessed OC monitoring data
from the Aerosol Research and Inhalation Epidemiol-
ogy Study (ARIES) and Texas ARIES ambient monitoring
sites, located in Atlanta, GA, Birmingham, AL, and Dallas,
TX. At these sites, a large number (∼120) of individual OC
species were measured over multiple years. We grouped
the individual OC species by their chemical structures,
as these govern their chemical properties [1], to reduce
the number of exposure-health comparisons and iden-
tify potentially biological relevant chemical properties.
We then examined the association between primary OC
species as grouped by their chemical structures and cause-
specific emergency hospital admissions among Medicare
enrollees.

Methods
Our study was conducted under a protocol approved by
the Harvard School of Public Health Human Subjects
Committee. Study data did not include individual identi-
fiers and thus consent was not obtained from individuals.

Data collection
Cause-specific hospital admissions data
Data on daily emergency hospital admissions were
obtained from billing claims of Medicare enrollees for
Atlanta, GA (2006–2009) and Birmingham, AL (2006–
2009) and for Dallas, TX (2006–2007). Data for hospitals
within Clayton, Cobb, De Kalb, Fulton and Gwinnett
counties in Atlanta, Jefferson and Shelby counties in
Birmingham and Dallas county in Dallas were included
in the analyses. Only admissions that occurred through
the emergency department were included, as scheduled
admissions are likely not related to short-term air pollu-
tion exposures.

Each billing claim contains information on the date of
hospitalization, age, residence county and primary diag-
noses. Using codes from the International Classification

of Diseases, 9 Revision (ICD-9; Center for Disease Control
and Prevention 2008), we considered hospital admissions
for all CVD conditions (codes 390–429), for all respira-
tory outcomes (codes 460–519), and for specific CVD
or respiratory conditions: congestive heart failure (CHF;
code 428), myocardial infarction (MI; code 410), ischemic
heart disease (IHD; codes 410–414), chronic obstruc-
tive pulmonary disease (COPD; codes 490–492, 494–496)
and pneumonia (codes 480–487). Outcomes were selected
based on findings from previous air pollution health
studies [12,19,20].

Air pollution and meteorologic data
In each city, we obtained daily data for ∼120 non-
polar compounds by thermal desorption GC/MS, OC
by IMPROVE protocol thermal optical reflectance and
PM2.5 (measured using 24-hr integrated Federal Refer-
ence Methods) measured as part of the ARIES and Texas
ARIES studies. The analytical methods are well-accepted
and have been previously published [21-23]. Data on tem-
perature and dew point were obtained from Atlanta and
Birmingham monitoring sites and the Dallas Fort Worth
International Airport.

Data analysis
All statistical analyses were conducted using the R Sta-
tistical Software, version 2.14.1 (Foundation for Statistical
Computing, Vienna, Austria).

Univariate analyses
We characterized OC particle concentrations using time-
series plots, histograms and summary statistics. We fur-
ther assessed seasonal differences in concentrations, with
October–March as the cold period and April–September
as the warm period.

OC species were included in further analyses if ≥50%
of their observations were above their limit of detection
(LOD), ≥75% of the observations were non-missing, and
their IQR/median ratio was above 0.30, in all cities. The
IQR/median ratio was used instead of the coefficient of
variation, given its lower vulnerability to extreme obser-
vations. Pollutants with IQR/median ratios ≤0.30 were
excluded, as they were not sufficiently variable to allow
effect estimation with sufficient power [24].

Characterization of primary organic compounds
Primary OC compounds were classified by their chemical
structures, as these govern their properties, reactivity and
behavior [1]. We categorized OC into six chemical groups:
PAHs, n-alkanes, hopanes, steranes, iso-/anteiso-alkanes
and cyclohexanes (Additional file 1: Table A-1).

Although not used in the health analyses, the seasonal
variability of the organic constituents was also examined,
to provide insight in their potential sources. N-alkanes
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and hopanes were further classified by their sources using
well-accepted methods. For alkanes, we estimated city-
specific monthly Carbon Preference Index (CPI), as the
prevalence of odd to even numbered carbon species, to
assess the relative importance of anthropogenic or bio-
genic sources. For our analyses, CPI values greater than
2 indicated plants and other biogenic sources as the
primary n-alkane source, while values near 1 were con-
sistent with anthropogenic sources [25,26]. To identify
anthropogenic sources further [3,4,6,10], we also con-
ducted exploratory factor analyses in each city, with the
number of factors determined based on (a) identified fac-
tors having ≥3 species with a correlation ≥0.30 and (b)
a solution that explained ≥90% of the species common
variance.

We classified hopane sources in each city using the
moretane ratio, with higher ratios indicating greater
maturity of the hopanes [26]. This ratio is based on the fact
that with increasing thermal maturity, unstable hopanes
with hydrogen atoms at the ββ-position are transformed
to moretanes (βα-hopanes) and further to more sta-
ble αβ-hopanes. Ratios greater than 0.9 indicated that
hopanes originated from crude oil, near 0.1 from lignite
coal smoke, and 0.4-0.6 from cleaner coals [26].

Health models
To assess the effect of primary OC compounds on hospital
admissions we used a 2-stage hierarchical regression mod-
eling approach [27], as has been used in studies of dietary
exposures and breast cancer [28]. Hierarchical approaches
have been widely used in air pollution epidemiology to
combine health effects across cities [15,29,30], and more
recently across multiple pollutants, such as associations
between chemical properties of multiple air pollutants
and hospital admissions [24].

In the first stage we fit a case-crossover analysis to the
data from all cities. In a case-crossover design, each case
acts as their own control, thus eliminating confounding by
any personal characteristics that do not change over time
[31]. The effect of the exposure on the outcome is then
assessed by comparing the distribution of exposures on
the days when the case occurred versus the days when the
subject did not have the outcome (control days). We mod-
ified the time-stratified approach that was proposed by
Lumley and Levy [32], employing an ignorable and localiz-
able design [33], choosing control days bidirectionally for
subjects within the same city, on the same year and month
of the emergency hospital admission, but leaving 3 days
between each control day instead of also matching on day
of week. By doing so we increased the number of control
days, increasing power to detect any effects and by leaving
the 3-d buffer we avoided choosing control days too close
to the exposure period, which may lead to confounding
due to serial correlation [34]. Choosing control days close

in time to the admission, furthermore, limits confounding
by seasonality and long-term trends [35].

We ran conditional logistic regressions by cause-specific
hospital admissions, including simultaneously all eligible
primary organic compounds, with their concentrations
scaled by their IQR, and adjusted linearly for same day
temperature, same day dew point, 1- to 3-day averaged
temperature, and day of week. We additionally adjusted
for PM2.5, as it has been associated with the health out-
comes and differentially correlated with the pollutants
included in the model as well as with other pollutants not
included in the model that could act as confounders [36].

In the second stage we used a multivariate weighted
regression model using the coefficient estimates from the
first stage as the dependent variables and the variance-
covariance matrix of these coefficients as weights. Let
k denote the number of primary organic compounds in
the model and g denote the number of pollutant groups,
according to their chemical structure:

β̂ = Zπ + ε,

where β̂
k×1

are the coefficient estimates from the first stage,

Z
k×g

contains the chemical structure groups (0/1 dummy

variables), π
g×1

contains the effect estimates of interest,

i.e. the coefficients representing pollutant group effects
on the outcome, with each individual coefficient repre-
senting the average log rate ratio associated with an IQR
increase in that pollutant class, ε

k×1
are independent ran-

dom variables with zero mean and pre-specified variance
τ 2, with k = 58 and g = 5. Since the second stage includes
all chemical structure groups in which the organic com-
pounds we used belong, the existence of any residual asso-
ciations seems unlikely and we therefore set the τ 2 to a
modest value, i.e. τ 2 = 2.6×10−5. Because 100 × [exp(2 ×
1.96 × τ) − 1] ≈ 2, if τ = 0.0051, our selected value for
τ 2 corresponds to expectations that 95% of the % changes
would fall within a 2-fold range.

We examined associations between cause-specific
emergency hospital admissions and weekly (7-d) expo-
sures to primary organic compounds, with exposure win-
dows chosen based on previous literature [17]. We also
examined same day exposures and moving averages of 2-,
4-, and 6-days. We call statistically significant effects those
whose 95% confidence intervals do not include 0.

We examined potential multicollinearity among the
groups using the eigenvalues of the variance-covariance
matrix of the second stage effects. Based on this exami-
nation, sterane effects were found to be highly correlated
with hopane (r = -0.69), n-alkane (r = 0.78) and cyclo-
hexane (r = -0.88) effects and were thus excluded from
further analysis.
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Sensitivity analyses
We conducted a series of sensitivity analyses to assess the
robustness of our results.

Limit of detection. We ran two-stage models for total
CVD and respiratory emergency hospital admissions,
including species with at least 75% of observations above
the limit of detection, to examine sensitivity of our results
to LOD exclusion criteria. For this analysis a total of 40
species were included, as compared to 58 in the main anal-
ysis: 14 n-alkanes, 2 PAHs, 4 iso-/anteiso-alkanes, with the
same number of cyclohexanes (2) and hopanes (18) as in
the main analysis.

Effect estimate stability. We assessed the stability of the
effect estimates (as % change in group effects and width
of confidence intervals) by excluding individual chemical
groups from the analysis one-by-one and assessing change
in the results.

We also assessed the sensitivity of our results to the
inclusion of PM2.5 in the health models, by repeating
analyses omitting PM2.5.

Sensitivity of our results to the choice of the τ2 value.
We assessed the dependence of our results for total CVD
and total respiratory admissions on our pre-specified
value of τ 2, by exploring different values for τ 2. Specifi-
cally, we also examined τ 2 = 0, allowing the variability of
the second stage effects to only depend on the variance-
covariance matrix of the first stage coefficients, and also
τ 2 = 0.0001, corresponding to expectations that 95% of
the % changes would fall within a 4-fold range.

Temperature effects. Given observed associations
between extreme temperatures and adverse health
[37,38], we examined whether our findings were affected
by extreme temperatures. We did so by excluding the 99th

and 1st percentiles of daily temperatures from our health
models.

Results
City-specific summary statistics for the primary organic
compounds used in our analyses are presented in Addi-
tional file 1: Tables A-2, A-3 and A-4. Primary organic
compounds in our analyses accounted for 14.5%, 17.6%,
and 10.8% of the total measured OC (both primary and
secondary) mass concentration in Atlanta, Birmingham,
and Dallas, respectively. City-specific summary statistics
for total CVD and respiratory, and cause-specific, hospi-
talizations are presented in Additional file 1: Table A-5.

Characterization of primary organic particle concentrations
n-Alkanes
Of the primary organic compounds, n-alkanes gener-
ally had the highest concentrations in all three cities.

In Atlanta and Dallas, concentrations of n-alkanes were
higher during the colder period (October–March) as com-
pared to warmer months. Similar seasonal patterns were
found in Birmingham for all primary organic compounds
except those with 24-29 carbons (i.e. C24–C29), for which
no seasonal variation was found. For all n-alkanes, the
highest and most variable concentrations were observed
in Birmingham, while the lowest and least variable were
found in Dallas.

In all three cities, the CPI ranged approximately bet-
ween 1.5 to 2.6 (Figure 1), indicating mixed anthropogenic
and biogenic sources of n-alkanes. CPI values varied sea-
sonally, with peaks in May and June, suggesting increased
plant contributions during these months. Correspond-
ingly, we found three sources of n-alkanes using factor
analyses, consistent with vehicular emissions, tire debris
and plant contributions (Additional file 1: Table A-6).

Iso-/anteiso-alkanes
Concentrations of iso- (2-methyl) and anteiso- (3-methyl)
alkanes, which are considered as environmental tobacco
smoke (ETS) markers in urban air [39], were highest dur-
ing colder months in all three cities. Concentrations were
highest in Atlanta and lowest in Dallas.

Cyclohexanes
Concentrations of cyclohexanes were generally low, with
only two cyclohexanes, heptadecylcyclohexane and non-
adecylcyclohexane, having more than 50% of their obser-
vations above their LODs in each city. Both cyclohex-
anes, which are emitted from gasoline-powered motor
vehicles [8] and diesel fuel [7], had higher cold-period
concentrations in all cities. Concentrations of heptadecyl-
cyclohexane were similar across all cities, while of nonade-
cylcyclohexane were highest in Birmingham and lowest in
Dallas.

Hopanes
Hopane concentrations were also higher in each city dur-
ing the colder months. The highest concentrations of
hopanes were observed in Birmingham and the lowest in
Dallas. Monthly moretane ratios in all three cities were
greater than 0.85 in Atlanta and Birmingham and than
0.90 in Dallas (Figure 1). Ratios near one, together with
the higher cold-period concentrations, are consistent with
motor vehicles being the primary hopane source.

PAHs
14 PAHs had more than 50% of their observations above
their corresponding LOD in the three cities. Cold-period
concentrations of these PAHs were higher than those dur-
ing warmer months. All PAH concentrations were highest
and more variable in Birmingham and lowest in Dallas,
except from retene concentrations that were similar in
both Birmingham and Atlanta and lower in Dallas.
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Figure 1 Monthly CPI and moretane ratios for (a) Atlanta, (b) Birmingham and (c) Dallas.

Relationship of primary OC compounds with emergency
hospital admissions
Emergency hospital admissions for total CVD
The associations between CVD admissions and PM2.5,
total OC (both primary and secondary) and EC are shown
in Additional file 1: Table A-7.

Figure 2 shows associations between chemical property
groups and total CVD-related emergency hospital admis-
sions. Overall, significant associations were observed for
longer moving averages and more specifically for the 6-,
and 7-d moving averaged exposures (Additional file 1:
Table A-8).

Cyclohexanes were overall positively associated with
CVD admissions, with increasing effects observed with
increasing exposure durations. An IQR increase in the
7-d exposure to cyclohexanes was associated with a 3.40%
(0.64, 6.24%) increase in the rate of CVD admissions.
Increased rate of CVD admissions were also signifi-
cantly associated with 6-d (2.90% (0.37, 5.49%)) moving

averaged exposures. There was no evidence of an asso-
ciation between n-alkanes, iso-/anteiso-alkanes, hopanes
and PAH and CVD-related hospital admissions; we saw
null associations between all other groups and rate of
hospitalizations for all exposure windows.

Emergency hospital admissions for total respiratory
outcomes
The associations between respiratory admissions and
PM2.5, total OC and EC are shown in Additional file 1:
Table A-7.

The associations between exposures to primary OC par-
ticle groups and rate of respiratory-related emergency
hospital admissions are presented in Figure 3 for all expo-
sure windows. As with cardiovascular associations, we
saw increasing effect estimates at longer moving aver-
aged exposures (Additional file 1: Table A-8). We observed
increased rate of respiratory hospitalizations after 4-d
exposures to iso-/anteiso-alkanes (0.70% (0.12, 1.29%)),
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Figure 2 Percent change in total CVD hospital admissions per
IQR increase in pollutant group for all exposure windows – same
day exposures and 2-, 4-, 6-, and 7-d moving averages (M.A.).

with similar increases for 6- and 7-d exposures (0.67%
(0.02, 1.32%) for weekly exposures). Overall, there was
consistent evidence that the iso-/anteiso-alkanes are pos-
itively associated with respiratory hospital admissions for
all exposure windows, with increasing effects for longer
exposures. Negative, albeit not significant, associations
were found for hopanes, with higher effects observed for
7-d (-0.35% (-0.73, 0.03%)) exposures.

Cause-specific admissions
The associations between primary organic compounds
and hospitalizations for the specific cardiovascular-
related causes IHD, MI, and CHF are shown in Figure 4
and in Additional file 1: Figure A-1 and Additional file 1:
Table A-8.

Results for IHD and MI were similar to those for total
CVD. For both outcomes, we saw positive associations
between increased rate of hospital admissions and weekly
exposures to cyclohexanes; 6-d exposures were associated
with a 3.65% (-0.36, 7.83%) rate of IHD hospital admis-
sions and 3.21% (-2.10, 8.81%) rate for MI admissions.
In addition, we observed a negative, albeit insignificant,
association between rate of IHD and MI hospitaliza-
tions and exposures to iso-/anteiso-alkanes. For CHF,
we found associations between same day cyclohexane
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Figure 3 Percent change in total respiratory hospital admissions
per IQR increase in pollutant group for all exposure windows –
same day exposures and 2-, 4-, 6-, and 7-d moving averages
(M.A.).

exposures and increased rate of hospitalizations (1.58%
(-0.60, 3.80%)). Similar increases were also observed for
6- and 7-d exposures. Association with CHF admissions
were not detected for other chemical groups, other than
a negative association with weekly hopane exposures
(-0.45% (-0.95, 0.06%)).

The results for weekly exposures and cause specific res-
piratory admissions are presented in Figure 4, Additional
file 1: Table A-8, and Additional file 1: Figure A-2.

We saw consistent associations between cyclohexane
exposures and COPD admissions, which increased with
longer exposure windows (4.73% (-1.13, 10.94%) for 7-d
exposures). In contrast, we observed consistently neg-
ative, mostly insignificant, associations between rate of
pneumonia and exposure to cyclohexanes, with stronger
effects for 4-d moving averages (-3.65% (-7.04, -0.13%)).

Similarly to total respiratory admissions, we observed
increased rate of pneumonia hospitalizations and
increased exposures to iso-/anteiso-alkanes for all expo-
sure windows (1.07% (0.22, 1.93%) for 6-d and 1.20%
(0.30, 2.11%) for 7-d exposures). Moreover, we found an
increased rate of pneumonia admissions after 4-d expo-
sure to n-alkanes (0.38% (-0.15, 0.92%)). We did not detect
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Figure 4 Percent change in cause specific hospital admissions
per IQR increase in pollutant group for weekly exposures.

any association between either hopanes or PAHs and rate
for cause-specific respiratory-related hospital admissions.

Sensitivity analyses
Limit of detection
Analyses including species with at least 75% of the obser-
vations above the LOD showed similar results for CVD
admissions to those from the main analyses, except for
those for PAHs, for which associations were now negative,
although not significant (Additional file 1: Figure A-3).
Furthermore, confidence intervals for PAH were substan-
tially wider, reflecting the inclusion of only two species
instead of 14.

For total respiratory admissions, the effects of cyclo-
hexanes and hopanes were similar as in the main analy-
sis. The associations with PAHs were now negative and
with n-alkanes positive, albeit still not significant. Finally,
we observed positive, but insignificant, associations with
iso-/anteiso-alkanes, for all exposure windows (Additional
file 1: Figure A-3), in contrast to the significant positive
results in the main analysis.

Effect estimate stability
When steranes were included in the analysis, effect esti-
mates were similar, but with wider confidence intervals
due to collinearity. When chemical groups were excluded

from our analyses either individually or in groups, our
results were stable, indicating that no multicollinearity
among the chemical groups was present after exclusion
of steranes. The effect estimates and their variability also
did not change when we omitted PM2.5 from the health
models.

Sensitivity of our results to the choice of the τ2 value
Overall, we saw no differences in the second stage effect
estimates for different τ 2 values. As, expected, with
increasing values for τ 2 we observed wider confidence
intervals. For total CVD admissions the increase of the
widths of the confidence intervals was small and the effect
estimates remained stable (Additional file 1: Figure A-4).
In contrast, the increase of the widths of the confidence
intervals was larger for total respiratory hospital admis-
sions, but also the effect estimates did not appear as stable
(Additional file 1: Figure A-5).

Temperature effects
Our results did not change when we excluded the 1st and
99th percentiles of daily temperatures from our analyses
(results not shown).

Discussion
We conducted a large, multi-year, multi-city, exploratory
study to investigate exposures to primary OC compounds
and the association between their chemical classes and
emergency hospital admissions among an elderly popula-
tion. Using a hierarchical two-stage modeling approach,
we found consistent associations between grouped pri-
mary OC compounds and cause-specific hospital admis-
sions. Our most consistent associations were found
between cyclohexane and iso-/anteiso-alkane exposures
and CVD- and respiratory-related admissions, respec-
tively. Since the primary sources of cyclohexanes are
motor vehicles, our results provide support for the grow-
ing literature showing motor vehicle-associated adverse
CVD effects [14,40], as main sources of cyclohexanes are
motor vehicles. At the same time, however, we saw either
null or negative associations for hopanes, also markers of
motor vehicle pollution, suggesting that the OC chemi-
cal structure might be important to toxicity. Moreover,
our findings of positive associations between total respira-
tory and pneumonia admissions and iso-alkanes, a group
that has not otherwise been examined in epidemiologic
studies, are consistent with previous studies that found
community-acquired pneumonia to be associated with
inhalation of tobacco smoke [41]. Given the lack of stud-
ies examining the relation of these OC classes and health,
our findings should be viewed as preliminary and should
be validated in additional studies.

Despite this, our findings of adverse cyclohexane
impacts are supported by toxicologic studies, which have
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linked traffic-related particles with numerous adverse out-
comes. There is evidence that the redox chemistry of
organic particles plays an important role in the biolog-
ical effects of ambient PM2.5 [42]. Nel et al. [43], for
instance, found organic compounds from diesel exhaust
to induce reactive oxygen species (ROS) in macrophages
and bronchial epithelial cells, as well as apoptosis and
necrosis in the epithelial cells in the bronchial region.
Furthermore, Li et al. [16] showed that expression of
heme oxygenase-1, a marker for oxidative stress, is directly
correlated with high organic carbon content of UFPs.
Although there have been no studies examining the toxi-
cological effects of cyclohexanes, it is possible that cyclo-
hexanes may lead to adverse health effects through similar
biological processes, since they, like PAHs, can also be
transformed by photochemical reactions into more polar
products [44,45]. If so, it is possible that cyclohexanes are
acting as surrogates of atmospheric processed, oxidized
compounds.

Few studies have examined health impacts from specific
organic carbon chemical classes, with these studies focus-
ing on PAHs and hopanes. In a Los Angeles cohort of 60
elderly subjects with coronary artery disease, Delfino et al.
[17] found significant associations between intermediate
markers of inflammation and weekly exposures to PAHs
and hopanes. Kraus et al. [46] reported significant associ-
ations between exposures to hopanes and PAH and short-
ness of breath and between PAH and increased C-reactive
protein in a cohort of MI survivors in Germany. These
findings differ from those in our study, as we found null
associations between PAHs and hopanes and increased
hospital admissions. The contrasting findings likely result
from several key differences in our studies. The earlier
studies used different study designs and focused on dif-
ferent health outcomes and examined potentially more
susceptible populations, for which primary OC-mediated
health risks may differ. In addition, the earlier studies mea-
sured a larger number of traffic-related PAHs, e.g. 24 [17],
which may provide more power to detect associations.

Support for our findings is provided by the consistent
trends found across exposure windows, with larger asso-
ciations for both cyclohexanes and iso-/anteiso-alkanes
found at exposure windows of 6-days and longer. These
longer exposure windows may reflect biological processes,
such as inflammation, which have been shown to occur
over week-long time periods [47]. Alternately or in addi-
tion, significance at longer exposure windows may reflect
increased classical error associated with shorter averaging
times [48]. The wider CIs at longer moving averages could
also reflect loss of power; as the averaging period increases
the variability in pollutant concentrations decreases.

The robustness of our findings is further supported by
consistent findings from our sensitivity analyses. When
we restricted our inclusion criteria to species with ≥75%

observations above the LOD, results for cyclohexanes
and hopanes were similar, while results for PAHs and n-
alkanes became negative and positive, respectively, and
associations between iso-alkanes and total respiratory
admissions became insignificant. The exclusion of species
with lower concentrations could result in either decreased
noise, as in the case of the PAHs and n-alkanes, or
decreased power, as in the case of the iso-alkanes, depend-
ing on how conservative the LOD is and the fraction of
observations below the LOD. It is also likely, nonetheless,
that the exclusion of several species will make the results
non-interpretable as a group. For example, in the sensitiv-
ity analysis, we only included one softwood and biomass
combustion marker (retene) and a general combustion
marker (fluoranthene) in the PAH group. It is likely that
these two components are not representative of the PAH
group, since more condensed PAHs with a wider range of
molecular weights and sources were excluded.

Our sensitivity analysis on the choice of the τ 2 provides
further insight in our results. For total CVD admissions,
our results were stable and did not vary with τ 2. In con-
trast, our results for total respiratory hospitalizations were
less stable, as evidenced by the second stage effect esti-
mates and their confidence interval widths that differed
widely across different values of τ 2.

Our study has several limitations. First, ambient mea-
surements were made at a single monitoring site in
each city. All pollutants measured are emitted from local
sources and thus expected to be spatially heterogeneous.
The resulting exposure error, nonetheless, is likely to bias
our results toward the null [49]. There might still remain
some residual confounding by time-varying variables; this
is unlikely, however, given our use of a case-crossover
design [33,34]. Furthermore, many species did not meet
our inclusion criteria and thus were not included in the
analyses. Additionally, we only included particulate OC
species. As a result, chemical groups were incompletely
represented, as the chemical groups also include species in
the gaseous phase. It is likely, however, that gases and par-
ticles exert different toxicities. Also, to increase power, we
selected our controls leaving 3 days between control days,
resulting in overlapping exposure periods between the
cases and controls for the longer moving averages exam-
ined, and thus potential bias toward the null [33]. Our
results are limited by the number of compounds measured
and included in the analysis and should be, therefore,
interpreted in light of these limitations.

To our knowledge, this has been the first study to exam-
ine association between primary organic compounds and
hospital admissions. Overall, our results suggest that pri-
mary OC compounds, such as cyclohexanes, alkanes and
iso-/anteiso-alkanes, may play an important role in PM2.5
toxicity and lend some support for previous findings of
associations between hospitalizations and mobile sources.
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Furthermore, our findings add to the current research,
provide insight for pollutant groups that have not previ-
ously been studied and guidance for the design of future
epidemiologic and toxicologic studies.

Conclusions
Our findings suggest that mobile source effects on CVD
hospitalizations could be linked to cyclohexanes, a pollu-
tant group that has not been studied before in any epi-
demiological or toxicological setting. We saw consistent
associations between exposure to particulate cyclohex-
anes and increased rate of total and cause-specific CVD
emergency hospital admissions. This approach should be
replicated in more cities and using more compounds in
each group to assess the robustness of our findings.

Additional file

Additional file 1: Appendix.
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