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Abstract

Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the

evolutionofherbivory.Weexamined theevolutionofherbivory in thefly,Scaptomyzaflava,whose larvaeare leafminersonspeciesof

Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically

nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated

phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in

Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major

class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of

glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg–adult development time

relative toflies reared inglucosinolateknockout (GKO)plants.Ananalysisofgeneexpressiondifferences in5-day-old larvae rearedon

WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava.

Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary

toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared

withunregulated transcripts. Theremainingdifferentially regulated transcriptsalsocontainedahigherproportionofnovelgenes than

the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes

and the co-option of conserved stress-related genes.

Key words: Arabidopsis, Drosophila, glucosinolates, herbivory, host specialization, transcriptome.

Introduction

Phytophagous insects are among the most evolutionarily suc-

cessful radiations. Herbivorous taxa comprise almost 50% of

living insect species and 25% of living metazoan species

(Ehrlich and Raven 1964; Bernays 1998) and are more diverse

than their aphytophagous sister lineages (Mitter and Farrell
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1988; Farrell 1998). Adapting to a herbivorous lifestyle is

thought to have been a difficult transition for most insects,

however, due to morphological and physiological challenges

of consuming living plant tissues that are typically well de-

fended against insects (Frankel 1959; Ehrlich and Raven

1964; Southwood 1973). Some antiherbivore defenses, in-

cluding insecticidal compounds produced by plants, are dra-

matically induced within hours of herbivore attack and are

tailored toward specific guilds of insect enemies (Kunitz

1945; Bostock 2005; Textor and Gershenzon 2009). In addi-

tion, these compounds are often effective against other nat-

ural enemies, such as microbes (Fan et al. 2011), and

vertebrates (Magnanou et al. 2009).

The genomic changes that accompany a shift from an

aphytophagous to phytophagous lifestyle are not well under-

stood. The transition to herbivory has evolved independently

many times in the insects and frequently involved adaptation

to a more specialized host plant range. Indeed, most herbiv-

orous species are specialized in host range and are only able to

complete development on a limited number of species. Many

evolutionary changes are likely to be required for a successful

transition to herbivory, including the ability to find suitable

host plants, utilize potentially nutritionally imbalanced plant

tissues, and cope with host plant defenses (Bernays and

Chapman 1994; Govind et al. 2010).

To study the transition to herbivory from an evolutionary

perspective, we have focused on a recently derived herbivo-

rous species that is closely related to a model genetic species.

Our long-term goal is to understand how the evolution of

novel genes and/or the recruitment of existing metabolic or

signaling pathways have enabled herbivores to adapt to a

fundamentally new niche. Most phytophagous insects are lep-

idopterans or coleopterans. Because the evolution of herbivory

in these lineages is estimated to have occurred in the

Cretaceous, 145–65 million years ago (Whalley 1977;

Moran 1989; Labandeira et al. 1994; Bernays 1998; Farrell

1998), using comparative genomics to dissect the genetic

bases of these transitions would be difficult. However, herbiv-

ory has also evolved many times in dipterans (Labandeira

2003), and the family Drosophilidae includes 12 species with

published genome sequences and at least two genera

(Scaptomyza and Scaptodrosophila) with phytophagous

members (Hackman 1959; Bock and Parsons 1975; Clark

et al. 2007). These provide the opportunity to analyze more

recent transitions to herbivory.

The Scaptomyza lineage is nested in the paraphyletic sub-

genus Drosophila (O0Grady and Desalle 2008). Most of the

described drosophilid species (ca., 2,000) are saprophagous,

feeding externally on microbes growing on decaying vegeta-

tion (e.g., Drosophila melanogaster), ripe fruits (e.g., D. sechel-

lia), or fruiting bodies of fungi (e.g., D. recens). Although

decaying vegetation and fungi can be toxin-rich and likely

present a barrier to colonization (Jaenike et al. 1983; Frank

and Fogleman 1992; Jones 2001, 2005; Markow and O’Grady

2005; Dworkin and Jones 2009), it seems unlikely that host

plants or fungi would mount a defense response against these

insects. However, drosophilids in the genus Scaptomyza

(fig. 1) have evolved the ability to feed on living angiosperm

leaves, which activate inducible defenses in response to feed-

ing damage (Hackman 1959; Whiteman et al. 2011). It is likely

that a variety of preformed and inducible defense compounds

were novel traits encountered by Scaptomyza and other her-

bivorous Drosophilidae in their transition from a saprophagous

to a phytophagous lifestyle.

The ancestral host plants of the earliest Scaptomyza herbi-

vores are unknown, but many herbivorous Scaptomyza spe-

cies are monophagous or oligophagous on plants in the order

Brassicales (Hackman 1959). The larvae of S. flava feed on

Arabidopsis thaliana (hereafter referred to as Arabidopsis)

and other species of Brassicales in the wild (Chittenden

1902; Whiteman et al. 2011) and require living plants to com-

plete their life cycle (Whiteman et al. 2011). Because they have

been found on many members of the Brassicales and on spe-

cies in a few other plant families (Caryophyllaceae and

Fabaceae), we consider this species to be oligophagous

(Martin 2004). We took advantage of the availability of

Arabidopsis mutants blocking the synthesis of insecticidal

compounds to test the hypothesis that major changes associ-

ated with the transition to feeding on living plants can be

detected at the genomic level in S. flava.

We focused our attention on interactions between larval

S. flava and glucosinolates, which are well characterized func-

tionally and metabolically in Arabidopsis (Halkier and

Gershenzon 2006) and which we hypothesized were a likely

barrier to colonization by ancestors of S. flava. Glucosinolates

are a major barrier to insect colonization of Brassicales, includ-

ing economically important crops such as canola (Brassica

napus), broccoli, cabbage (B. oleracea), and papaya (Carica

papaya). Glucosinolates (and related compounds called cama-

lexins [Hull et al. 2000]) are amino acid-derived thioglucosides

that are present constitutively in tissues of plants in the

Brassicaceae and are highly inducible after herbivore attack,

increasing in concentration in leaves by up to 40-fold (Halkier

and Gershenzon 2006; Textor and Gershenzon 2009). During

tissue damage, glucosinolates are hydrolyzed by endogenous

myrosinases and are transformed into toxic, electrophilic mus-

tard oils (isothiocyanates) that can damage proteins and DNA

(Halkier and Gershenzon 2006).

We used a variety of approaches, including genome-wide

transcriptional profiling by RNA-seq, to characterize the evo-

lutionary and functional impact of glucosinolates, a major

plant antiherbivore defense, on S. flava. Our results provide

a first glimpse into how the genomes of insects are shaped

by the major ecological transition to herbivory from

nonherbivorous ancestors. We found that new and conserved

stress-related genes appear to be co-opted by S. flava in its

response to host plant defenses. The powerful tools available

for the genetic model organisms Drosophila and Arabidopsis
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should facilitate functional characterization of genes identified

here as candidates, allowing us to further elucidate the mo-

lecular changes that accompany the ecological transition to

herbivory and host plant specialization.

Materials and Methods

Phylogenetic Inference and Dating

To determine the relationships and times of divergence be-

tween the 12 Drosophila species with completely sequenced

genomes and S. flava, we inferred a phylogeny using a codon-

partitioned, concatenated data set of �5,000 genes from

each of the 13 species, relying on genomic data for the 12

Drosophila species and transcriptome data for S. flava. To gain

further insight into the timing of the evolution of herbivory,

we also sequenced nine genes (seven nuclear and two mito-

chondrial) from an expanded taxonomic sample of

leaf-mining and saprophagous Scaptomyza species and

estimated phylogenetic relationships among these species

and other drosophilids. In both analyses, we used indepen-

dent evidence to calibrate nodes and estimate the timing

of the origins of herbivory, and we evaluated nodes for

statistical support (supplementary materials and methods,

Supplementary Material online).

GUS Histochemical Assay

To determine whether feeding by S. flava larvae induces tran-

scription of genes essential for glucosinolate biosynthesis,

cyp79B2-promoter-GUS fusion Arabidopsis plants (Millet

et al. 2010) were grown at 22�C and 50% relative humidity

with a 16h:8h light:dark cycle. These reporter lines yield a

qualitative measure of cyp79B2 gene expression. At 32 days

following germination, a single third instar larva reared on

Col-0 wild-type (WT) Arabidopsis plants was placed on each

of two leaves per plant and allowed to feed for 12 h. At the

same time, two leaves per mechanical control plant were

crushed using a forceps three times mimicking the amount

of area consumed by the larva at each time point. Although

this treatment is unlikely to precisely mimic active feeding by S.

flava larvae, we damaged roughly the same leaf area as a larva

would over a 12-h period. An undamaged control was left

untouched. Infiltration with GUS substrate solution and tissue

fixation followed Millet et al. (2010). Images were visualized

FIG. 1.—Chronogram of combined nucleotide sequence data set from 9 genes from the 12 Drosophila species with completely sequenced genomes

and multiple Scaptomyza species (S. flava, S. nigrita, S. pallida, and S. [Hemiscaptomyza] sp.). Initial tree was a maximum likelihood partitioned analysis of

9 genes inferred using RAxML (�ln L¼�29,522.877). See table 1 for bootstrap support values for nodes. Nodes were constrained to ages estimated from

Tamura et al. (2004). The two leaf-mining Scaptomyza species are resolved as sister taxa. Scaptomyza (Parascaptomyza) pallida and Scaptomyza

(Hemiscaptomyza) sp. do not mine leaves of plants and can be reared on Drosophila media, and larvae are associated with decaying vegetation. The

split between the most recent common ancestor of the two leaf-mining taxa, S. flava and S. nigrita (labeled in green), was estimated at 6.31(�0.63 SD)

MYBP, and we inferred this to be the most recent date for the evolution of mustard leaf mining.
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using a Leica MZ6 dissecting scope with a 0.5� lens, and

results were analyzed qualitatively.

Performance Assays on Wild-Type and Glucosinolate
Knockout Arabidopsis thaliana Lines

To determine whether glucosinolates reduce growth rates of

S. flava, we grew WT (Col-0) Arabidopsis, aliphatic glucosino-

late mutant (myb28myb29) (aliphatic glucosinolate knock out

[AGKO]), indolic glucosinolate mutant (cyp79b2cyp79b3)

(abbreviated IGKO), and an indolic and aliphatic glucosinolate

mutant (cyp79b2cyp79b3myb28myb29) (glucosinolateknock-

out [GKO]) plants to 4 weeks of age (see supplementary

materials and methods, Supplementary Material online, for

details). We allowed approximately 400 gravid female

S. flava flies to create feeding punctures (stipples) and lay

eggs in WT (N¼ 60 plants), AGKO (N¼ 60 plants), IGKO

(N¼60 plants), and GKO (N¼ 60 plants) Arabidopsis plants

for 24 h by randomly arraying five plants of each genotype in a

cage and repeating this for all 240 plants. For each plant indi-

vidual, we quantified the number of stipples created by female

flies and egg number. We compared the intercepts and slopes

of stipple number versus egg number regression lines across

the four plant genotypes using an analysis of covariance

(ANCOVA) approach. After hatching, larvae were allowed to

feed on leaves for either 3 or 5 days. We compared average

larval masses across plant genotypes for each cohort (days 3

and 5) also using an ANCOVA (using the aov function in the

statistical package R v. 2.15.0) to test for effects of crowding

on larval growth rates as there were multiple larvae per plant.

A subset of larvae harvested at 5 days post–egg hatching were

flash frozen in LN2 vapor and stored at �80�C. A subset of

these 5-day-old larvae, two pools from two host plant lines

(WT and GKO), were used for RNA-sequencing on the Illumina

GAII platform.

In a separate experiment, the same plant lines were reared

as above, and at 4 weeks, individuals of Col-0 (N¼15 plants)

and GKO (N¼15 plants) were placed with approximately 50

ovipositing S. flava females for 24 h. Each plant was then iso-

lated in a clear acrylic rearing box, placed in randomized

arrays under lights as above, and watered to keep soil mois-

ture constant, and larvae were allowed to develop freely.

Beginning on day 15 post–egg hatch, we recorded the

number of adult flies that emerged twice each day.

Development time was calculated as the average number of

days from egg hatch to adult emergence for a cohort of flies

that emerged from a single plant.

Metabolic Profiling of Arabidopsis Lines Used in
Herbivore Performance and Transcriptional Profiling
Experiments

We conducted nontargeted metabolite profiling of polar com-

pounds (sugars, hydroxy- and amino acids) by fractionation

and gas chromatography/mass spectrometry. Glucosinolates

are not detectable by this protocol and were not analyzed

using other means because the levels in GKO plants have

been previously characterized and shown to be undetectable

(Muller et al. 2010).

We used 4-week-old WT and GKO (myb28myb29cyp79b2-

cyp79b3) Arabidopsis plants as above, which were grown

under a 16 h light:8 h dark cycle (using Gro-Lux [Sylvania,

Danvers, MA, USA] bulbs) at 22�C, 50% relative humidity,

in a Conviron reach-in Adaptis growth chamber at the

University of Arizona. Five plants of each genotype were

flash frozen in LN2 and shipped on dry ice to the Proteomics

and Metabolomics Facility at Colorado State University (http://

www.pmf.colostate.edu/) for extraction and GC-MS analysis

(details given in the supplementary materials and methods,

Supplementary Material online).

454 Titanium GSFLX Transcriptome Sequencing

RNA Preparation, cDNA Synthesis, and Normalization

In 2008, we froze under LN2 vapor fresh eggs, larvae, pupae,

and adults of S. flava from a population cage of flies derived

from larvae collected from leaves of Barbarea vulgaris

(Brassicaceae) in Belmont, MA, and subsequently reared on

Arabidopsis Col-0 and Tsu-0 accessions. A subset of the adults

was septically injured with cultures of Escherichia coli, Serattia

marcescens, Pseudomonas syringae, or Staphylococcus aureus

to maximize gene expression from as many loci as possible (De

Gregorio et al. 2001; Lemaitre and Hoffmann 2007). Details of

the RNA preparation, cDNA synthesis, and normalization can

be found in the supplementary materials and methods,

Supplementary Material online.

Library Preparation (DNA Processing) for 454 GS FLX

We followed previously published protocols to prepare

the 454 GS FLX library (Toth et al. 2007). cDNAs were nebu-

lized and size selected for an average size of 400–800 bp.

454 GS FLX Titanium-specific adapters, AdapterA and

AdapterB, were ligated to the cDNA ends after end polishing.

The adapter-ligated DNAs were then mobilized to the library

preparation beads, and sst-cDNAs were captured. The

number of molecules of the sst-cDNAs was calculated using

the concentration and average fragment length for emPCR.

454 GSFLX Sequencing

We sequenced the library on a 454 GSFLX flow cell using

titanium chemistry at the University of Illinois. The raw reads

were processed as described later and combined with the

Illumina-generated data to create a grand assembly.

Illumina GAII 72 bp Transcriptome Sequencing

RNA Preparation

Larvae harvested 5 days post–egg hatch were placed in tubes

directly after harvesting from plant leaves, and masses were
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obtained for performance studies described earlier. Four larval

pools were obtained, two pools from Col-0 plants (pool 1,

N¼ 20 larvae; pool 2, N¼ 18 larvae) and two from GKO

plants (pool 3, N¼12 larvae; pool 4, N¼ 12 larvae). Larvae

were flash frozen in LN2 and then crushed in a Qiagen Tissue

Lyser (Retsch Mixer Mill) and homogenized with 500ml TRI

REAGENT per sample, generally following the RNA extraction

protocol above (for details see supplementary materials and

methods, Supplementary Material online). Genomic DNA was

removed using a gDNA Eliminator spin column (Qiagen, Inc.).

A sample of RNA from each of the four RNA pools was run on

an Agilent 2100 Bioanalyzer for (RNA Nano Chip) to deter-

mine the integrity of the RNA samples.

mRNA Isolation, cDNA Synthesis, and Library Preparation
(DNA Processing) for Illumina Sequencing

The Illumina mRNA sequencing sample prep kit was used to

prepare libraries for each of the four RNA pools, resulting in

four RNA-seq libraries that were subjected to clustering and

72 bp sequencing on an Illumina GA II instrument, following

the manufacturer’s protocol. These libraries were not

normalized.

454 and Illumina Data Assembly

Quality Control and Preprocessing of Sequencing Data

The RNA-seq data consisted of a full plate of 454 sequencing

(990,223 reads total, from normalized cDNA pools) and four

lanes of 72 bp Illumina sequencing [73,147,138 reads total,

from un-normalized cDNA pools from 5-day-old larvae raised

on either WT or the GKO (cyp79b2cyp79b3myb28myb29)

Arabidopsis plants]. Quality control and preprocessing details

can be found in the supplementary materials and methods,

Supplementary Material online.

Contig Assembly

The filtered reads were initially assembled using the software

program AbySS version 1.2.1 (Birol et al. 2009; Simpson et al.

2009) as is described in detail in the supplementary materials

and methods, Supplementary Material online.

Homology Assessment and Scaffolding

To identify the closest homolog of each assembled S. flava

contig, we first used blastx to map contigs to proteins from

D. grimshawi, with an E value cutoff of 1e�10. We retained

all hits for which at least 20% of the S. flava contig hits a

D. grimshawi protein; we then filtered out all hits with E values

more than 10 orders of magnitude worse than the best hit.

We also ran an all-against-all blastn search with an E-value

cutoff of 1e�10 and using the S. flava contigs as both query

and subject to identify potential paralogs that were not col-

lapsed by our assembly procedure. For this blastn run, we kept

all hits, regardless of E value, where the hit covered at least

90% of the smaller contig. We then identified assembled

transcript regions (transcripts) as sets of contigs and D. grim-

shawi proteins that are all connected to each other via blastn

or blastx hits, using an undirected graph algorithm imple-

mented in custom Perl scripts. We then generated three dif-

ferent transcript sets based on our confidence in assignment.

The high confidence set is based on blastx hits with at least

85% coverage; the medium confidence set is based on blastx

hits with between 60% and 85% coverage; and the low con-

fidence set is based on blastx hits with between 20% and

60% coverage. In all three sets, we flagged contigs if they

1) were less than 200 bp and a singleton, 2) had a significant

blast hit to a non-Drosophila sequence in nr, but not to any

Drosophila, or 3) had no blast hits with at least the minimum

20% query coverage. For all confidence sets, we built assem-

blies by merging adjacent or overlapping S. flava sequence

that maps to a given D. grimshawi protein and filling in regions

of the D. grimshawi protein not sequenced in our cDNA librar-

ies as Ns. These merged sequences form the basis of the mo-

lecular evolutionary analysis (supplementary table S5,

Supplementary Material online) and differential regulation

analysis described later (supplementary table S6,

Supplementary Material online).

By scaffolding contigs and merging potential S. flava para-

logs identified via all-against-all blastn searches, we collapsed

the original contigs to assembled transcripts. These transcripts

were then filtered to remove short contigs and those with

weak or complex blast hits, which served as the transcriptome

against which the short-reads from Illumina sequencing of the

5-day-old larvae from WT and GKO plants were mapped to

quantify differential regulation of S. flava genes.

Quantifying Differential Gene Regulation Using the
Transcriptome and RNA-Seq

Here, we used RNA-seq to measure differential expression

between the transcriptomes of flies raised on WT and GKO

Arabidopsis. We mapped each of our four filtered Illumina

RNA-seq samples against the S. flava (scap) contig set derived

from all transcriptome data using Bowtie 0.12.5 (Langmead

et al. 2009) with the following command line parameters:

-S -n 2 -e 80 -l 25 -nomaqround –y –a –best –strata -m 1

–solexa1.3-quals –sam-nosq -p 2. We were able to uniquely

map between 37.9% and 43.79% of reads in each sample to

our filtered contig data set, representing 28.2 million total

mapped sequences. We then counted the number of reads

mapped to each contig and summed across all contigs in each

transcript to generate a count of reads mapped to each tran-

script in each condition. We tested for differential expression

of transcripts in larvae reared on the two Arabidopsis lines by

first summing the reads mapped across all contigs in each

transcript to generate a count of reads mapped to each

transcript in each pool, and estimating log2-fold change per

treatment (WT–GKO) using a negative binomial model
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implemented in the R/Bioconductor package DESeq (Anders

and Huber 2010).

Estimating Rates of Molecular Evolution

The ratio of nonsynonymous substitutions per nonsynon-

ymous site normalized by the number of synonymous substi-

tutions per synonymous site (dN/dS) was calculated to estimate

rates of molecular evolution in S. flava and across the subge-

nus Drosophila, within which the genus Scaptomyza is nested.

First, we identified all one-to-one homologs present in S. flava

and the three species in the subgenus Drosophila with se-

quenced genomes: D. grimshawi, Drosophila virilis, and

Drosophila mojavensis (details provided in the supplementary

materials and methods, Supplementary Material online).

To estimate dN/dS for each alignment, we used a maximum

likelihood framework implemented in the codeml module of

PAML version 4 (Yang 2007). The unrooted input tree

(D. virilis, D. mojavensis, (D. grimshawi, S. flava #)) was used

with the two-ratio branch model, which estimates one dN/dS

in a specified foreground branch (S. flava in this case) and a

separate dN/dS across the rest of the tree. As a quality control,

we excluded from analysis all homolog sets where greater

than 5% of sites were variable in the S. flava contig or

where dS in S. flava was greater than 0.8158 (two times the

median dS across the full S. flava data set), which may repre-

sent contig misassembly or sequence misalignment, respec-

tively. We also excluded sets where dS in S. flava was less than

0.01 or less than 70 codons were present without gaps in all

four species to avoid unreliable estimates of dN/dS due to in-

sufficient data. Results of all these analyses are reported in

supplementary table S6, Supplementary Material online.

Filtering Developmentally Regulated Genes

We mined a high-throughput gene expression data set con-

structed using D. melanogaster, in which Graveley et al.

(2011) used Illumina RNA-seq to quantify gene expression

across 30 developmental stages in isogenic (y1; cn bw1 sp1)

D. melanogaster flies. Raw expression values expressed as

reads per kilobase per million reads mapped (Graveley et al.

2011) were obtained from the analysis of Gelbart and Emmert

(2010), which intersected coverage expression data with

FlyBase exons.

We excluded data from D. melanogaster genes that had

been split into multiple separate gene models as of 5

September 2011. A gene was flagged as developmentally

confounded if the log2 (fold change) between 1) second

instar larvae and larvae 12 h into third instar or 2) 12-h

third instar larvae and larvae that had just entered the third

instar puffstage, was greater than 50% of the log2 (fold ex-

pression change) between GKO- and WT-fed larvae in our

experiment.

Results

Timing of the Evolution of Herbivory and Host
Specialization

The date uniting the Scaptomyza + Hawaiian Drosophila using

nine gene fragments (29.76� 2.25 millions of years before

present [MYBP]) was very close to the one estimated for this

node using S. flava transcriptomic data and genomic data for

the 12 sequenced Drosophila species (27.06�0.66 MYBP)

(table 1). The divergence time for the two herbivorous taxa

included in this analysis (S. flava and S. nigrita) was estimated

to be 6.31 (� 0.63) MYBP, and the divergence time between

this clade and S. pallida, which is not herbivorous, was esti-

mated to be 14.70 (�1.26) MYBP. These dates give a conser-

vative estimate of the range (6–16 MYBP) within which

herbivory and mustard specialization likely evolved.

Phenotypic Consequences of Arabidopsis Antiherbivore
Defenses on S. flava

We first tested whether herbivory by S. flava larvae activated

the glucosinolate biosynthetic pathway in Arabidopsis.

We qualitatively assayed transcriptional activity of the

Arabidopsis cyp79b2 gene in response to feeding by third

instar S. flava larvae that were placed on adult Arabidopsis

cyp79b2promoter:�-glucuronidase (GUS) reporter plants and

allowed to form mines for 12 h. Arabidopsis cyp79b2 encodes

a cytochrome P450 enzyme required for indolic glucosinolate

biosynthesis (Hull et al. 2000; Muller et al. 2010). Although

there was only modest transcriptional (GUS) activity in leaves

that were mechanically wounded (repeatedly) with stainless

steel forceps, the Arabidopsis cyp79b2 promoter drove strong

transcriptional induction in leaf tissue surrounding actively

feeding larvae (fig. 2). Little transcriptional activity was ob-

served in unwounded control leaves (fig. 2).

We next tested whether glucosinolates are involved in re-

sistance against S. flava by rearing larvae from birth on WT

Arabidopsis or three Arabidopsis glucosinolate mutant lines

(AGKO, IGKO, and GKO lines). We first exposed 60 plants

of each of the four genotypes to S. flava females. The main

purpose of this was simply to allow eggs to hatch in plants for

the larval performance and transcriptional profiling experi-

ments. However, we used it as an opportunity to test

whether female flies varied in their feeding or oviposition pref-

erences across the plant lines. We regressed egg number on

stipple number and stipple number explained 54%–66% of

the variation in egg number across the four host plant lines

(supplementary fig. S2, Supplementary Material online).

Although the slopes of these regression lines did not differ

significantly among host plant lines (ANCOVA, F¼0.8844,

P¼0.45), the intercepts were significantly lower for GKO

(b¼1.19, t¼�2.632, P¼ 0.0091) and AGKO (b¼�1.66,

t¼�2.656, P¼ 0.0084) plants, indicating that these geno-

types, which both are lacking aliphatic glucosinolates, were
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FIG. 2.—The indolic glucosinolate biosynthetic pathway is induced by S. flava larval feeding. Activation of the indolic glucosinolate biosynthetic cyp79b2

gene in the Arabidopsis thaliana promoter:GUS reporter line when attacked by S. flava larvae for 12h. Strong induction occurs within and around larval

mines (top right) but less so when leaves are mechanically wounded (bottom left) and induction appears absent in untouched leaves (top left).

Table 1

Ages of Nodes in Figure 1 and Supplementary Figure S1, Supplementary Material Online, Inferred by r8s Analysis

Node Calibration Range (MYBP) Transcriptome Alignment,

Age�SD (MYBP)

Multiple Scaptomyza spp.

Age�SD (MYBP) Bootstrap Support

1 50.5–75.3 74.81�1.14 71.19� 4.10

2 62.55�0.74 61.44� 3.90 100

3 48.85�0.97 50.72� 3.01 100

4 35.3–53.1 35.34�0.73 36.75� 1.97 100

5 8.80�1.38 11.40� 0.84 100

6 6.48�0.80 8.96� 0.78 57

7 4.50�0.70 6.85� 0.62 100

8 2.31�0.52 3.25� 0.40 100

9 0.56–1.14 1.14�0.05 1.14� 0.00 100

10 34.2–51.6 43.26�0.74 41.70� 2.92 100

11 32.04�0.66 31.82� 2.57 34

12 23.9–37.1 27.06�0.66 29.76� 2.25 100

13 – 21.69� 1.76 100

14 – 14.70� 1.26 100

15 – 6.31� 0.63 100

NOTE.—Node numbers refer to nodes labeled in figure 1 and supplementary figure S1, Supplementary Material online. Date intervals for calibrating are in the second
column. Divergence dates are in millions of years before present (MYBP) followed by standard deviation of dates estimated by profiling nodes across 1,000 bootstrapped
replicates. Two phylogenies were used: the first used characters from an alignment of nucleotide sequences from the 12 Drosophila genomes and Scaptomyza flava
transcriptome, and the second used 9 genes from a broader sampling of drosophilids, including herbivorous and nonherbivorous Scaptomyza species. All bootstrap values for
the tree generated for transcriptome alignment were 100.
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more heavily attacked by female flies than WT or IGKO plants

(supplementary fig. S2, Supplementary Material online).

Using these same plants, 3 days after egg hatch, we ex-

tracted 311 larvae from WT (N¼ 18 plants), 349 larvae from

AGKO plants (N¼18 plants), 285 larvae from IGKO plants

(N¼18 plants), and 246 larvae from GKO (N¼18 plants)

plants and recorded fresh larval mass. Five days after egg

hatch, we extracted 351 larvae from WT (N¼ 36 plants),

364 larvae from AGKO plants (N¼36 plants), 319 larvae

from IGKO plants (N¼ 33 plants), and 280 larvae from GKO

(N¼34 plants) plants and recorded fresh larval mass as above.

Results from the ANCOVA across all four host plant genotypes

are presented in supplementary figure S3, Supplementary

Material online. The number of larvae per plant was not a

significant covariate with plant genotype (ANCOVA, plant ge-

notype x number of larvae per plant, F1,64¼0.777, P¼0.51).

In an additive model, total number of larvae in each plant

individual was not a significant factor on its own across geno-

types (plant genotype + number of larvae per plant, day 3:

F1,67¼2.365, P¼0.129; day 5: F1,135¼ 0.842, P¼ 0.36).

However, plant genotype alone remained a significant factor

in explaining average larval mass (F6,67¼6.767, P¼0.0005;

day 5: F3,135¼ 7.462, P¼0.0001). In addition, we found no

significant (a¼0.05) correlation between total number of

larvae per plant with mass per larva using individual linear

models for each plant line separately (supplementary fig. S3,

Supplementary Material online). Post hoc tests showed that

average masses of larvae reared on GKO plants were signifi-

cantly larger than larvae reared on WT (fig. 3A) and AGKO

plants (supplementary fig. S3, Supplementary Material online),

3 days and 5 days post–egg hatching. Similarly, egg-to-adult

development time was more rapid in S. flava reared on GKO

plants than in WT plants. Cohorts of adult flies emerged from

GKO plants a half day earlier than flies from WT plants

(P< 0.05, two-sided t-test) (fig. 3B).

Secondary plant compounds such as glucosinolates require

amino acid and carbon precursors and are potentially costly to

produce (Heil 2002). Although the GKO Arabidopsis plants are

phenotypically nearly identical to WT to human observers, it is

possible that the leaves of GKO plants, blocked from synthe-

sizing glucosinolates, may retain a liberated pool of nutritive

precursors such as sugars and amino acids. The observed in-

crease in S. flava growth rate in GKO relative to WT plants

could be explained by a buildup of these plant primary me-

tabolites. To test this possibility, we profiled primary metabo-

lites in above ground tissues of 4-week-old plants of each

genotype (GKO and WT, N¼ 5 plants each) by fractionation

and gas chromatography–mass spectrometry (GC-MS). None

of the 7,893 major ion features (e.g., sugars or amino acids)

detected in this survey were significantly higher (P<0.01) in

GKO than WT plants (supplementary table S1, Supplementary

Material online). Similarly, only five compounds with best

matches to the following sugars were enriched in WT plants

relative to GKO: arabinofuranose, galactofuranose, turanose,

1,6-anhydro-ß-D-glucose, and ß-DL-arabinopyranose (raw

peak areas for each feature for all samples given in supple-

mentary table S1, Supplementary Material online).

The GKO mutant we used is also deficient in an indole

alkaloid phytoalexin called camalexin (3-thiazol-2’-yl-indole)

(Zhao and Last 1996). Camalexin is synthesized first from

tryptophan, which is converted to indole acetaldoxime by

CYP79B2 and CYP79B3 (Glawischnig et al. 2004). Because

the GKO is null for cyp79b2 and cyp79b3, we cannot exclude

the hypothesis that S. flava performance and transcriptional

phenotypes tested on the GKO mutant are due in part to the

absence of camalexins. Camalexins have antimicrobial prop-

erties and could potentially have antiherbivore propteries

(Rogers et al. 1996).

Sequencing and Assembly of the S. flava Transcriptome

The results described earlier suggest that glucosinolates are an

important defense against S. flava and might have been a

colonization barrier during or after the evolution of herbivory

in the lineage. We reasoned that S. flava genes that respond

transcriptionally to feeding on glucosinolate-bearing plant tis-

sues were likely to be involved in the evolutionary transition to

herbivory. We therefore used next-generation sequencing

(RNA-seq) to analyze the transcriptional responses of S. flava

flies reared on WT or GKO plants. We chose first to sequence

a cDNA library from an RNA pool derived from mixed life

stages (eggs, larvae, pupae, and adults) of an iso-female

colony of S. flava using 454 Titanium FLX chemistry. We com-

bined this assembly with reads from four Illumina GA II

RNA-seq reads of 5-day-old S. flava larvae reared on either

WT or GKO plants that are described later, to maximize

our coverage. This resulted in a total of 104,118 preliminary

contigs with an N50 of 289 (supplementary fig. S7,

Supplementary Material online).

Before further analysis, we screened these 104,118 contigs

for transposable elements, simple sequence repeats, and

low-complexity regions using RepeatMasker with the default

options and a Drosophila-specific library (RepBase:

repeatmaskerlibraries-20090604.tar.gz). We removed from

further consideration 8,819 contigs with either evidence for

TE contamination or with greater than 10% of their sequence

consisting of simple sequence repeats or low complexity re-

gions, leaving us with a total of 95,299 contigs. These form

the basis of all our subsequent analysis and are referred to as

the S. flava contig set. We then used coding sequences

from D. grimshawi (the closest fully sequenced sister taxon

to S. flava) as scaffolds to assemble contigs using blastx

(Crawford et al. 2010). By scaffolding contigs and merging

potential S. flava paralogs identified via all-against-all blastn

searches, we collapsed the original 95,299 contigs to 36,813

or 48,872 (depending on homology cutoffs; see supplemental

materials, Supplementary Material online) assembled tran-

scripts. These transcripts were then filtered to remove short
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contigs and those with weak or complex Blast hits, resulting

in a total of 16,476 high-confidence transcript models,

which served as the transcriptome against which the short

reads from Illumina sequencing of the 5-day-old larvae from

WT and GKO plants were mapped to quantify differential

regulation of S. flava genes.

Transcriptional Analysis of the S. flava Response to
Glucosinolates

To measure differential expression between the transcrip-

tomes of flies raised on Arabidopsis plants with and without

glucosinolates, we collected 5-day-old larvae from the perfor-

mance study, which were reared in WT and GKO plants. Using

two pools of RNA for each treatment, we conducted an

RNA-seq experiment using Illumina 75 bp sequencing. We

identified a total of 341 transcripts that were differentially

expressed between 5-day-old S. flava larvae reared on WT

and GKO Arabidopsis (fig. 4). Of these 341 S. flava transcripts,

278 (82%) were significantly upregulated (induced) and 63

(18%) were significantly downregulated (repressed) in larvae

reared on WT relative to GKO plants. Glucosinolates in the diet

of S. flava thus appear to induce many more transcripts than

they repress. We found one-to-one D. melanogaster orthologs

for 121 S. flava transcripts: 105 of 278 induced S. flava tran-

scripts and 16 of 63 repressed S. flava transcripts. Gene

ontology (GO) categories for 76 of these 121 differentially

regulated S. flava transcripts with homologous D. melanoga-

ster genes could be inferred in AmiGO (Ashburner et al. 2000),

and there was an enrichment of GO categories related to

hemolymph coagulation (biological process), plasma mem-

brane (cellular component), and structure constituent of the

cuticle/chitin (molecular function) (table 2).

Stress-Related Genes Are Regulated by Glucosinolates
in S. flava

We evaluated the data set of 121 differentially regulated

S. flava transcripts with D. melanogaster homologs in two

ways. First, we compared these transcripts with the set of

D. melanogaster genes activated or repressed by exposure

to various stressors, including aging (Landis et al. 2004),

the dietary toxin phenobarbital (Misra et al. 2011), heat

(Sorensen et al. 2005), oxidation (Landis et al. 2004), and

starvation (Harbison et al. 2005). Two genes induced by

at least one stressor in D. melanogaster are homologous

to S. flava transcripts induced by the presence of glucosino-

lates in the diet (table 3). This analysis suggests that there is

at least some overlap between genes modulated by

known physiological stressors in D. melanogaster and by the

presence/absence of glucosinolates in larval host plants of

S. flava.

The S. flava performance and growth rate experiments

show that flies reared in WT plants are developmentally de-

layed relative to those reared on GKO plants (fig. 3). Thus,

developmentally regulated genes that do not respond to die-

tary glucosinolates directly may confound gene expression dif-

ferences between larvae reared on GKO or WT plants. To

compensate for this potential confounding factor, we ex-

cluded S. flava transcripts from further analysis if developmen-

tal expression differences in the D. melanogaster homolog

between second and early third instar larvae (Graveley et al.

2011), corresponding to possible stages at which larvae were

harvested, explained>50% of the log2 fold expression differ-

ence in S. flava larvae reared on WT versus GKO plants.

We found 11 transcripts induced by glucosinolate consump-

tion and 10 transcripts repressed by glucosinolate consump-

tion in S. flava that passed this extremely conservative test

A B

FIG. 3.—The absence of aliphatic and indolic glucosinolate biosynthesis pathways in Arabidopsis increases weight gain and decreases development time

in S. flava. (A) Larvae reared from eclosion in wild-type (WT) (Col-0) or quadruple glucosinolate knockout (GKO) (cyp79b2cyp79b3myb28myb29) Arabidopsis

lines that were harvested at 3 and 5 days posteclosion weighed significantly more when reared on the glucosinolate knockout. (B) S. flava reared from eggs in

GKO Arabidopsis plants develop more rapidly than those reared on WT plants.
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(table 3); for these 21 transcripts, developmental differences

between larvae are unlikely to explain the transcriptional dif-

ferences we observed. Of the 11 induced loci, two were

among the four found to be induced by other stressors in D.

melanogaster (table 3), and of the 10 repressed loci, five were

found to be repressed by other stressors in D. melanogaster.

This overlap suggests that the observed correlation between

the transcriptional response to stress and the transcriptional

response to dietary glucosinolates is not an artifact of devel-

opmental differences between larvae in the two samples.

Metabolic, tissue remodeling, and wound-associated genes

were among the general classes of the 21 genes affected by

glucosinolate uptake in S. flava (table 3). Thus, a set of

stress-related genes appear to be induced by glucosinolates

in the diet of even specialized insects that have adapted to

grow in the presence of glucosinolates.

Table 2

Selected Gene Ontology Enrichment for 76 of 121 Differentially Regulated Scaptomyza flava Transcripts with Homologs in Drosophila melanogaster

GO Category GO Term P Value Sample Frequency Background

Frequency

Genes

Biological process 0050817, coagulation,

metamorphosis

2.17e-03 3/76 6/13,178 Muc68Ca, Hml, fon

0010171, body

morphogenesis

4.11e-03 4/76 22/13,178 TwdlR, TwsdlS, TwdlW, TwdlBeta

Cellular component 0031226, intrinsic to

plasma membrane

1.95e-03 9/76 211/13,178 sas, Osi19, Osi6, Osi7, Osi18,

Osi15, Osi9, Osi2, Osi20

Molecular function 0042302, structural

constituent of cuticle

3.89e-07 11/76 146/13,178 Cpr72Ec, CG7548, TwdlR, TwdlS,

CG8543, TwldW, CG8927, CG8541,

Cpr64Ab, dyl, TwldBeta

FIG. 4.—Scatterplot showing differentially regulated transcripts from S. flava 5-day-old larvae raised on WT versus GKO plants. Transcripts that were

significantly induced by glucosinolates in the diet of S. flava are in red, and those repressed by glucosinolates in the diet are in purple. Two RNA pools

(biological replicates) for each treatment were each sequenced on single Illumina lanes (four lanes total). These sequences were mapped back to an

assembled transcriptome that was scaffolded on the D. grimshawi genome. A total of 341 transcripts were differentially regulated. Larvae used for this

analysis were obtained from those used in the weight-gain analysis presented in figure 3.
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Evolutionary History of Genes Differentially
Regulated by Glucosinolates

The assembled transcriptome allowed us to study the evolu-

tionary history of glucosinolate-regulated S. flava transcripts

for which we could find homologs in the other Drosophila

species. We tested whether these transcripts exhibit more

rapid rates of evolution than the bulk of the transcriptome,

as found for immunity and stress-related genes in D. melano-

gaster (Sackton et al. 2007). We used alignments of all single

copy orthologs in the S. flava transcriptome and D. grimshawi,

D. virilis, and D. mojavensis genomes, to conduct a fore-

ground–background analysis in PAML (Yang 1998, 2007) to

estimate ! (dN/dS, the rate of nonsynonymous substitutions

per nonsynonymous site/synonymous substitutions per syn-

onymous site). Using our drosophilid species tree (fig. 1), we

examined! on the branch leading to S. flava (foreground) and

across the rest of the subgenus Drosophila (background). With

only three evolutionarily proximate taxa in the subgenus

Drosophila, we lacked sufficient power to test for positive se-

lection (a subset of codons with dN/dS>1) in the branch lead-

ing to S. flava.

Transcripts that were more abundant in flies that fed on

WT plants (those with glucosinolates; N¼62 transcripts) had a

significantly higher ! value in the S. flava lineage than tran-

scripts whose expression was unaffected by glucosinolates

(N¼4,711) (P¼ 0.036, Mann–Whitney U test) (fig. 5A).

Interestingly, this pattern is not specific to S. flava, as the in-

duced transcripts also have significantly elevated ! values in

the background lineages included from the subgenus

Drosophila (D. grimshawi, D. mojavensis, and D. virilis) com-

pared with the unregulated transcripts (P¼0.043, Mann–

Whitney U test). Accelerated evolution of genes induced by

glucosinolates in S. flava is consistent with other studies show-

ing that genes involved in stress responses tend to evolve rap-

idly (Li et al. 2003, 2004; Clark et al. 2007; Low et al. 2007;

Sackton et al. 2007; Thomas 2007; Matzkin 2008).

Despite a concerted search for conserved domains on

GenBank, we were able to identify D. melanogaster homologs

of only 36% of genes (121 of 341) that were differentially

regulated by glucosinolates in the diet of S. flava. More gen-

erally, a substantial number (5,967) of the 16,476 transcripts

we identified in S. flava have no identifiable homologs in other

species (supplementary table S6, Supplementary Material

online). To provide reliable estimates of the extent of

S. flava-specific transcripts, we therefore focused on an anal-

ysis of unassembled contigs, rather than scaffolds, because by

definition scaffolds can only be assembled for transcripts with

a D. grimshawi homolog. We used conservative criteria to

define S. flava-specific contigs, requiring them to be at least

200 bp in length and to fail to produce a significant

(E< 1e�10) blast hit against both the NCBI nonredundant

protein database (nr) and Drosophila-specific databases.

Using these criteria, 6,036 of 79,947 contigs were S. flava

specific (7.55%). We then compared the proportion of con-

tigs in the induced, repressed, and nonregulated expression

categories that have no known homologs outside of S. flava

(fig. 5B). The set of contigs that were induced or repressed in

5-day-old larvae reared on WT versus GKO plants had more

candidate S. flava-specific contigs than those not regulated by

the presence of glucosinolates (�2
¼12.8346, df¼2,

P<0.01). This suggests that adaptation to glucosinolates in

S. flava potentially involved novel genes. A preliminary blast

against newly available genomic sequencing reads from

S. flava confirms that they are of fly origin (see supplementary

materials and methods, Supplementary Material online). A

total of 99.3% (149/150) of the S. flava-specific transcripts

that were differentially regulated by glucosinolate consump-

tion were represented in the preliminary genome assembly

(blastn, E-value cutoff: 1e�10).

Discussion

Herbivory (leaf mining) in the drosophilid fly genus

Scaptomyza likely evolved relatively recently (6–16 MYBP)

compared to the evolution of herbivory in the dominant

orders of herbivorous insects. Because of this relatively

recent acquisition of a phytophagous life history and the

many genomic tools available for drosophilids and

Arabidopsis, S. flava–Arabidopsis interactions represent an at-

tractive and promising model system to study the evolution-

ary, ecological, and molecular aspects of genome adaptations

that occur during the transition to herbivory in insects.

We primarily focused on the interactions between S. flava

and glucosinolates, the major secondary compounds in their

most typical host plants. Arabidopsis plants activate the indolic

glucosinolate biosynthetic pathway in response to feeding by

S. flava larvae, and S. flava, which is mostly restricted in host

range to mustard plants (Martin 2004), is at least partially

susceptible to glucosinolates synthesized by Arabidopsis as

evidenced by reduced growth rate on WT versus GKO

plants. Interestingly, S. flava larvae reared on WT plants

were not significantly different in average mass from those

reared on AGKO plants. AGKO plants still have indolic gluco-

sinolates, and this suggests an important role for indolic glu-

cosinolates or indole-derived camalexins in mediating

quantitative resistance against S. flava. Rapid development

time may be an advantage in leaf-mining species, which are

heavily attacked by parasitoid wasps throughout their devel-

opment (Connor and Taverner 1997; Whiteman et al. 2011).

Because S. flava feeds mostly, but not exclusively, on plants

in the order Brassicales, the finding of reduced performance

of S. flava on WT versus GKO plants is not surprising.

Oligophagous herbivores with broader host ranges, such as

S. flava, are thought to be less efficient at coping with plant

secondary compounds than are specialist species that feed on

a more restricted range of hosts (Li et al. 2004). Future studies
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FIG. 5.—(A) Results of dN/dS analysis in PAML for differentially regulated genes in S. flava with orthologs in other Drosophila species. Genes induced by

dietary glucosinolates in S. flava evolve more rapidly than genes unaffected in expression by glucosinolates. Median dN/dS values are significantly higher in loci

induced by dietary glucosinolates in S. flava compared with loci not induced by glucosinolates. (B) Results of comparison of the proportion of S. flava contigs

lacking identifiable homologs in each expression class. The difference among classes is significant by a�2 test (�2
¼ 12.8346, df¼ 2, P¼ 0.00163). Candidate

S. flava–specific transcripts are significantly more abundant among transcripts induced or repressed by glucosinolates in the diet of S. flava versus those that

are uninduced by glucosinolates in the diet of S. flava.
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should dissect the independent role of camalexins and indolic

glucosinolates in medating resistance against S. flava.

The assembly of an S. flava transcriptome allowed us to

identify 341 S. flava genes that were differentially regulated by

glucosinolates, most of which were induced rather than re-

pressed. Only a limited number of transcriptional profiling

studies have been carried out on herbivorous insects, including

those in which larvae feed on plants with disabled defense

pathways (Govind et al. 2010; Alon et al. 2011) or on different

plant species with alternative toxins (Grbic et al. 2011). In each

of these cases, hundreds of genes are differentially regulated

by the presence of plant secondary compounds, a pattern

similar to the one found here. However, in the case of

S. flava, the benefit of being able to compare the transcrip-

tome to the exceptionally well curated and annotated D. mel-

anogaster genome greatly facilitated assignment of putative

functions for differentially expressed genes, as well as the dis-

covery of newly evolved loci.

The most prominent functional category identified was for

stress-related genes. The fact that stress-related genes are

regulated by glucosinolates in S. flava is intriguing because

most specialist (monophagous) and oligophagous herbivores

are thought to have evolved efficient and highly specialized

detoxification systems to minimize physiological impacts of

glucosinolate consumption. For example, Pieris spp. butterfly

larvae do not encounter toxic glucosinolate breakdown prod-

ucts, such as isothiocyanates, and instead have evolved ways

of preventing their formation (Wittstock et al. 2004).

We found that the S. flava homolog of the central D. mel-

anogaster translational regulator Thor is particularly interesting

because it is induced by bacterial infection, phenobarbital,

oxidation stress, and starvation in D. melanogaster (Bernal

and Kimbrell 2000; Landis et al. 2004; Harbison et al. 2005;

Misra et al. 2011). Thor also serves as a “metabolic brake”
during stressful conditions in D. melanogaster (Teleman et al.

2005). A homolog of Thor, 4E-BP1, is induced by phenethyl

isothiocyanate in human cancer cell lines suggesting that there

is conservation in this response to isothiocyanates across meta-

zoans (Hu et al. 2007). Other differentially regulated S. flava

genes with D. melanogaster homologs include the Tweedle

genes, a large group of genes involved in formation of the

insect cuticle (Cornman 2009). Isothiocyanates could poten-

tially interact with the cuticle (and chitin) directly (McCormick

et al. 1980), resulting in regulation of genes involved in cuticle

and peritrophic membrane formation (Whiteman et al. 2011)

and maintenance due to the presence of isothiocyanates in

leaves that are encountered by endophagous feeders such as

S. flava (van Ommen Kloeke et al. 2012). Genes involved in

blood coagulation were also among those found to be differ-

entially regulated by isothiocyantes and this finding is consis-

tent with effects of dietary isothiocyanates on animals from

other taxa. For example, dietary isothiocyanates in rats in-

crease the rate of blood coagulation (Idris and Ahmad 1975;

Shan et al. 2010).

Furthermore, we found that transcripts induced or re-

pressed in larvae feeding on WT versus GKO plants are

less evolutionarily conserved than transcripts that were not

differentially regulated. We also uncovered a greater propor-

tion of transcripts with no known homologs in the differen-

tially regulated set, which could represent novel genes in this

lineage or in the subgenus Drosophila. Taken together, our

data indicate that the adaptation to mustard oil-bearing

plants, and potentially herbivory in the lineage Scaptomyza,

involved elaboration of pre-existing loci, potential exaptation

of existing, rapidly evolving, stress-related genes, and the

emergence of entirely new genes.

The functional basis of adaptation to glucosinolates in the

diets of herbivores has been investigated in great detail in

several lineages of insect, including the lepidopterans Pieris

rapae (Wheat et al. 2007) and Plutella xylostella (Ratzka

et al. 2002), the orthopteran Schistocerca gregaria (Falk and

Gershenzon 2007), the sawfly Athalia rosae (Opitz et al.

2011), and the aphid Brevicoryne brassicae (Jones et al.

2001). In each of these species, single enzymes were identified

as essential for detoxification or sequestration of glucosinolate

breakdown products that appear to allow for minimal contact

with isothiocyanates (Muller et al. 2010). In contrast, the iden-

tities of the genes actually involved in detoxifying glucosino-

lates in S. flava remain unknown. Our results suggest that

S. flava may be directly encountering isothiocyanates given

the significant growth rate reduction when cultured in WT

versus GKO plants and the fact that hundreds of transcripts

are differentially regulated by the presence or absence of glu-

cosinolates in the diet of S. flava. Hundreds of genes are also

differentially regulated by isothiocyanates in experiments

where humans and rats are given glucosinolates or isothiocy-

anates (Hu et al. 2004; Bhamre et al. 2009). It is unknown

whether other insects relatively specialized on Brassicales

plants exhibit similar patterns to S. flava or whether their de-

toxification mechanisms are so efficient that gene expression

differences between those that feed on plants with and with-

out glucosinolates are minimal (Muller et al. 2010).

Transcriptomic approaches in other insect taxa such as

D. melanogaster would likely yield valuable insights into

common pathways influenced by glucosinolates in insects

and how these molecules affect insect physiology more gen-

erally (Li et al. 2009). We did not detect transcriptional differ-

ences in S. flava homologs of most loci involved in induction of

the Phase I or Phase II enzyme systems, which are candidate

mustard oil detoxification proteins in humans and insects

(Wadleigh and Yu 1988; Hu et al. 2004; Bhamre et al.

2009). This may be due to examination of one time point

corresponding to 5 days posteclosion. For example, elevated

levels of transcripts of some of these genes, such as glutathi-

one S-transferases, which are involved in glucosinolate detox-

ification in some insects and in humans (Wadleigh and Yu

1988), are unlikely to remain elevated for such a long period

of time (Tang and Tu 1995). Post-transcriptional regulation
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could explain increased GST levels in some insects treated with

toxins rather than increases in mRNA levels per se (Tang and

Tu 1995). Alternatively, structural changes could alter catalyitc

efficiencies of genes encoding GSTs.

In addition to providing insight into the ecological pressures

faced by Arabidopsis in nature, analysis of a leaf-mining par-

asite of Arabidopsis that is readily cultured in the laboratory

and amenable to emerging genomic technologies may also

have utility in agricultural research. Herbivorous insects cause

major damage to crop plants around the world and are be-

coming increasingly resistant to pesticides. Understanding

molecular mechanisms used in overcoming natural insecticidal

toxins such as glucosinolates may provide direct or indirect

routes to novel insecticides or breeding strategies. Because

S. flava attacks and completes development in all

Arabidopsis ecotypes (accessions) and mutants that have

been screened (Whiteman et al. 2011), this system provides

a platform for dissecting the genetic bases of interactions be-

tween plants and chewing herbivores.

Supplementary Material

Supplementary materials, figures S1–S7, and tables S1–S7 are

available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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