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One sentence summary: A constant background Gaussian curvature alters
crystal growth and favors the formation of anisotropic, ribbon-like domains.

Although the effects of kinetics on crystal growth are well-unders-
tood, the role of substrate curvature is not yet established. We
study rigid, two-dimensional colloidal crystals growing on spher-
ical droplets to understand how the elastic stress induced by Gaus-
sian curvature affects the growth pathway. In contrast to crystals
grown on flat surfaces or compliant crystals on droplets, these crys-
tals form branched, ribbon-like domains with large voids and no
topological defects. We show that this morphology minimizes the
curvature-induced elastic energy. Our results illustrate the dra-
matic effects of curvature on the ubiquitous process of crystalliza-
tion, with practical implications for nanoscale disorder-order tran-
sitions on curved manifolds, including the assembly of viral cap-
sids, phase separation on vesicles, and crystallization of tetrahedra
in three dimensions.

Since Nicolaus Steno’s pioneering work on crystal growth in the 17th cen-
tury (1), it has been established that the shape of a crystal is a vestige of its growth
pathway. Near equilibrium, crystals grown from the melt form compact, faceted
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structures that minimize interfacial area and energy (2, 3), while further from equi-
librium, kinetic instabilities (4) permit the formation of crystals with much larger
interfacial areas, such as dendrites and snowflakes (5).

Less well-understood is the role of elastic stress, which can arise from the
curvature—or lack thereof—of the space in which the crystal grows. For exam-
ple, two-dimensional (2D) crystals of spheres on a spherical substrate are strained
due to the incompatibility of the preferred triangular lattice packing with the Gaus-
sian curvature of the sphere, which bends the lattice lines. Similarly, in Euclidean
three-dimensional (3D) space, the absence of curvature frustrates the crystalliza-
tion of tetrahedra (9, 10). Large, compliant crystals can alleviate this curvature-
induced elastic stress by incorporating topological defects such as grain boundary
scars (11, 12) or pleats (13) in the ground state. But for rigid crystals on curved
manifolds, for which topological defects such as dislocations have large core en-
ergies, the increase of elastic stress with crystal size can also affect the growth
process, such that the ground states may be inaccessible. The effects of curvature
on the growth pathways are potentially important for analogous processes involv-
ing the ordering of identical subunits in curved spaces, such as the assembly of viral
capsids (14), filament bundle packing (15), self-assembly of molecular monolay-
ers (16), functionalization of nanoparticles (17), and the growth of solid domains
on vesicles (18, 19, 20).

We use confocal microscopy to examine the structures of rigid, 2D colloidal
crystals growing on the inside walls of highly curved spherical water droplets (Fig.
1A). The particles start in the interior of the droplet, but over a short time nearly
all of them attach to the droplet surface through a depletion attraction (6). Once
at the interface, the particles attract one another through the same interaction. The
short range of the attraction creates a wide coexistence region (Fig. S1) between a
low-density 2D fluid and a rigid, brittle crystal phase that, unlike the 2D crystals
made from repulsive particles (11, 12, 13), cannot easily deform to cover the entire
droplet. Because the high interfacial tension of the oil-water interface precludes
distortion of the enclosing spherical droplets, and the depletion attraction confines
particles to the droplet interface, the crystals are forced to adopt the curvature of the
droplet as they grow.

This constraint has a dramatic effect on the crystal structures observed at long
times: whereas 2D crystals grown on flat surfaces are compact, crystals grown
on spherical surfaces are composed of slender, single-crystal segments that wrap
around the droplets, as seen in Fig. 1B. In droplets with higher surface coverage,
the thin segments, which we call “ribbons,” join together to form branched patterns
with voids and gaps between them.

If these crystals were on flat surfaces, the voids could be filled by additional
particles. But the parallel transport caused by the Gaussian curvature forces the
crystalline directions to be mismatched at the void borders (Fig. 2A), making it
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Figure 1: (A) Rigid and brittle colloidal crystals form on the interior surfaces
of spherical water-in-oil droplets encapsulating an aqueous mixture of 1.0 µm
polystyrene (PS) spheres and 80 nm poly(NIPAM) particles (6). The small particles
induce depletion attractions (7,8) between the PS spheres with a strength of about 4
kBT , where kBT is the thermal energy. The depletion force also binds the particles
to the interface with a strength of about 10 kBT (6). The range of attraction in both
cases is about 80 nm, or about 8% of the PS sphere diameter. A surfactant bar-
rier prevents the large spheres from breaching the interface (6). (B) Representative
confocal fluorescence micrographs of crystals grown for a few hours on droplets
of various curvatures. Radii of curvature R are noted below micrographs; dotted
circles show the droplet surfaces, determined by fitting a spherical model to the
particle positions. We use a very large droplet (R > 2 mm) to approximate a flat
surface.
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Figure 2: (A) From the 3D positions of the particles (red dots), we digitally flat-
ten the curved crystals (6), showing that they are single grains with no topological
defects. Arrow (1) shows an apparent grain boundary that is actually a row of va-
cancies, while arrow (2) shows a void that arises because the curvature bends the
lattice vectors. (B) Histograms show that the values of the dimensionless circularity
C = 4πA/L2, measured using morphological image operations (6), are in general
much lower for crystals grown on curved surfaces (dark blue, 335 domains) than
for crystals grown on nearly flat surfaces (light blue, 187 domains).

impossible to continue the crystal without introducing topological defects. Such
defects are, however, absent in our system, in contrast to curved crystals made from
repulsive particles (11, 12, 13). As we show by digitally unwrapping the crystal
structures (Fig. 2A), each crystal is a single grain, and the only defects are vacancies.

Morphologically, these structures resemble dendritic crystals. We quantify the
morphology using two metrics: the circularity, a measure of the perimeter-to-area
ratio, and the fractal dimension, a measure of anisotropy. Crystals grown on curved
surfaces have much lower circularity (Figs. 2B and S2) and fractal dimension (Fig.
S3) than the compact crystals formed on flat surfaces.

In flat space, crystals with such large interfacial energies can only result from
kinetic instabilities. Here, however, such instabilities are unlikely to be the cause of
the anisotropy, since we do not observe dendritic crystals forming on flat surfaces
under growth conditions that are otherwise identical to the curved ones (Figs. 1B
and 2B). Kinetic instabilities occur when the diffusion of particles along the crystal-
fluid interface is slow compared to the growth rate. This happens when the domain
size is comparable to the Mullins-Sekerka wavelength λs (21, 22), which is only
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weakly affected by curvature (6). We estimate λs to be at least 100 µm (6), much
larger than the typical width (25 µm or less) of our curved crystals. We therefore
exclude kinetic instabilities as the cause of the morphology. We can also exclude
kinetic effects arising from fluid-fluid coexistence, since our system is far from the
metastable fluid-fluid critical point (6).

The remaining possibility is an elastic instability. A continuum model shows
that such an instability occurs because the crystal must compress as it grows larger,
owing to the Gaussian curvature of the growth surface. Consider forcing a flat, disc-
shaped crystal of diameter a onto a sphere with radius R. For domain sizes compa-
rable to the sphere radius or smaller, the change in circumference—or, equivalently,
the elastic strain—scales as (a/R)2, so that the net free energy change, including
the elastic energy cost, to form a circular solid domain on a curved surface is (6,23)

∆G(a) = γ · (πa)−∆ f · πa2

4
+

π

24576
Y · a6

R4 , (1)

where Y is the 2D Young’s modulus, γ the line tension and ∆ f the chemical po-
tential difference between the coexisting solid and fluid phases. On flat substrates
(R→ ∞), the elastic energy vanishes, and crystallites larger than a critical nucleus
size ac = 2γ/∆ f can grow isotropically without limit (dashed line in Fig. 3A). But
on curved substrates, the elastic energy increases with domain size a, as measured
along a geodesic. Isotropic growth becomes unfavorable beyond a critical size
a∗ ∼ (∆ f/Y )1/4R (solid line in Fig. 3A). This restriction on isotropic growth is
the origin of the elastic instability (24). The predictions of this simple model are
consistent with our measurements of the maximum isotropic domain size, which
scales linearly with R (Fig. S4A).

Although the crystal could grow larger by incorporating topological defects (25,
26), the short range of the attraction in our system makes such defects energeti-
cally costly. Geometry dictates that some interparticle distances near a five-fold or
seven-fold defect are larger than the interaction range, effectively breaking the cor-
responding bonds. Incorporating a five-fold defect, for example, breaks five bonds.
This explains the observations in Fig. 2: the stiffness of the potential favors tearing
rather than stretching to accommodate stress.

Thus if the crystal is to continue to grow, it must do so by increasing its perime-
ter-to-area ratio. It must grow anisotropically. More specifically, the crystal should
transition from a disk to a ribbon, or multiple ribbons, when its size exceeds a∗. This
behavior arises because the elastic energy of a ribbon scales with the fifth power of
the width w but only linearly in the length l (23, 27). The net free energy change of
forming a ribbon-like crystalline domain is:

∆G(w, l)≈ γ ·2(l +w)−∆ f · lw+
9

5120
Y

w5l
R4 . (2)

5

http://dx.doi.org/10.1126/science.1244827


G. Meng, J. Paulose, D. R. Nelson, V. N. Manoharan, Science 343: 634 (2014)

A

0 ac
a*

a

∆G

�at surface

curved surface
B

0

0.5

1.0

1.5

l/R

0 0.1 0.2 0.3 0.4 0.5
w/R

0∆G

Figure 3: A continuum model shows that the elastic stress restricts isotropic domain
growth to a maximum size a∗. The crystal can escape this restriction by growing
anisotropically. (A) Free energy ∆G(a) for isotropic growth of a circular crystal of
size a on a flat surface (gray dashed line) and a surface with Gaussian curvature
(blue solid line). (B) Free energy ∆G(w, l) of formation of a ribbon-shaped domain
with width w and length l. The (overdamped) crystal growth follows the gradient
flow (arrows) on the energy landscape.

This energy function is shown as a landscape in Fig. 3B. By maintaining a constant
width set by the curvature in the later stages of growth, the crystallite can grow
to arbitrarily large lengths, limited only by the number of particles and the area
available for growth. The anisotropic growth allows the crystal to avoid the size
restriction imposed by elastic energy at the modest cost of a larger interfacial energy.

To test this model, we measured the dynamics of growth in single domains, as
shown in Fig. 4A and Movie S1. We find that a crystal first grows isotropically
until it reaches a critical size, then grows anisotropically, increasing its length while
maintaining a much smaller but constant width. Examination of the final crystal
shapes for several hundred droplets (Fig. 4B and S4B) shows that the length of the
domains can grow to several times the droplet radius, while the width is restricted to
a fraction of the radius of curvature. The near-constant value of w/R seen in Fig. 4
qualitatively agrees with our model, which predicts that the elastic stress limits the
width to w ∝ R, whereas l can increase without penalty. By fitting the model to
the observed domain widths, we extract an effective spring constant for the inter-
particle interaction that is consistent with theoretical and independent experimental
estimates (6), again lending support to the model.

The observation of the final, branched crystal shapes is also consistent with our
physical picture. A domain can extend its length along any of the three crystallo-
graphic axes. If it changes its growth axis, it will bend by ±60°, and if it grows
in two directions at once, a branch forms. All of these growth patterns are roughly
equivalent energetically, as long as the width of the growing section remains less
than the critical width dictated by elasticity and curvature. Hence we expect to
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Figure 4: (A) Measurements of domain length l (black) and width w (gray) as a
function of time for a droplet with R = 18 µm (6). Images of domain morphologies
at various times are shown at top (see also Movie S1). The transition from isotropic
to anisotropic growth occurs at about 100 minutes. (B) Distribution of l and w, both
normalized to the radius of curvature R, for curved crystals. The dashed line marks
the isotropic regime where w = l. w/R is roughly constant, in agreement with the
model.
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see, and do see, changes in direction and branches in the domains. The branches
can also arise from the merger of crystallites that have nucleated independently. The
branched structures resulting from such mergers maintain their curvature-dependent
width w in each section (see Movies S2, S3, and S4). The voids in these struc-
tures persist because the crystal directions are mismatched in adjacent sections of
the crystal. In contrast, crystallites on flat substrates have no width restriction or
curvature-induced mismatch and can therefore easily merge into isotropic shapes.

We conclude that anisotropic crystal growth, usually a result of a kinetic insta-
bility, can also occur by slow growth under the geometric constraint of Gaussian
curvature. Our results illustrate a generic route for the growth of rigid, defect-free
structures in curved spaces. This route may be particularly relevant to nanoscale
substrates, where the curvature is appreciable on molecular length scales. For ex-
ample, solid domains consisting of narrow stripes radiating outward from a circular
core have been observed in diverse systems, from phases on lipid vesicles (20) to
metal coatings on nanoparticles (17). Our analysis suggests that the width of the
stripes and the core size should be determined by the interplay between curvature,
elasticity and bulk energy. A similar interplay may affect the assembly pathways of
viral capsids. Recent in vitro experiments (28) show that capsids can assemble fol-
lowing a two-step mechanism analogous to our crystallization process: the capsid
proteins first attach to a substrate (an RNA molecule) and then bind together into
an ordered shell. The intermediate states of this process, long a subject of specula-
tion (14), might contain voids that, like those in our curved crystals, help the capsids
avoid excess elastic stress (29, 30).

Similar rules may govern other crystallization and packing problems where
global geometry is incompatible with local lattice packing. For example, crystal-
lization of tetrahedra is frustrated in flat (Euclidean) 3D space (9). However, logs
and helices of tetrahedra are prevalent in first-order phase transitions of tetrahe-
dra from disordered to dense quasicrystalline phases (10). The existence of these
structures, which were first described by Bernal (31), may reflect a similar physi-
cal principle, in which growth along one dimension allows a crystal to escape the
restrictions of geometrical frustration.
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Materials and Methods
1 Preparation of colloidal particles

The aqueous colloidal suspension consists of two types of particles, large polystyrene (PS) spheres
and small poly(N’-Isopropylacrylamide) (poly(NIPAM)) spheres. The poly(NIPAM) spheres induce
a depletion force between the larger spheres, causing them to attract one another and stay near the
water-oil interface.

We used precipitation polymerization (32 ) to synthesize the poly(NIPAM) hydrogel particles.
2.0 g of N’-Isopropylacrylamide (NIPAM, monomer, 99%, Acros Organics), 0.1 g N,N’-Methylene-
bisacrylamide (crosslinker, 99%, Promega), and 0.19 g (≈6.6 mM) sodium dodecyl sulfate (SDS,
99%, EMD Chemicals) were dissolved in 94 mL deionized (DI) water (Milli-Q synthesis grade,
Millipore). The solution was stirred and heated to 70°C under nitrogen for 30 minutes to remove
extra oxygen in the solution. 60 mg of potassium persulfate (KPS, initiator, 99%, Acros) were
dissolved in 4 ml DI water and loaded into the reactor to start the polymerization reaction. The
reaction ran for 4 hours. Afterward, the poly(NIPAM) hydrogel particles were cleaned by dialysis
against DI water for seven days, with water changes every 24 hours. The hydrodynamic diameter of
our particles, as measured by a Zetasizer Nano ZS (Malvern Instruments), was 80 nm at 20°C and
40 nm at 40°C in DI water.

Samples observed with confocal fluorescence microscopy were prepared using 1.0 µm flu-
orescent sulfate latex PS particles (FluoSpheres® sulfate microspheres, 1.0 µm, red fluorescent
(580/605), Molecular Probes, Cat. No. F8851, polydispersity (standard deviation in particle di-
ameter)=3%). Before using, we cleaned the particles in DI water by repeated centrifugation and
redispersion.

Samples observed using confocal reflection microscopy were prepared using 0.6 µm non-fluo-
rescent sulfate PS particles, synthesized by surfactant-free emulsion polymerization (33 ). 15 mL of
styrene (monomer, 99%, Sigma-Aldrich) and 146 mL DI water were mixed and gently stirred by a
magnetic stir bar at 200 rpm, then heated to 70°C under nitrogen for 30 minutes. 0.1268 g of KPS
were dissolved in 4 ml DI water and loaded into the reactor to start the polymerization reaction.
The reaction ran for 20 hours. Afterward, the PS particles were cleaned by filtration and repeated
centrifugation (3,000g for 1 hour) and redispersion in DI water.

The diameter of our particles, as measured through optical microscopy (Eclipse TE-2000, Nikon
Corp.), was 0.6 µm. In brief, a drop (about 10 µL) of colloidal suspension was dried on a glass cover-
slip so that the particles formed a single-crystalline monolayer. We then used image analysis (34 ) to
locate the centers of individual particles in a focused optical micrograph. The particle size was de-
termined by the first peak of the pair distance distribution, calculated from a few thousand particles
within the single-crystalline monolayer.

2 Emulsion preparation

The aqueous (internal) phase of the emulsions contained a mixture of PS particles (either 1.0 µm
fluorescent PS or 0.6 µm plain PS) and 80 nm poly(NIPAM) hydrogel particles in water. The
concentration of PS varied; the concentration of poly(NIPAM) was 1.0% w/w, with an estimated
volume fraction of φs ≈ 25% at 20°C). 15 mM NaCl were added to screen the electrostatic repulsion
between the PS particles, and 0.1% w/w Pluronic P123 (BASF) and 0.25% w/w Pluronic F108
(BASF) surfactant were added to stabilize the PS particles in the solution (35 ). The surfactants also
prevented the PS particles from penetrating the water-oil interface, thus ensuring that the interaction
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between the particles was mediated entirely by the solution conditions inside the droplet, and not
by interfacial effects such as capillary forces.

To prepare the emulsion, we added 100 µL of aqueous solution to 2 ml silicone oil (Alfa Aesar,
Cat. No. A12728) in a glass vial and emulsified using a vortex mixer (VWR). The average size of
the emulsified droplets was roughly controlled by the vortexing speed and time, and was between
20 and 50 µm after vortexing at 1,500 rpm for 30 seconds.

3 Sample cell preparation and loading

Sample cells were prepared from silicone-treated cover slips. The silicone prevented the droplets
from wetting and spreading on the cover glass. The cover slips (22×22 mm, No.1, VWR) were
spin-coated at 4,000 rpm for 30 seconds with a 10% w/w solution of silicone (10:1 mixture of base
and curing agent of SYLGARD® 184, Dow Corning Corporation) in cyclohexane. The coated
cover slips were left in covered petri dishes at room temperature (22°C) for 24 hours, during which
time the silicone coating cured to form transparent, hydrophobic films a few micrometers thick.

The emulsion was then loaded between two treated cover slips. The inner edges of the glass
cell were sealed with high vacuum grease (Dow Corning) of about 300 µm thickness, and the outer
edges were sealed by epoxy (5 Minute® Epoxy, Devcon) to prevent solvent evaporation. We waited
at least 15 minutes for the glue to be fully cured before observing the samples. For measurements
of the crystal structures at long times, we equilibrated the samples at room temperature (22°C) for
at least 24 hours before observations.

4 Confocal microscopy observation

We used a laser scanning confocal microscope (Leica TCS SP5 II, Leica Microsystems) equipped
with an oil immersion objective (100X, N.A.=1.4 or 63X, N.A.=1.4) to observe the three dimen-
sional (3D) structures of the crystals (36 ). We did not need to index-match the particles to the
medium, since there was only a monolayer of colloidal particles at the interface.

We used different observation modes depending on which PS particles were used to prepare the
sample.

a. Confocal fluorescence microscopy for 1.0 µm fluorescent PS particles. Laser light with a
wavelength of 543 nm was used to excite the fluorophores in the PS particles, and emitted light
was collected at 605 nm. The figures of the main text show confocal fluorescent microscopy
images.

b. Confocal reflection microscopy for non-fluorescent 0.6 µm PS particles. We illuminated
the sample with a 543-nm laser and collected back-scattered light at the same wavelength.
Fig. SM1 shows an example of a curved crystal structure formed by 0.6 µm plain PS particles,
as imaged using confocal reflection microscopy.

To verify that the crystallization of the polystyrene spheres was driven by the weak depletion
interaction induced by poly(NIPAM) particles, we used a microscope objective heater (MTC-HLS-
025, Bioscience Tools) to heat the immersion microscope objective and control the sample tem-
perature from ambient room temperature up to 35°C with ±0.1°C resolution. Since poly(NIPAM)
depletants change size with temperature, the depletion attraction between PS particles is tempera-
ture sensitive: the range and strength decreases as the temperature increases. The sublimation of
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5.0 µm

Fig. SM1. Confocal reflection microscopy of curved crystals of 0.6 µm plain PS particles. The
image shows the projected view of the 3D dataset along the optical axis. Scale bar, 5.0 µm.

the crystals at higher temperature showed that the dominant interaction between the spheres was the
depletion interaction caused by the poly(NIPAM).

To show that the particles were bound to the interface by the depletion force, and not by a
capillary interaction, we tracked particles in the melting experiments, and found that the PS spheres
began to desorb from the interface when the sample was heated (Fig. SM2). When the sample
was cooled, the particles re-adsorbed and crystallized again. Furthermore, in the absence of the
poly(NIPAM) particles, we did not observe the PS particles to stick to the interface.

5 Image processing and analysis methods

The experimental data from the confocal microscope is structured as a 3D intensity stack, I(x,y,z),
stored as a 3D array of floating-point numbers. To extract information about the crystal domains,
we used particle finding methods and morphology operations. This analysis was performed on
Intel-based desktop computers or Linux clusters (Intel Xeon 64-bit, 2670 MHz, 132 GB of RAM;
or AMD Opteron 64-bit, 2200 MHz, 198 GB of RAM), using the Python language (http://www.
python.org) with the SciPy extensions (http://www.scipy.org/) (37 ).

5.1 Particle finding and domain flattening

From the confocal stacks I(x,y,z), we used a particle finding algorithm (34 ) to locate the centers
of particles in 3D space, as shown in Fig. 2A in the main text, with a precision better than 100 nm.
Because the large majority of particles in the solid phase have six neighbors, it is possible to isolate
domains of crystalline order on the sphere and flatten them onto an idealized hexagonal lattice while
preserving the topology of the network of interparticle bonds. The flattened image is shown in the
second panel of Fig. 2A in the main text.

To flatten the domains, we first identified nearest-neighbor pairs of particles by an adjacency cri-
terion: two spheres were counted as neighbors if their gap distance was within the 100 nm depletion
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Fig. SM2. Particle dynamics during a melting experiment. From the confocal microscope stacks
comprising each individual frame, we located the centers of several hundred 1.0-µm PS particles in
3D. Then we found the center (O) and radius of the droplet (R) at each frame by least squares fitting
to the distance between these particles and the droplet surface. During the melting experiment, the
number of particles that were 1.0 µm away or more from the droplet surface increased with time,
providing evidence that the particles were bound by depletion interactions and not capillary forces.

interaction range. We then used the resulting adjacency matrix to build a graph of nearest-neighbor
relationships. The graph was traversed using a depth-first search. The first pair of particles were as-
signed to the (0, 0) and (1, 0) lattice positions of the 2D flattened lattice. Subsequent particles
were added to the lattice as follows: for every ith particle visited in the traversal, the angle made by
the positions of particles i, i−1, i−2 at i−1 determined the lattice position of the ith point relative
to the i− 1th particle. For example, if the link between the third and second point of the traversal
made approximately a 180◦ angle with the link between the second and first point, the third point
was placed at position (2, 0) on the 2D lattice. In this manner, the flattened version of the do-
main was constructed particle-by-particle, preserving the local relationships between particles. The
algorithm misplaces a few (≈ 10) particles, especially near the outer edges and gaps in the domain.
We corrected these errors by hand. The flattening process was done only to illustrate the crystalline
order in Fig. 2 and was not used for any quantitative analysis.

5.2 Morphological operations

To extract information about the shapes of the crystalline domains we performed a series of mor-
phological operations (38 ) on the confocal microscopy image data. We first interpolated the raw
data to a resolution of 0.125 µm per voxel along each direction using a cubic spline. Then, to find
solid regions and prepare the data for further analysis, we performed the following operations (see
Fig. SM3 for results of each step on the data from a representative experiment):

1. Filtering: to eliminate long-wavelength modulation of the brightness due to contrast gradients
from the raw confocal stack (Fig. SM3A), we subtract a boxcar average over a volume of
extent 2w + 1 in each dimension, where w is the particle radius in pixels (34 ). We also
removed high-frequency noise from the camera and frame grabber by convolving the stack
with a Gaussian kernel of width 1 voxel (34 ). Fig. SM3-B shows the filtered stack after these
two operations.

5



B C

D E F

A

10 µm

Fig. SM3. Morphological operations before further analysis (images show z-axis projections of
3D arrays). (A) Original confocal stack; (B) Contrast gradients and high-frequency noise removed;
(C) Thresholding applied to convert stack to binary array; (D) Closing operation to fill in voids;
(E) Points within 0.3 µm of the droplet surface isolated; (F) Euclidean distance transform applied.
Scale bar, 10 µm.

2. Thresholding: We then binary thresholded the filtered stack, setting all voxels above a thresh-
old intensity to 1 and setting all other voxels to 0. The threshold was chosen to preserve par-
ticles but eliminate low-intensity, unwanted features, such as light scattered from the droplet
interface. This process results in a binary array where 1 corresponds to a region in space
occupied by part of a PS particle, and 0 corresponds to empty space. Fig. SM3-C shows the
binary thresholded stack.

3. Morphological closing: We performed a morphological closing operation (38 ) on the thresh-
olded, binary array. This fills in all voids smaller than a single particle, and in particular fills in
the regions between closely-packed particles, converting regions of crystallized particles into
nearly featureless, continuous solid domains. Fig. SM3-D shows the coarse-grained stack.

4. Paring: We pared down the continuous solid domains to a uniform thickness to completely
eliminate single-particle features and enable estimation of domain lengths and widths from
voxel counts at later stages. First we found the center and radius of the sphere that minimizes
the mean squared distance of the 1 voxels from its surface. The resulting sphere provided the
best estimate of the oil-water interface, which is not directly imaged. We isolated all voxels
within a finite width of 0.6 µm of the droplet surface and discarded the rest. In this way, all
domains had the same thickness perpendicular to the droplet surface. Fig. SM3-E shows the
pared stack.
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By counting the number of voxels in each pared domain, we could estimate the size of the
domain. We restricted our shape analysis to domains that covered an area corresponding to
ten or more particles.

5. Euclidean distance transform (EDT): The EDT replaces each 1 voxel with the Euclidean (real
space) distance from that voxel to the closest 0 voxel that lies on the droplet surface. Knowing
the radius of the spherical droplet allows us to convert this Euclidean distance to a geodesic
distance from each point to its closest boundary along the surface of the sphere. Fig. SM3-F
shows the EDT transformed stack.

5.3 Domain shape analysis

We characterized the shapes of the largest crystalline domain from each droplet using several dif-
ferent metrics, as described below, starting from various stages of our image analysis procedure.

5.3.1 Circularity

The circularity C = 4πA/L2 measures the perimeter-to-area ratio a solid domain, where A is the
domain area and L is the perimeter length. C measures the compactness of a solid domain relative
to a disc on a planar surface (for which C = 1). The smaller C, the more anisotropic the domain.
Both area and perimeter were measured from filtered coarse-grained stacks such as the one shown
in Fig. SM3-E.

The domain area A was measured by counting the number of voxels within the domain:

A≈ # of voxels in domain× Volume per voxel
Transverse thickness of domain

, (3)

where the volume per voxel is (1.25 µm)3 (see Section 5.2).
The domain perimeter L was measured by counting the number of voxels within a distance t

of the boundary. To smooth out features on the perimeter smaller than the scale of the particles,
we chose t to be the particle diameter. The number of voxels within one particle diameter of the
boundary was obtained from the EDT:

L≈Number of voxels with (EDT < particle diameter)×
Volume per voxel

Transverse thickness of domain×Particle diameter
.

(4)

These estimates of the area and perimeter for individual domains were used to calculate the
circularity of crystal domains reported in Fig. 2C of the main text and Fig. S2.

5.3.2 Mass dimension

Another measure of the domain anisotropy is the mass dimension of the domains. The mass function
m(r) of a domain is the amount of material within a geodesic distance r of a central point. The mass
dimension β is the exponent that describes the scaling of m(r) with r: m(r) ∼ rβ . It reflects the
degree of compactness of a shape: a disc has mass dimension β = 2, while an extended object
such as a long, narrow rectangle, or a starfish with long arms of nearly constant width, has mass
dimension β = 1. On a sphere, the mass dimension is close to 2 for disc-shaped domains as long as
their size is small compared to the sphere radius; it is 1 for long ribbons with width smaller than the
sphere radius.
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Fig. SM4. Example of a mass dimension measurement for a single domain. The mass m(r) is
estimated as the number of voxels within a geodesic distance r of the largest inscribed disc center
(white dot), with r incremented by 1.0 µm between data points (concentric circles in schematic).
Fitting a contiguous pair of line segments to the plot gives rI = 5.7 µm for the radius separating
the inner and outer regions (see text), and the mass dimension estimates of 2.02 (red line) and 0.82
(blue line) for the inner and outer regions respectively.

We first determined m(r). For each experimental domain we chose the center of the largest
inscribed disc (see section 5.3.3) as the origin. The mass was estimated as the number of voxels in
the solid region within a geodesic distance r of the origin.

To find the mass dimension, we fit the logm(r) versus logr data to two contiguous line segments
with independent slopes (Fig. SM4 solid lines). This model is based on the expected behavior of
the mass dimension β for an anisotropic or branched domain (inset of Fig. SM4): at small r, m(r)
should grow as r2 until r becomes comparable to the radius of the largest inscribed disc. At that
point m(r) must grow with a different exponent.

We used a model with four free parameters to fit the data: the intercept, the two slopes, and
the distance rI that separates the inner and outer regions. To ensure that we identify a distinct outer
region, we require that rI < rmax/2, where rmax is the largest value of r within the domain. Domains
that fail these test are likely to be compact, with some small regions at the boundaries skewing the
value of the outer mass dimension. For such domains, the outer mass dimension estimate is not
reliable, and we assigned the inner mass dimension to the outer region as well.

We show m(r) and a histogram of the mass dimension for several hundred domains in Fig. S3.

5.3.3 Inscribed disc diameter, domain length, and domain width

We measured the inscribed disc diameter a∗ of curved crystal solid domains from the EDT stack,
such the one shown in Fig. SM3-F. For a given domain, a∗ is the diameter of the largest possible
disc that fits completely within the solid domain. It is simply twice the largest value of the EDT.
The center of the largest inscribed disc is the point in the domain with this value. Fig. SM5-A shows
the center and edge of the inscribed disc for the largest domain from Fig. SM3-F.

To characterize the length and width of the non-compact and often branched or zigzag shapes of
the equilibrated crystallites, we used the morphological skeleton, the set of all points in the domain
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A B

Fig. SM5. Morphological measurement of a solid domain. (A) Close-up of the largest domain from
the droplet shown in Fig. SM3-F. The intensity corresponds to the Euclidean distance transform
(EDT). The red dot is the point in the domain with the largest value of the EDT, which corresponds
to the center of the largest inscribed disc. The blue circle shows the edge of the largest inscribed
disc; the diameter of this circle (twice the largest value of the EDT) was used to estimate a∗ for
the domain. (B) Morphological skeleton overlayed on the EDT. The blue and orange points follow
ridges in the EDT, approximating the morphological skeleton. The orange points follow the longest
contiguous branch, or backbone.

with more than one closest point on the boundary. The morphological skeleton is equivalently the set
of centers of all circles that are tangent to the domain boundary at two or more points. The skeleton
follows points where the Euclidean distance transform (EDT) changes sharply. It corresponds to
regions where the Laplacian of the EDT takes on large negative values (39 ).

To estimate the morphological skeleton from the EDT of a domain, we calculated the numerical
Laplacian of the EDT at each 1 voxel. We isolated voxels with Laplacian lower than a threshold of
−6.4/ µm, corresponding to a change in the EDT by one voxel over a distance of about 1.2 voxels.
We then picked a sparse subset of these points, chosen randomly with the restriction that no two
points are closer than half a particle diameter, to represent the morphological skeleton (Fig. SM5-
B). The value of the EDT at each skeletal point corresponds to the radius of the disc centered at that
point that is tangential to two or more points on the boundary of the domain. Thus it is half the local
width of the domain at that point.

A typical skeleton contains many branches, some minor branches that connect the main cen-
tral branch of the skeleton to features along the boundary, and others major branches following the
branched shape of the domain itself (Fig. SM5-B). To measure the length of a domain, we iso-
lated the longest continuous branch of the skeleton by successively removing the shortest surviving
branch until only two endpoints remained in the skeleton. This branch, called the backbone, is high-
lighted in Fig. SM5-B. For a domain that is highly convoluted but does not have any branches, the
length of the backbone is a good measure of the extent of anisotropic domain growth. For a domain
with multiple major branches, the length of the backbone quantifies the length of the longest section
of the domain.

The length of the backbone is reported as the domain length l in Fig. 4 of the main text. The
average diameter of the central discs along the backbone, weighted by the area of each disc to
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minimize the effects of the tapered regions at the ends of domains, is reported as the domain width
w in Fig. 4 of the main text. The inscribed disc diameter a∗ and the domain width w for several
hundred domains are shown in Fig. S4.

6 Theoretical methods

6.1 Pair potential

Our calculations of the phase behavior and elastic energy rely on a model for the pair potential. This
model has two components: a depletion attraction and an electrostatic repulsion. The driving force
for the crystallization is the depletion attraction between PS particles and between the particles and
the water-oil interface. We modeled the depletion interaction between two PS particles with the
Asakura-Oosawa depletion theory for a binary spherical mixture (7 , 40 ):

UAO(r) =−kBT
φs

(2as)3 (2as +2al− r)2× (2as +2al +
r
2
) (5)

where r is the center-to-center distance between two PS particles, φs the volume fraction of poly-
(NIPAM) depletants (≈ 25%), al the radius of the large PS particles (al = 500 nm or 300 nm) and
as the radius of the small poly(NIPAM) (as = 40 nm) depletants. The range of the interaction is the
diameter of the poly(NIPAM) depletant 2as = 80 nm. The strength of the depletion attraction can
be calculated when two PS particles are touching r = 2aL:

UAO(2aL) =−kBT φs× (1+
3al

2as
) (6)

The surfaces of the PS particles have negatively-charged sulfate groups. When two PS parti-
cles are close to one other (r ' 2al), there is a screened Coulomb repulsion between them, which
modifies the shape of the depletion well at small separation:

UDLVO(r) = kBT Z2
λB

(
eκal

1+κal

)2 e−κr

r
(7)

where Z is the surface charge valence per PS particle, λB the Bjerrum length, and κ−1 the Debye
screening length (41 ). For our experimental conditions, λB = 0.7nm, and κ−1 = 2nm. We do not
know the surface charge for the 0.6-µm plain PS particles, which were synthesized in our lab. For
the fluorescent particles, we used samples from several different batches that had different surface
charges as reported by the manufacturer. We therefore estimated Z = 6.4×104 for the surface charge
for these beads, following our previous calculations (35 , Supplementary Materials) from similarly-
sized particles from the same manufacturer. This surface charge is of the same order of magnitude
(105) as the various surface charges reported by the manufacturer for the fluorescent beads.

The pair potential between PS particles is the summation of the depletion attraction and Coulomb
repulsion:

U(r) =UAO(r)+UDLVO(r)

=−kBT
φs

(2as)3 (2as +2al− r)2
(

2as +2al +
r
2

)
+ kBT Z2

λB

(
eκal

1+κal

)2 e−κr

r
.

(8)

The potential is shown in Fig. SM6. We estimate that for our experimental conditions, the strength
of the depletion attraction between PS particles, taking into account the electrostatic repulsion, is
Um ' 4kBT .
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Fig. SM6. Pair potential between colloidal spheres with diameter d = 2aL = 1.0 µm. The attrac-
tive (Asakura-Oosawa) and repulsive (screened Coulomb) components and their superposition are
shown. The diameter of the poly(NIPAM) depletant particles is 80 nm, which sets the interaction
range.

The depletion attraction between the PS particles and the curved water-oil interface can be
estimated in a similar manner (8 ). The range of the attraction is the same as between the particles,
but the strength at contact is twice as large or more:

U ′AO(2aL) =−kBT φs

(
1+

3al

as

R
R−al

)
≈ 2UAO(2aL) (9)

where R is the radius of curvature, that is, the radius of the droplet that encapsulates the colloidal
mixture. The depth of the attractive potential between the PS particles and droplet interface is
the sum of the depletion attraction, electrostatic repulsion, and steric repulsion from surfactant
molecules. Without more information on these short-range repulsive forces, we cannot estimate
the well depth, but from the phase behavior and time scales for particles to dissociate from the
interface, we estimate the well depth to be U ′m > 10kBT .

6.2 Equilibrium between bulk and surface

In our analysis, we have assumed that the crystallization is a quasi-2D process occurring from a
2D gas phase to a 2D solid phase confined to the water-oil droplet interfaces, with very little direct
exchange of particles between the crystallites and the 3D interior of the droplet. This assumption
is justified if practically all particles attach to the droplet interface, leaving very few particles in the
interior.

Particles confined to the interface lower their energy because of the depletion interaction be-
tween each particle and the surface, but have a lower entropy because they do not access the entire
3D volume of the droplet. The balance between entropy and energy determines the ratio of the
number m of particles in the droplet interior to the number n at the surface, at equilibrium. This
ratio is approximately

m
n
≈ Vint

Vsurfe−ε/kBT ≈
1
3

R
δ

eε/kBT , (10)
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where Vint is the volume explored by the particles in the interior and Vsurf the volume explored by
particles bound to the surface. These are set by the droplet radius R and the range of the interaction
δ between the particles and the interface.

Our experimental results for the spring constant k (see 6.6) suggest that the width of the potential
well experienced by particles at the interface is δ ≈ 10 nm. The strength of the interaction between
particles and the interface is ε/kBT ≈ −10. Hence m/n varies from about 0.008 for the smallest
experimental droplets with 5 µm radius to about 0.08 for the largest droplets with 50 µm radius. Even
for the largest droplets, only a small fraction (less than 10%) of the colloidal particles remain in the
bulk, and our treatment of crystallization as a quasi-2D process is justified. Note that the attractive
interactions between particles will reduce the number of particles in the bulk even more, because
the particles at the interface further reduce their net free energy by forming stable crystallites. We
do not observe stable crystallites in the interior volume of any of the droplets.

6.3 2D phase behavior

To calculate the phase diagram shown in Fig. S1, we first modeled the expected phase behavior for
a flat 2D system in the absence of Gaussian curvature. We consider colloidal particles interacting
through the potential described in Eq. 8. Given the short range of the attraction, ∼ 0.08 of the
particle diameter, we expect any liquid-gas coexistence region to be metastable and the equilibrium
phase diagram to contain a single fluid-solid coexistence region (42–44 ). Although hexatic phases
can also appear in such systems (45 ), we consider only fluid and solid phases, as these are the
observed phases in the experimental system. The resulting phase diagram will allow us to clarify
what we mean by “rigid” versus “compliant” coexisting crystals. Although the short-range nature of
the attractive part of the potential suppresses a triple point, we show that the “rigid” crystals studied
here correspond to a sublimation-like region of the phase diagram.

We consider a simple, first-order model for the phase behavior. We use an equation of state for
hard disks to model the fluid phase, and an Einstein solid model for the crystalline phase. These
models provide analytical expressions for the free energies of both phases. To determine the phase
diagram we evaluate the Helmholtz free energy per particle of both phases as a function of tem-
perature and particle number density ρ . Phase coexistence is determined by equating the chemical
potentials derived from these free energies.

One unusual feature of our system is the temperature-dependence of the poly(NIPAM) deple-
tant particles, which shrink as the temperature increases, changing both as as well as the depletant
volume fraction φs in Eq. 8. Thus both the range and depth of the interaction potential decrease with
temperature, and we expect the width of the coexistence region to decrease as well. To quantify this
effect, we extract an empirical form for the depletant radius as a function of temperature as(T ) by
fitting a polynomial to the radius measured from dynamical light scattering (Fig. SM7). Assuming
that no depletant molecules enter or leave the droplet as the temperature changes, we can calculate
the temperature-dependent depletant volume fraction φs(T ) = 0.25(as(T )/as(23◦C))3 from this
empirical relation, using an estimated volume fraction φs = 0.25 at 23◦C. We use these empirical
relations to calculate the temperature-dependent pair potential in our model.

6.3.1 Fluid phase

Because the short-ranged attraction and screened electrostatic repulsion should not significantly
affect the free energy of the fluid phase at the low densities observed in the experimental system,
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Fig. SM7. Variation of poly(NIPAM) depletant radius with temperature. The polynomial fit (green
line) provides an empirical functional dependence a(T ) in the range 10 < T/◦C < 40, allowing us
to calculate the phase diagram as a function of temperature.

we model the fluid phase as a gas of hard disks of diameter d. The pair potential is

v(r) =

{
∞, r ≤ d
0, r > d

(11)

The free energy of the fluid phase is calculated using an approximate equation of state for
the hard disk fluid in two dimensions. This is expressed in terms of the compressibility factor
Z ≡ β p/ρ = πβ pd2/(4η), with p the 2D pressure, ρ = N/V the number density corresponding
to N particles in a volume V , η = πρd2/4 the area fraction and β = 1/kBT . For the hard-disk
system, close packing corresponds to ηcp = π/(2

√
3) ≈ 0.907. We use the Santos-de Haro-Yuste

approximate equation of state (46 ),

Z(η) =

[
1−2η +

2ηcp−1
η2

cp
η

2

]−1

, (12)

which is a good approximation over a wide range of particle densities, matching the first virial
coefficient exactly and also reproducing the pole in the compressibility at close packing. The
Helmholtz free energy F can be obtained by integrating the equation of state under constant tem-
perature and particle number from the infinitely dilute system, which is the 2D ideal gas (ρ → 0,
F → Fideal = NkBT (log(ρΛ2)−1) where Λ = h/

√
2πmkBT is the thermal de Broglie wavelength):

F = Fideal +NkBT
∫

ρ

0

Z(ρ)−1
ρ

dρ ;

β f ≡ βF
N

= log
(

4ηΛ2

πd2

)
−1+

∫
η

0

Z(η)−1
η

dη ,

(13)

where we define f ≡ F/N. The chemical potential, or the Gibbs free energy per particle, can be
expressed in terms of the compressibility factor Z:

µ =
G
N

=
F + pV

N
;

β µ = β f +Z(η).
(14)
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6.3.2 Solid phase

To model the chemical potential of the solid phase, we use the Einstein solid approximation, from
which exact expressions of the free energy and entropy are easily obtained. We assume each col-
loidal particle sits in the minimum of the depletion potential well generated by six neighbors, ar-
ranged in a triangular lattice, and oscillates independently of these neighbors. Thus the 2D col-
loidal crystal can be treated as a collection of N independent harmonic oscillators with frequency
ω =

√
3k/m (where k is the spring constant associated with small displacements about the min-

imum of the pairwise interaction U(r), and m is the mass of the particle) and depth ε0 = −3Um.
This approximation neglects the correlated fluctuations (phonons) of the solid, the fluctuations of
particles normal to the interface, and the anharmonicity of the true potential. Such effects should
produce only minor changes in the qualitative phase diagram calculated here.

The partition function of the crystal is then QN
ω , where Qω = e−βε0/(1−e−β h̄ω)2 is the partition

function of a quantum harmonic oscillator with two degrees of freedom. The harmonic oscilla-
tor decouples in the z and y directions, and we ignore the zero-point energy, which is minuscule
compared to the well depth. Hence the Helmholtz free energy is

βF =− log(QN
ω)

≈ Nβε0 +2N log(β h̄ω), for β h̄ω � 1.
(15)

For the Einstein solid, volume is not an independent variable, and the chemical potential can be
calculated from the Helmholtz free energy:

β µ = β

(
∂F
∂N

)
V,T

= β

(
∂F
∂N

)
T
= βε0 +2log(β h̄ω). (16)

We rewrite this in terms of the thermal de Broglie wavelength for comparison with the fluid phase:

β h̄ω =
Λ

d

√
3kd2

2πkBT

β µ = βε0 + log
(

Λ2

d2

)
+ log

(
3kd2

2πkBT

)
.

(17)

6.3.3 Phase diagram

Using approximate values for the spring constant and well depth from the theoretical pair potential,
(section 6.1), we now equate the chemical potentials of the solid (Eq. 17) and fluid (Eq. 14) to
determine the phase boundaries (note that the thermal de Broglie contributions cancel). Using
Eq. 12 for the compressibility, we obtain ηf ≈ 0.091 (ρfd2 = 0.12) for the low-density boundary
of the coexistence region at low temperature, when the depletant is at its maximum size. The
density of the coexisting solid phase is very close to the close-packing density ηs ≈ 0.9, as we have
assumed a hexagonal Einstein solid with the particles at the minima of the depletion interaction,
which gives rise to an interparticle distance of 1.02d. The low density of the fluid phase is in
qualitative agreement with the experiments, where nearly all particles are observed to be in the solid
phase at low temperature. Using other approximations for the hard disk equation of state in place of
Eq. 12, such as the approximations in refs. (47 ) and (48 ), do not significantly change the results of
this approximate theory.

As the temperature increases, the coexistence region shrinks due to the change in depletant size,
as shown in Fig. S1. Again, this is in qualitative agreement with experiments, which show that the
system sublimates as the temperature increases.
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In this phase diagram, we have assumed that the density of the solid phase remains that of
a hexagonal lattice with lattice constant equal to the position of the minimum in the depletion
potential, which depends weakly on as. However, the stable solid phase at high temperature, when
the depletion interaction is weak and even more short-ranged, may be stabilized by entropy rather
than the depletion attraction. For reference, computer simulations of the melting transition (49 )
of the pure hard-disk system (with no attractions) show that there is coexistence between a fluid
and entropic crystal between ηf = 0.697 (ρf = 0.887/d2) and ηs = 0.710 (ρs = 0.904/d2). Thus at
temperatures greater than about 35◦C, there could exist a coexistence between two solid phases, a
dense crystal with ηs ≈ 0.9 and an entropic crystal with ηs ≈ 0.7 (43 ), but we have not modeled
the equilibrium between solid phases in the phase diagram shown in Fig. S1. We note in passing
that three different simulation methods have recently revealed a first-order liquid-hexatic transition
in the high-density regime for hard disks (50 ).

6.3.4 Rigidity of the solid phase

At temperatures below the volume phase transition of the poly(NIPAM) depletant particles – where
the depletion force has its maximum depth, and the coexistence region is broad – we expect the
crystals that form to be rigid due to the short range of the depletion potential. For a hexagonal
network of springs of spring constant k, the the Lamé elastic constants are λ = µ =

√
3k/4 (51 ). At

low temperature, the effective spring constant for our crystals is on the order of 106–107 kBT/µm2

(section 6.6). Thus the elastic constants are large (see section 6.4.2), and the crystal is rigid. The
Kosterlitz-Thouless parameter,

K =
4µ(µ +λ )

2µ +λ

b2

kBT
, (18)

where the Burgers vector b∼ d, is many orders of magnitude larger than 16π , the value at which the
solid becomes stable against the formation of dislocations. The melting transition to an intermediate
hexatic phase is therefore suppressed in favor of a sublimation directly into the fluid phase.

At higher temperature, the crystal should become less rigid because the spring constant de-
creases as the depletants shrink. A compliant solid may exist at high temperature if an entropic
crystal is favored over a crystal formed by depletion bonds. See ref. (50 ) for a progress report on
understanding the phase behavior in this hard-disk-like regime.

6.3.5 Metastable fluid-fluid coexistence

Finally, we calculate the fluid-fluid coexistence curve. Although the short range of attractions in
the system makes any fluid-fluid coexistence metastable relative to the fluid-solid phase separation
identified in Section 6.3.3, the position of the fluid-fluid coexistence curve can affect the kinetics of
phase separation. Close to a fluid-fluid critical point or in a region of fluid-fluid coexistence, crystal
growth may occur via a two-step nucleation mechanism (52 , 53 ), where the dilute gas densifies into
a dense droplet, within which the solid phase nucleates.

To estimate whether such mechanisms are relevant in the experiments, we calculate the meta-
stable fluid-fluid coexistence curve in the 2D phase diagram, again in the absence of Gaussian cur-
vature. To do so, we must include the effect of attraction between particles in the fluid phase, since
there is no fluid-fluid phase separation in the 2D hard-disk fluid. To improve upon our approximate
calculations in Section 6.3.1, we include the correction due to the attractive interactions to lowest
order using perturbation theory (54 ). The reference system for our perturbation theory is the 2D
hard-disk fluid, with Helmholtz free energy per particle fref given by Eq. 13. The approximate free
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Fig. SM8. Approximate phase diagram of a 2D system of particles experiencing a fixed pair poten-
tial set by the size and volume fraction of depletant at 22◦C. In addition to the fluid-solid coexistence
region, there is a metastable fluid-fluid coexistence region indicated by the dotted curve. The dashed
horizontal line shows the temperature at which crystallization takes place in the experiments.

energy including the perturbative correction is (54 )

β f ≈ β fref +
ρ

2

∫
drgref(r)[βuint(r)] (19)

where gref is the radial distribution function of the hard disk reference system, and uint(r) is the
perturbation potential which we take to be the attractive part of U(r). In our calculations, we use a
density expansion to order ρ3 for gref(r),

gref(r)≈

{
0, r < d
1+ρg1(r)+ρ2g2(r)+ρ3g3(r), r ≥ d

(20)

where the gi(r) are numerically interpolated from the discrete values reported in Ref. (55 ). Using
Eqs. 13 and 20 in Eq. 19, we obtain the Helmholtz free energy per particle in the fluid phase. The
chemical potential, or the Gibbs free energy per particle, is:

µ(η) =
F + pV

N
=

∂ (η f )
∂η

. (21)

Fluid-fluid coexistence occurs when the theoretical free energy first becomes concave. The coexis-
tence densities are obtained by the usual Maxwell double-tangent construction.

Including the perturbative effect of interactions in the fluid free energy does not significantly
change the fluid-solid coexistence curves, justifying the use of the 2D hard-disk fluid free energy
to calculate Fig. S1. Significantly, our model does not show fluid-fluid coexistence for interaction
potentials corresponding to the experimentally accessible poly(NIPAM) depletant radius shown in
Fig. SM7. A second fluid phase (signalled by ∂ µ/∂η taking on negative values for some range of η)
exists only when as > 54 nm, larger than the maximal temperature-dependent poly(NIPAM) radius
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in the experimental system. According to our model, the interactions at the maximal poly(NIPAM)
radius of 40.7 nm are not strong enough even for a metastable fluid-fluid coexistence.

Every temperature value in Fig. S1 is associated with a unique interaction potential. To gauge
the effect of possible metastable phases on crystal nucleation, we also calculate the theoretical
phase diagram for the specific interaction potential at which the experiments are conducted, which
corresponds to U(r) calculated using as and φs at the crystallization temperature of 22◦C. As shown
in Fig. SM8, crystallization in our experiments occurs far above the fluid-fluid coexistence region
(T/Tc ≈ 3.2� 1, where Tc is the temperature of the fluid-fluid critical point). Therefore, the effect
of the metastable phases on the crystallization pathway is expected to be small.

6.3.6 Influence of curvature on the theoretical phase diagrams

In our model, the primary effect of the curvature is to strain the crystal. We capture the effect of
this strain on the free energy by adding an elastic energy penalty that depends on the shape of the
solid domain, the curvature, and the effective spring constant of the pairwise interactions between
particles. Here we show that we can neglect the effects of curvature on the interactions and the
entropic contributions to the free energy.

Because of the small size of the depletant, there is no direct influence of the droplet interface,
and therefore of its curvature, on the pairwise depletion attractions. Furthermore, there should be
no significant three-body contribution to the particle-particle interactions. The Asakura-Oosawa
interaction arises due to the overlap of regions from which the depletant is sterically excluded. The
overlap of excluded volumes of two colloidal particles extends to at most

√
a2

s +2alas = 0.20 µm
for 2al = 1.0 µm particles and 0.16 µm for 2al = 0.6 µm particles, and does not overlap with the
excluded volume near the droplet interface in either case. Three-body interactions occur only if the
excluded volumes of three particles mutually overlap; the smallest depletant radius for which this
happens is al(2/

√
3−1) = 0.077 µm for 1.0 µm particles and 0.046 µm for 0.6 µm particles, larger

than the radius of the depletant in our system. Furthermore, the curvature-induced strain is not large
enough to cause three-body overlaps. The maximum curvature-induced strain in the solid domains,
as estimated from the domain widths, is of order (w/R)/8 ∼ 0.002, smaller than the ratio of the
potential well width to particle size, which is of order 0.01.

The entropic contribution to the free energy of the fluid phase, modeled using the hard-disk
fluid, is also not significantly modified by confining the disks to the surface of a sphere (56 ) (this is
in contrast to surfaces of constant negative curvature, such as the hyperbolic surface, on which the
behaviour of simple fluids can differ significantly from the flat plane (56 ).) A scaled particle theory
approximation of the compressibility factor Z(η) for hard disks on the surface of a sphere (57 )
shows deviations of less than 1% for η ≤ 0.5 when the sphere radius is five times the particle
diameter. For spheres with radii ten times the particle diameter, the deviations are less than 0.1%.

6.4 Nucleation and growth on curved surfaces

In this section we show how we calculate the free energy of crystal growing on the surface of the
sphere, as shown in Fig. 3 of the main text.

6.4.1 Classical theory of crystallization

In classical nucleation theory (CNT), the free energy change of crystallization includes interfacial
energy and bulk energy. The free energy change of creating a 2D crystallite of area A and interfacial
length L is

∆G = γ ·L−∆ f ·A, (22)
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where γ is the interfacial tension associated with creating a solid-gas interface of unit length, and
∆ f > 0 is the excess chemical potential per unit area in the gas phase compared to the solid phase.
For a 2D circular disk of diameter a, L = πa and A = πa2/4. Rough estimates of γ and ∆ f can be
obtained from the pair potential between individual particles, characterized by a well depth Um and
equilibrium separation d. For our experimental system, d can be taken to be the diameter of the PS
particles, since the depletion interaction is short-ranged.

The interfacial tension is estimated by considering the energy cost for a solid domain to break
enough bonds to form a free boundary per unit length along the solid-fluid interface. It corresponds
to a particle breaking one bond (Um) over a length of one particle size (d) along the interface. This
gives the estimate of interfacial tension as:

γ ≈Um/d. (23)

The free energy change between solid and gas phases per unit area is estimated from the chemi-
cal potential (the free energy per particle) in the solid phase. Each particle in the interior of the solid
phase occupies the area of a regular hexagon with side d/

√
3. From the Einstein solid estimate of

the chemical potential in the solid phase, Eq. 17, we estimate ∆ f to be

∆ f ≈ 2
√

3
Um

d2 −
2√
3

kBT
d2 log

(
3kd2

2πkBT

)
. (24)

This estimate ignores entropic contributions from the fluid phase (aside from the trivial cancel-
lation of the thermal de Broglie contribution), which depends on the the density of particles during
crystallization. In the early stages of growth, when most particles are in the fluid phase and the
fluid density is moderate, the entropic contribution is small and ∆ f remains positive (i.e. solidifi-
cation is favoured) due to the dominant contribution of the depletion attraction in the solid phase
(Eq. 24). However, as crystallization proceeds, the number of fluid particles and hence the fluid den-
sity becomes lower, increasing the entropic contribution to the gas phase free energy and decreasing
∆ f . At very low fluid densities (η � 1), the entropic contribution dominates the contribution from
Eq. 24, which is no longer accurate; ∆ f can even be zero or negative. Therefore, our rough estimate
of the free energy change is valid only in the initial stages of growth. Growth stops when ∆ f → 0,
or when there are no particles left in the fluid phase.

6.4.2 Elastic energy of deformation

On a flat surface, the PS particles can assemble in a perfect hexagonal lattice, with all bonds between
particles at the equilibrium length of the depletion interaction. However, on a surface of nonzero
Gaussian curvature, such as a sphere, geometry dictates that the lengths of all the bonds cannot
be preserved, and they must undergo distortions from their equilibrium positions. To calculate the
energy cost of changing bond lengths, we approximate each bond as a harmonic potential with
spring constant k and with equilibrium bond length the same as that of the depletion interaction. In
the continuum limit where the bond lengths are small compared to the size of the bond network,
the deformation energy of the hexagonal network is equivalent to the elastic energy of deforming a
two-dimensional membrane with a 2D Young’s modulus Y and Poisson ratio ν given by (51 ):

Y =
2√
3

k; ν =
1
3
. (25)

Within this continuum description, the elastic energy of a membrane is given in terms of the
2×2 strain tensor ui j (58 ):

Es =
1
2

∫
d2r

Y
2(1−ν2)

[
(u11 +u22)

2−2(1−ν)(u11u22−u2
12)
]
, (26)
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where the integral is over the surface of the undeformed patch. To find the elastic energy of deform-
ing a membrane patch of a particular shape on a sphere of radius R, we must solve the variational
problem of finding the strain fields that minimize the elastic energy, subject to the boundary con-
ditions of zero line stresses perpendicular to the boundaries, so that the displacements of the patch
bring it to the required spherical shape. This is a difficult problem to solve for patches of arbitrary
shape, but it has been solved for some specific shapes.

For disc-shaped elastic domains of diameter a, the elastic energy cost (23 ) is:

Edisc ≈
π

24576
Y R2

( a
R

)6
. (27)

For rectangular domains with length l much larger than width w, an approximate expression for the
elastic deformation energy on a sphere (27 ) is:

Eribbon =
1

640(1−ν2)
Y R2

(
w5l
R6

)
≈ 9

5120
Y R2

(
w5l
R6

)
(28)

for ν = 1/3. We use Eq. 27 and Eq. 28 to estimate the elastic energy cost of stretching a solid
domain on the curved surface in the main text.

6.5 Kinetic growth instability calculations

In the main text we rule out kinetic instabilities as a cause of the observed anisotropic crystal shapes
by comparing growth on curved and flat substrates and estimating the relevant physical parameters.
Here we describe the details of this calculation.

Growth instabilities arise when diffusion of the fluid particles to the crystal-fluid interface is
the rate-limiting step in crystal growth, which is true for large crystals. Since it takes fluid particles
longer to diffuse around the interface for larger crystals, smoothing out protuberances in the growing
interface may be kinetically prohibited for large crystals even if energetically favored. This leads
to a dendritic growth instability for crystallites larger than a certain size. Our flat crystals, which
are up to 40 µm in diameter, do not exhibit dendritic growth. Since the growth conditions and
particle concentrations are similar in our experiments on flat and curved substrates, we do not expect
dendritic growth to be observed up to these sizes on curved substrates either.

This argument can be made quantitative by estimating the characteristic crystal size at which
growth instabilities become important. A simple physical model for growth instabilities leading
to dendrites is the linear stability analysis of Mullins and Sekerka (4 , 21 , 22 ). A flat crystal-fluid
interface growing into the fluid phase is expected to be unstable to perturbations of wavelength
longer than the Mullins-Sekerka wavelength

λs = 2π
√

ld lc/2, (29)

where ld is the macroscopic diffusion length and lc is the microscopic capillary length. ld = 2D/v
for fluid particles with diffusion constant D diffusing to an interface growing at speed v. lc depends
on the energy of the solid-liquid interface:

lc =
γ

(∆c)2(∂ f/∂c)
, (30)

where γ is the line tension of the crystal-fluid interface, ∆c is the jump in concentration c between the
two phases, and f is the chemical potential. The capillary length is difficult to calculate or measure
directly, but it is essentially the interfacial thickness (4 ), which is at least one particle diameter in our
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system. Choosing lc = d to find the lower bound on the Mullins-Sekerka wavelength, and estimating
the interfacial growth speed from our experiments, we obtain λs & 100 µm on planar substrates for
both 0.6-µm and 1.0-µm-diameter particles. This is the characteristic width of dendrites if a kinetic
instability is responsible for anisotropic growth. Crystals that are smaller than λs will not show a
dendritic instability, consistent with our observations on flat crystals.

Because the diffusion length ld and capillary length lc do not depend strongly on the substrate
curvature, the Mullins-Sekerka wavelength λs should not change significantly when the crystal
grows on a curved surfaces. In fact, λs is likely to be larger for a curved surface because of two
effects. First, the free energy change associated with crystallization is smaller on a curved surface,
because of the positive elastic energy cost associated with crystal growth. Thus the capillary length
lc should be larger on a curved surface. Second, for crystals of the same diameter, the fluid particles
have a smaller interfacial length to explore since the perimeter is smaller on a curved surface com-
pared to a flat surface. The diffusion of fluid particles to interfacial irregularities is faster, which
helps to stabilize the interface.

As a result, we do not expect the dendritic instability to appear on curved surfaces if the crys-
tal sizes are smaller than 100 µm, which we consider a lower bound on the dendrite width. Our
characteristic width of anisotropic growth is much smaller, even for our largest droplets: the biggest
domain width is about 20 µm for 1.0-µm PS particles, and 25 µm for 0.6-µm PS particles. Thus
we rule out a dendritic growth instability as the mechanism for anisotropic growth in our curved
crystals.

6.6 Estimation of spring constant

As we discuss in the main text, we are able to fit the model to the observed domain widths to extract
an effective spring constant for the interparticle interactions. This section describes our method.
Our theoretical model predicts a constant width w for an anisotropic crystallite grown on a curved
surface. The stable domain width can be determined from our model by minimizing the net free
energy of forming a ribbon-like domain as a function of domain width w:

w≈ 4
√

2√
3

(
∆ f
Y

)1/4

R. (31)

where we have used rough estimates of ∆ f and Y based on the well depth Um and spring constant k of
the interparticle pair potential (Eq. 24 and Eq. 25). While we expect the well depth to be reasonably
close to Um = 4kBT for 1.0 µm PS particles and Um = 2.5kBT for 0.6 µm particles, the theoretical
estimate of the spring constant is less reliable, since it depends on the details of the short-ranged
repulsive interactions between particles. However, we can estimate k from the dependence of the
domain width on droplet radius observed in the experiments.

Using a linear regression in Fig. S4B, we extract a slope of 0.10 for the w∗/d-vs.-R/d relation-
ship for domains of d = 0.6 µm particles, and a slope of 0.17 for domains of d = 1.0 µm particles.
Using Eq. 31, we estimate the spring constant as k ≈ 1× 104kBT/µm2 for 0.6 µm particles and
k ≈ 1× 105kBT/µm2 for 1.0 µm particles. The spring constant estimate for 1.0 µm PS particles is
consistent with the estimate of 6×104kBT/µm2 from the theoretical pair potential, Eq. 8.

The value of 105 kBT/µm2 for the spring constant is also consistent with that obtained from
measurements of the ensemble probability of certain types of nonrigid clusters of 1.0 µm PS parti-
cles under a similar depletion attraction potential (35 ). As discussed in ref. (35 ), the probability of
observing a nonrigid clusters relative to all other clusters, including rigid and other nonrigid struc-
tures, depends on the spring constant of the potential through the vibrational entropy of the soft
mode. The experimentally measured probability of a 9-particle nonrigid cluster of 1.0 µm particles
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Fig. SM9. Theoretical equilibrium probability of observing a non-rigid cluster of 9 particles as a
function of spring constant. The computer rendering shows the structure of the non-rigid cluster.
The equilibrium probability (the black solid line) depends on the spring constant k and is indepen-
dent of the potential well depth. Black dots shows the region of 95% confidence interval of the
experimental measurement of the equilibrium probability of observing the non-rigid cluster.

was 11%, lying between 4% and 27% with a 95% confidence interval. The actual pair potential
between PS particles can be approximated by a harmonic potential

U(∆r) =
1
2

k×∆r2−Um, (32)

where Um is the strength of the potential, ∆r is the distance between particles around the equilibrium
position, and k is the spring constant. Using a statistical mechanical model to predict the probabili-
ties of all other clusters (35 ) and a numerical calculation of the vibrational entropy associated with
the soft mode (see Supplemental Information in ref. (35 )), we can estimate the theoretical proba-
bility of observing the non-rigid cluster Ptheory. Because the number of bonds is the same for all
clusters, Ptheory depends only on the spring constant k and is independent from the well depth Um.
Fig. SM9 shows how Ptheory varies with the spring constant k. The range Ptheory=4%–27% corre-
sponds to spring constants between 2×105 kBT /µm2 and 1×109 kBT /µm2 for 1.0 µm PS particles.
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Fig. S1. Approximate phase diagram of the 2D colloidal system in flat space, using the hard-disk
fluid and Einstein solid approximations. The temperature sets the depletant radius and volume
fraction, as described in the text. Coexistence with a rigid crystal occurs below the shoulder in the
coexistence curve, in a sublimation-like region of two-phase coexistence.
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Fig. S3. Statistical results of mass dimension analysis. (A) Plot of measured m(r) against r for 306
1.0-µm-PS curved crystal domains (left panel) and 507 0.6-µm-PS curved crystal domains (right
panel). The color of each line is set by the outer mass dimension obtained from the parametric
fit (fit lines not shown). Lines are offset in the y-direction for clarity and ordered vertically by
increasing size of the inner region rI (obtained from the fit). Nearly all domains show a clear change
in the mass scaling between small and large r. The predominance of green lines shows that most
domains are indeed extended, displaying a mass dimension consistent with extended or branched
shapes with near constant width. (B) Distribution of inner and outer mass dimensions for 306 1.0-
µm-PS curved crystal domains (blue bars, left panel) and 1522 0.6-µm-PS curved crystal domains
(red bars, right panel). β ≈ 2.0 for the inner regions and β ≈ 1.0 for the outer regions. The mass
dimension is therefore an independent measure showing that the crystals grown on curved surfaces
are highly non-compact.
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Fig. S4. Statistical results of morphological measurements of 1.0 µm PS particles (dark squares,
335 domains) and 0.6 µm PS particles (light circles, 1522 domains). (A) Curvature dependence of
the largest inscribed circle diameter a∗ ∼ R. (B) Curvature dependence of the weighted average
domain width along the backbones w ∼ R. Both the inscribed disc diameter a∗ and the domain
width w increase with the radius of curvature R. This agrees with the prediction of the model in the
main text. The scatter in the data reflects the variation in the initial particle densities, which leads to
a variation in ∆ f among experiments as well as stochastic effects that also affect the growth.
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Movies

Movie S1. Time-lapse images (confocal projections) of crystallization of 1 µm particles on a droplet
with R= 18.6 µm, showing growth of a single crystalline domain. Images correspond to Fig. 4
in the main text. Time stamps at upper left show time elapsed since sample preparation.

Movie S2. Time-lapse images (confocal projections) of crystallization of 1 µm particles on a droplet
with R = 12.0 µm, showing the growth and merging of multiple domains. This sample was
prepared through a melt-quench method. 24 hours after sample preparation, the sample was
heated until all the domains melted. Then the temperature was lowered 1°C below the melt-
ing point, and the growth process was recorded. Time stamps at upper left show time elapsed
since the quench.

Movie S3. As in Movie S2, but for a droplet with R = 23.7 µm.

Movie S4. As in Movie S2, but for a droplet with R = 38.2 µm.
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