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Abstract

Ischemia reperfusion injury (IRI) in organ transplantation remains a serious and unsolved problem. Organs that undergo
significant damage during IRI, function less well immediately after reperfusion and tend to have more problems at later
times when rejection can occur. Biliverdin has emerged as an agent that potently suppress IRI in rodent models. Since the
use of biliverdin is being developed as a potential therapeutic modality for humans, we tested the efficacy for its effects on
IRI of the liver in swine, an accepted and relevant pre-clinical animal model. Administration of biliverdin resulted in rapid
appearance of bilirubin in the serum and significantly suppressed IRI-induced liver dysfunction as measured by multiple
parameters including urea and ammonia clearance, neutrophil infiltration and tissue histopathology including hepatocyte
cell death. Taken together, our findings, in a large animal model, provide strong support for the continued evaluation of
biliverdin as a potential therapeutic in the clinical setting of transplantation of the liver and perhaps other organs.
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Introduction

The increasing need of organs for orthotopic liver transplan-

tation (OLT) has led to consider the use of marginal livers. A liver

is considered marginal when obtained from a donor with

hemodynamic instability prior to donation and/or aged more

than 65 years. Typically the organ also exhibits a high degree of

steatosis (greater than 40% macro-steatosis) and particularly,

undergoes a cold ischemia time of more than 12–14 hours before

reperfusion. We thus set up a preclinical model of ischemia-

reperfusion injury (IRI) using organs with prolonged cold ischemia

time (19 hours) to provide potentially useful information for a

prompt application to clinical practice [1,2] where there remains a

desperate shortage of available organs.

Ischemia reperfusion injury in organ transplantation remains a

crucial problem, especially given its association with more frequent

problems later in the life following transplant [3]. Organs that

undergo significant damage during IRI function less well

immediately after reperfusion (delayed graft function); precipitat-

ing longer hospital stays, and have more problems in the later

phases of rejection [4]. While studied most extensively with respect

to organ transplantation, IRI also plagues clinical practices such as

heart bypass and vascular surgery, stroke and sepsis. In all these

situations there is some degree of ischemia or a hypoxic event

followed by reperfusion and reoxygenation during which the

majority of the damage occurs.

The pathophysiology of IRI is complex. Prominent features

include oxidative stress, inflammation with infiltration of neutro-

phils and monocytes, cell death and ultimately loss of cell and

organ function, contributing in the extreme to multi-organ failure

[5,6]. Likely because of the complexity and diversity of patholog-

ical processes that comprise IRI, no established effective pharma-

cological treatment has been discovered.

Heme oxygenase-1 (HO-1) and its products are accepted

molecules by which to effectively treat IRI based on studies in

rodents and large animals [7]. Not only does HO-1 expression

lead to removal of heme, a powerful oxidant when present in

excess, but the degradation of heme by HO-1 leads to the

production of carbon monoxide (CO) and biliverdin that have

potent anti-oxidant and anti-inflammatory effects leading to

overall cytoprotection and restoration of homeostasis [8]. Degra-

dation of heme also leads to the release of ferrous iron that

stimulates the up-regulation of ferritin, an iron and heme-binding

molecule that imparts protection in a rodent model of liver IRI

[9]. Administration of exogenous CO or biliverdin in most cases

leads to the same overall therapeutic effects as increased

expression of HO-1 [10]. One or both of these molecules have

been demonstrated to protect against a wide range of disorders in
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mice and rats including hepatitis, neointima formation after

balloon injury, atherosclerosis, pulmonary hypertension, inflam-

matory bowel disease and several others [7,11,12–14]. With

regard to transplantation in rodents, HO-1 overexpression or CO

administration suppresses IRI and chronic rejection. Biliverdin

administration protects in IRI but also suppresses T cell mediated

acute rejection.

Considering therefore that biliverdin could offer potential

therapeutic benefit in humans, we felt it important to assess these

substances in an accepted pre-clinical species such as the pig. We

have shown in earlier work that CO protects against IRI in pig

models of cardiopulmonary bypass, paralytic ileus, delayed graft

function of a kidney transplant and balloon angioplasty-induced

stenosis [12–15]. There are no studies in pigs or any other large

animal species with biliverdin. To evaluate the efficacy of

biliverdin against IRI in the present study, we used a model of

isolated perfused liver.

Materials and Methods

Animals
All studies have been approved by the IACUC at Cardarelli

Hospital, Center for Biotechnology. Female Large-White pigs (20–

30 kg) were purchased from a local farm. Animal care and

experimental procedures met local, national, and European Union

Guidelines for the use of animals.

Two treatment groups of pigs (n = 3) were used in this study.

Pigs were acclimatized for 24 hours and given free access to food

and water up to 12 hours before surgery. A control group, which

received sham treatments and a biliverdin group where both

donor and recipient pigs were administered a single bolus of

biliverdin (50 mmol/Kg; Frontier Scientific B655-9 LY04-132) 2

hours prior to surgery. No further dosing was performed as this

was based on effective dosing regiments performed in rodents.

After the pre-treatment time with each molecule, recipient pigs

were connected through an extracorporeal circuit to the isolated

liver of the donor that was recovered and prepared as described

below and shown schematically in Figure 1. Serum bilirubin

concentrations were monitored respectively for 4 and 3 hours post

administration (Figure 2).

Donor Pigs
Pigs were pre-medicated by intramuscular injection of Zoletil

(5 mg/kg). Marginal veins in both ears were then cannulated for

anaesthetic administration and solutions infusion. Anaesthesia was

induced by Propofol (3–6 mg/kg, i.v.) and Ketamine (15 mg/kg

i.v.). Butorphanol was administered by intramuscular injection

(0.1–0.3 mg/kg) and by intravenous infusion (0.1–0.3 mg/kg)

during the anesthesia induction and as needed for the duration of

the experiment. At the end of the experiment euthanasia was

Figure 1. Schematic of the liver perfusion circuit. Representation of the ex vivo liver perfusion circuit as described in methods. HA: hepatic
artery; PV: portal vein; ICV: inferior cava vein; Tb: blood temperature; Tw: water temperature; P: pressure transducer.
doi:10.1371/journal.pone.0069972.g001

Figure 2. Kinetics of serum bilirubin levels in pigs in response
to intravenous biliverdin administration. Biliverdin was adminis-
tered as a single i.v. bolus of 50 mmol/kg. Results are mean 6 SD of
3 pigs/treatment group. The black bars correspond to the donors and
the open bars to the recipient.
doi:10.1371/journal.pone.0069972.g002
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induced by a slow infusion of Tanax (3 ml/10Kg). The liver

recovery and warm dissection averaged 30–45 minutes. Briefly,

following a median laparotomy, the common bile duct was

cannulated with a 7 Fr sonde as distal as possible, near the

duodenum and then distally ligated and transected. The porta was

dissected with ligation and sectioning of two to three pancreatic

branches including the splenic and superior mesenteric veins. The

inferior cava under the liver was dissected from the parietal

peritoneum just over the renal vein confluence and behind the

liver. The animal was then heparinized (100 mg of heparin) and

the porta was clamped and cannulated just over the splenic and

superior mesenteric veins and the liver was flushed with cold 4uC
Ringer solution. The hepatic graft was removed from the

abdomen and packed in ice.

After sufficient cooling and flushing with approximately 2 liters

of cold Ringers solution, the liver was flushed with 1 liter of cold

CelsiorH solution (Genzyme, Vienna, Austria). During perfusion

the hepatic artery was also cannulated and the infrahepatic vena

cava was closed. The suprahepatic vena cava was then cannulated

with a 20 Fr cannula and all diaphragmatic veins (typically three)

were closed with ligatures. Grafts weighed 505675 grams. In

addition, aminocaproic acid (65 mg/kg) was administered to the

donor pig before surgery and to the isolated liver at 4 and 8 hours

after reperfusion.

Recipient Pigs
Two hours prior to surgery the recipients were administered BV

as above. Animals were anesthetized two hours before being

connected to the extracorporeal circuit. Following anesthesia, the

right jugular vein and common carotid artery were cannulated for

solution infusion, blood collection, and to measure central venous

and mean arterial pressures (CVP and MAP) using disposable

pressure transducer (Edwards Lifescience). After two hours a

midline abdominal incision was made and systemic anticoagula-

tion was started (100 mg of heparin, i.v.) and then administered

every two hours to maintain the activated clotting time between

150 and 200 sec. The right external iliac artery and vein were

cannulated for connection to the extracorporeal circuit. Approx-

imately 19 hours (18.860.7 hrs) after the recovering and cold

preservation of the donor liver, the isolated organ was connected

via the extracorporeal circuit and the cannula was positioned both

in the iliac artery and vein.

Perfusion Circuit for the Isolated Perfused Liver
Prior to connection of the isolated liver to the perfusion circuit,

the CelsiorH solution was flushed from the portal circulation using

1 L of Ringer’s lactate solution. The perfusion circuit consisted of

two pumps, one heat exchanger and PVS tubing (J and 3/

16 inch external – internal diameter; refer to Figure 1). The

portal vein was perfused at a rate of 0.5 ml/min/g and a mean

perfusion pressure was maintained between 12 mm Hg and

18 mm Hg. The hepatic artery was perfused using a peristaltic

pump at a steady mean pressure between 60 and 90 mm Hg. The

liver was positioned at a height of , 70 cm above the recipient to

allow venous return from the isolated liver suprahepatic inferior

vena cava into the recipient iliac vein by gravity. Throughout the

experiment, the temperature of the recipient pig and of the blood

entering in the liver was monitored and maintained at 37.561uC
by the heat exchanger. The ex vivo liver perfusion was performed

up to 12 hours.

Biochemical and Functional Assessments
Urea synthesis, ammonia clearance and lactate production were

evaluated taking blood samples from both the inflow and outflow

of the isolated liver graft and expressed as change in concentration

between the two measurements. Aspartate aminotransferase (AST)

determination in plasma samples was done using a LXJ725

Beckman Coulter analyzer.

Histological and Immunohistochemical Evaluation of
Liver Biopsies

Three to five liver biopsies were collected from each isolated

liver and formalin-fixed or cryopreserved before ischemia, after

cold ischemia and 12 hours after reperfusion. For each paraffin

block 4 mm-thick serial sections were prepared and stained with

hematoxylin-eosin to assess morphological features and architec-

ture. The acute inflammatory response was evaluated by

measuring the number of polymorphonuclear granulocytes in

each of 14 high power fields (HPFs) and expressed as a percentage

among the total number of cells present in each field. Four

semiquantitative categories were generated as follows. 0: no

polymorphonuclear granulocytes in the HPFs evaluated; 1: ,10%

of the total cells in the fields; 2:10–30%; 3: .30%. Each serial

section was dewaxed, rehydrated and pre-treated with 3%

hydrogen peroxide for 5 minutes to inactivate endogenous

peroxidases. Incubation with primary antibodies was then carried

out, at room temperature, with the following antibodies: anti-Ki67

(clone MIB-1, DakoCytomation -Denmark dilution 1:50); anti

cleaved caspase-3 (clone 5A1 rabbit, Cell Signaling Technology-

Danvers MA, U.S.A. dilution 1:100). Primary antibodies were

detected using horseradish peroxidase. Negative controls were

performed on serial sections using primary antibodies with non-

immune serum. Results of the immunohistochemical staining were

blindly evaluated separately by two observers. In the case of

discrepancy in evaluation of the immunostaining, the correspond-

ing slides were re-evaluated jointly and resolved by consensus. A

minimum of 10 high-power fields for each section was randomly

selected for microscopic examination. The immunohistochemistry

was quantified as a percentage of positive cells among the total

cells evaluated. We used the TUNEL assay (ApopTag, Chemicon

International-U.S.A.) to confirm apoptosis via DNA fragmentation

examination. Nuclear counterstaining was performed with DAPI.

The results of the staining were evaluated separately by two

observers using a fluorescent microscope (Leica DM-RA2) with

the appropriate excitation and emission filter. Ten fields for each

sample (4006 magnification) were acquired by a Leica DC350F

camera. Apoptosis was quantified as the number of positive cells

among the total cells present in all the selected fields (10006900

pixels) containing about 500 cells.

Statistical Analysis
All values are presented as means 6 standard deviation (SD).

Statistical analysis of the differences between experimental groups

have been performed using non-parametric Kruskal-Wallis 1-way

ANOVA by ranks test, using a 1.73 version of Analyse-it software

add-in for Microsoft Excel (Windows version). A p value of #0.05

was considered statistically significant.

Results

Elevations in Serum Bilirubin Levels Following
Administration of Biliverdin

Biliverdin is very rapidly converted to bilirubin by biliverdin

reductase, with maximum levels of bilirubin in the range of 2.5–

3 mg/dl achieved at 5 min to 15 min after biliverdin administra-

tion in rodent studies. The equivalent dose of biliverdin used here

achieves similar bilirubin levels to those achieved in biliverdin-

treated rodents. However, the time of maximum bilirubin levels

Biliverdin Protects the Liver
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Figure 3. Effects of biliverdin on IRI-induced liver dysfunction. A. Biliverdin was administered separately to both donors and recipients
before surgery. Bile production as a measure of liver function was collected throughout the experiment and expressed as ml/hr/g liver. Control pigs
show very little bile production during 12 hours of reperfusion. Note that biliverdin significantly improved bile production and thus is indicative of
better liver function. Results are expressed as mean 6 SD from 3 pigs/group. The increase in bile production is statistically significant comparing
biliverdin vs Ctrl *p = 0.03. B. Effects biliverdin on urea production. Urea synthesis is expressed as the difference (D) of the urea concentration as mg/L/
g liver. Results are expressed as means 6 SD of 3 pigs/group. *p = 0.022 C. Effects of biliverdin on ammonia clearance. Biliverdin was administered as
described above. Ammonia was measured in the serum and the clearance is expressed as a difference (D) in ammonia in mmol/L between the inflow
and outflow ports of the perfused liver. Results are expressed as mean 6 SD of 3 pigs/group. The D ammonia clearance is statistically significant
between the biliverdin treated vs Ctrl groups, *p = 0.027. D. Effects of biliverdin on serum AST levels. Venous blood samples were taken before and
every 2 hours after graft reperfusion and expressed as calculation of the total amount of serum AST released throughout the 12 hr experiment. Livers
from untreated controls showed a significant increase in AST levels indicating severe liver damage. Administration of biliverdin prevented the
damage and release of AST into the serum vs Ctrl *p = 0.021. Results are mean 6 SD of 3 pigs/group.
doi:10.1371/journal.pone.0069972.g003
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after biliverdin administration was quite a bit later. Bilirubin in our

studies was measured at the times indicated and peaked between

15–30 minutes after biliverdin administration (Figure 2).

Effects of Biliverdin on IRI-induced Alterations in Liver
Function

Function of the isolated liver was assessed by analyzing blood

samples collected for bile production, urea and ammonia

clearance and lactate accumulation both before entering the

isolated perfused liver and at various times afterwards. Compared

to livers of BV-treated animals, livers from controls showed a time-

dependent decrease in liver function as indicated by lower bile

production, urea and ammonia clearance (Figures 3A-3C) and

lactate accumulation (data not shown). Liver damage was assessed by

measuring the transaminase AST in the serum. Control livers

showed a significant elevation in AST after 12 hrs of reperfusion,

which was essentially completely abrogated in animals pretreated

with biliverdin (Figure 3D *p,0.05).

Biliverdin Prevents IRI-induced Cell Death and Neutrophil
Influx in the Liver

To assess the protection afforded by biliverdin we studied IRI-

induced apoptosis by TUNEL and caspase-3 activation. IRI

increased both TUNEL and Caspase-3 activation after 12 hours of

reperfusion (2.561.4%) in respect to before or just post ischemia.

Biliverdin administration showed no TUNEL or Caspase-3

positivity (Figure 4A–B).

Figure 4. Effects of biliverdin on hepatocyte cell death. A. Representative immunostained liver sections for TUNEL and caspase 3 from liver
sections harvested pre-ischemia, immediately post-ischemia and 12 hrs after reperfusion 6 BV treatment. B. Quantitation of the number of positive
cells in each stained sections as described in the methods. The degree of apoptosis and caspase 3 positivity was quantified by counting the number
of positive cells among the total cells present in at least 10 selected fields with a minimum of 500 total positive cells counted. There is a statistically
significant difference after 12 hrs of reperfusion *p = 0.01 versus ischemia alone and between biliverdin preconditioned animals after 12 hrs of
reperfusion compared to controls (*p = 0.017). Results represent mean 6 SD of 10 fields from 3 pigs/group where a total number of cells counted was
at least 500. Magnification = 4006, Bar represents 50 mm.
doi:10.1371/journal.pone.0069972.g004
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IRI also led to a rapid and significant increase in neutrophil

infiltration into the liver that peaked 4–8 hour after reperfusion

(4 h shown) in response to IRI and decreased to baseline after 12

hours of reperfusion (data not shown). Biliverdin significantly

reduced .50% the neutrophil infiltration at both 4 hrs and 8 hrs

after reperfusion vs controls (Figure 5A–B).

Biliverdin Administration Increased Proliferation in the
Liver after IRI

Given that the liver is efficient at regenerating after insult, we

also evaluated the effect of biliverdin on the cellular proliferation

index (P.I.). Tissue sections were immunostained for Ki-67 (clone

Mib-1) as an indicator of cell proliferation. Biliverdin-treated pigs

showed augmented Ki-67 expression, suggesting that the liver was

undergoing regeneration following the IRI insult (Figure 6A–B).

These findings support the concept that BV is hepatoprotective

following acute insult.

Discussion

IRI is a common problem in medicine that is injurious in several

situations including organ transplantation. Others and we have

focused on transplantation studies in rodents to study IRI given the

ready availability of the models and the importance of the problem

in clinical transplantation. There is strong evidence correlating IRI

with later problems of organ graft survival. It has thus been in the

interest of the transplant physician to overcome this problem. This

has been especially true as the need for organs has expanded and

the use of marginal donor organs continues to expand. Primary

non-function after transplantation is a major problem and

particularly in the instances of marginal donor organs, which

suffer from significant damage due to IRI.

It has long been accepted that ‘‘pre-conditioning’’ suppresses

IRI [16]. Pre-conditioning involves exposure of the recipient to

donor cells or other substances, in low numbers/amounts, a few

days prior to transplantation of the organ [16]. Such manipula-

tions have been shown to reduce IRI. While not well understood,

there are a few reports that have shed light on the mechanisms by

which pre-conditioning achieves its salutary effects [16]. However,

to date pre-conditioning has not found acceptance in clinical

practice. Interestingly, some of the changes seen with pre-

conditioning and to which success is attributed, are also seen

when HO-1, CO or biliverdin are used as therapeutics. These

include, among others, increases in anti-inflammatory cytokines

such as IL-10, anti-apoptotic proteins, such as inhibitor of

apoptosis (IAP) and nuclear factor-kappa beta (NF-kB, 17) as well

Figure 5. Effects of Biliverdin to Reduce Neutrophil Influx into the Liver. A. Representative H&E staining of liver sections harvested pre-
ischemia, immediately post-ischemia and 12 hrs after reperfusion 6 BV treatment. B. Neutrophils were counted based on morphology and expressed
as a percentage of neutrophils among the total number of cells present in each field. Data are expressed as mean 6 SD of n = 3 pigs/group where a
total number of cells counted was at least 500. Magnification = 4006, Bar represents 50 mm. (*p = 0.013).
doi:10.1371/journal.pone.0069972.g005
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as heat shock proteins, such as HSP70 [18–21]. It may be that

HO-1 induction or CO and biliverdin administration are effective

because they mimic pre-conditioning, although there is no direct

evidence for drawing any such parallels.

We demonstrate here in a unique model of liver IRI in pigs that

biliverdin suppresses IRI of the liver. Swine are an accepted

species on the basis of studies in which human testing might be

undertaken. Data show clear salutary effects and that biliverdin in

every case, proved significantly beneficial in the majority of the

tests we did. Biliverdin proved to be potent cytoprotective agent

that also reduced the infiltration of neutrophils and tissue damage

significantly. We did not perform dose ranging studies, and thus

the single does that was tested cannot be defined as optimized as it

may well be that multiple doses and lower doses would be more

effective and reduce any potential side effects of biliverdin.

Biliverdin and bilirubin have been thought to act primarily via

their anti-oxidant actions. We have recently found that biliverdin

can also act in an anti-inflammatory manner by binding cell

surface biliverdin reductase and interfering with TLR4 signaling as

well as initiating signaling via PI3 kinase and Akt [22–23]. In these

reports we delineate a novel localization and function for BVR on

the cell surface, which is phosphorylated in response to BV or a

stressor and rapidly, through an eNOS-dependent mechanism,

translocates to the nucleus to regulate gene transcription [23].

In this study we treated the donor animal and the recipient with

biliverdin that was rapidly converted to bilirubin in the serum.

Whether the bilirubin that was generated was conjugated or

unconjugated to albumin was not determined in these studies, but

based on rodent studies where BV to BR results in elevations in

conjugated bilirubin, we would expect a similar occurrence in pigs

[24]. In rodents in a model of IRI in the heart, treatment of the

donor and the recipient had beneficial results and even better

effects when combined with inhaled carbon monoxide. CO has

been extensively studied in transplant models [25–28]. Others

have found that a biliverdin or bilirubin given just before

transplantation but after preservation also had beneficial results

[29–30]. Still others have induced HO-1 only in the donor and

shown benefit from such treatment. In that case, however, one

might argue that HO-1 is still expressed in the organ after

transplantation and thus it is harder to ascertain where the effect is

most important. From a clinical perspective, one could treat at all

three stages. However, further experiments are indicated to dissect

if donor treatment alone, for instance, will provide much of the

effect seen when treatment is also given to the organ and then to

the recipient.

Studies with biliverdin and bilirubin show enhanced survival of

islets after allogeneic transplantation when treating only the donor

leads to long-term (.100 days) survival and antigen-specific

tolerance in a majority of the untreated recipients [31]. We have

suggested that survival occurs because donor treatment leads to a

very significantly diminished inflammatory response in the islets

after transplantation, and thus less of an immune rejection

Figure 6. Biliverdin Treatment Increases Hepatocyte Proliferation After IRI. A. Representative immunostaining images for Ki-67 as a marker
of cell proliferation in liver sections harvested pre-ischemia, immediately post-ischemia and 12 hrs after reperfusion 6 BV treatment. Effects of
biliverdin on Ki-67 expression as an indicator of cell (primarily hepatocyte) proliferation. B. Ki-67 positive cells were counted and expressed as a
percentage of positive cells among the total number of cells present in each field. Data are expressed as mean 6 SD of n = 3 pigs/group where a total
number of cells counted was at least 500. Magnification = 4006, Bar represents 50 mm. (*p = 0.046).
doi:10.1371/journal.pone.0069972.g006
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response. A similar effect in organ transplantation might have

profound consequences.

Biliverdin should be considered as potentially therapeutic in

humans after appropriate safety and toxicology. The fact that

biliverdin is essentially a biologic and thus considered a natural

substance to the body would be expected to be relatively safe with

a predictable pharmacokinetic and pharmacodynamic profile.

Bilirubin, which is rapidly generated from biliverdin (Figure 2),

can exhibit toxic effects at high concentrations in neonates, but

appears to show no toxicity in adults at the concentrations we

induce by the biliverdin doses recorded here. Importantly,

individuals with Gilbert’s syndrome have bilirubin levels

(,5 mg/dl) for their entire lives that are equal to or greater than

those we find are therapeutic. Thus, elevating bilirubin to the

levels found after biliverdin administration is unlikely to have

undesirable side effects. Further, there is a strong association

between high normal or supranormal (as in individuals with

Gilbert’s syndrome) levels of bilirubin and less atherosclerosis-type

disease as compared with individuals with low normal bilirubin

levels [32–33]. These latter findings argue that raising bilirubin

levels just a few folds may generally be helpful for health. It would

thus appear that biliverdin exhibits a therapeutic window of

efficacy versus toxicity that supports its therapeutic use in humans.

In summary, we present data here that demonstrate in a large

animal model of prolonged liver ischemia reperfusion injury that a

single pretreatment with biliverdin abrogates tissue inflammation

and cell death and works toward normalizing hepatic function. We

conclude with these data in a relevant preclinical model of IRI that

either biliverdin is potential prophylactic agent to be tested in the

clinical setting of organ transplantation and other indications that

involve ischemia/reperfusion insults.
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