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Abstract

Gene-based tests of association can increase the power of a genome-wide association study by aggregating multiple
independent effects across a gene or locus into a single stronger signal. Recent gene-based tests have distinct approaches
to selecting which variants to aggregate within a locus, modeling the effects of linkage disequilibrium, representing
fractional allele counts from imputation, and managing permutation tests for p-values. Implementing these tests in a single,
efficient framework has great practical value. Fast ASsociation Tests (FAST) addresses this need by implementing leading
gene-based association tests together with conventional SNP-based univariate tests and providing a consolidated, easily
interpreted report. Fast scales readily to genome-wide SNP data with millions of SNPs and tens of thousands of individuals,
provides implementations that are orders of magnitude faster than original literature reports, and provides a unified
framework for performing several gene based association tests concurrently and efficiently on the same data. Availability:
https://bitbucket.org/baderlab/fast/downloads/FAST.tar.gz, with documentation at https://bitbucket.org/baderlab/fast/
wiki/Home
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Introduction

Genome-wide association studies (GWAS) are powerful tools for

investigating the genetic basis of common diseases and have

revealed new genetic factors for many complex traits [1,2]. The

goal of a GWAS is to establish an association or correlation

between a genetic variant and a trait. The tested variants are

predominantly single-nucleotide polymorphisms (SNPs), inexpen-

sively genotyped by a variety of platforms. Individual SNP-based

tests have a consensus p-value threshold of 5|10{8 for genome-

wide significance.

More recent methods have proposed to test the hypothesis that

individual genes can house multiple independent associations and

increase power by combining independent associations, whether in

protein-coding domains or flanking regulatory regions into a single

and stronger aggregated signal. Data sets include SNPs that are

genotyped and SNPs computationally imputed from the 1000

Genomes Project [3] or other reference panels [4,5]. Imputation

can improve the power of GWAS to detect disease associated loci

[6] and is essential for meta-analysis across platforms that

genotype different markers. Imputed data sets are large (,20

million SNPs using the latest 1000 Genome Project release). As a

result, repeated GWAS using different gene-based methods is both

CPU and memory intensive.

The following observations motivate our work. First, several

gene-based methods have inefficient implementations or are

limited to integer allele counts rather than fractional imputed

genotypes or genotype dosages common in genome-scale analysis.

Second, many methods require similar statistical calculations,

making simultaneous calculation of p-values for several methods

not much more expensive than running a single method offering

opportunities for sharing intermediate results across methods.

Shared calculations provide substantial savings in genome-wide

analysis because several hundred thousands or more permutation

tests are often required to establish gene-based p-values that are

significant genome-wide. Shared calculations also permit different

methods to be run automatically against the same permutations,

eliminating a source of statistical variation in permutation-based

tests. Third, highly-cited whole-genome analysis tools such as

PLINK [7] and PROBABEL [8] demonstrate the value of providing

multiple types of tests, if only for the convenience of simplified

driver scripts and unified input/output formats, but to date are

limited primarily to single SNP association analysis rather than

gene-based tests. No current platforms realize these computational

and practical efficiencies for gene-based tests.

We therefore present FAST, a tool for FAST ASsociation Tests for

genome-wide SNP data that efficiently integrates and implements

several recently proposed test statistics and provides a unified

framework for performing several gene based association tests

concurrently and genome-wide on the same data set. A brief

description of the algorithms and their extensions implemented are

given in the next section. The details are presented in the

Materials S1. FAST source and executables are available under the

GNU Public License from https://bitbucket.org/baderlab/fast/

downloads/FAST.tar.gz.
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Methods

GWiS
This gene-based test uses Bayesian statistics to combine model

selection and statistical tests [9]. Let X be the genotype matrix with

N rows (individuals) and P columns (SNPs), and Y be the N|1
phenotype vector. A model M is defined as the subset of K SNPs in

a gene with P total SNPs that are permitted to have non-zero

regression coefficients. For each gene, GWiS attempts to find the

subset that maximizes the model probability Pr(M DY,X). The

GWiS test statistic is an approximation to the posterior model

probability,

log Pr(M DY,X)&log Pr(YDb̂b,ŝs2,M,X)

{
K

2
log Nzlog Beta(Kz1,T{Kz1):

ð1Þ

The terms correspond to a standard likelihood ratio test score; a

Bayesian Information Criterion (BIC) penalty for replacing full

integrals over parameters with maximum likelihood estimates; and

a model complexity penalty derived from Bayesian statistics for

subset selection. The parameter T for the subset selection penalty

denotes the effective number of tests in a gene calculated from the

genotype data independent of phenotypes.

Rather than finding the global optimum, which is NP-hard,

GWIS uses a greedy forward search in which the SNP giving the

maximal increase to the posterior probability is added to the

model sequentially until any remaining SNPs decreases the

probability. The forward search uses Gram-Schmidt orthonorma-

lization with sufficient statistic comprising the genotype-genotype

covariance matrix, the genotype-phenotype correlations, and

phenotype variance, and the marginal allele frequencies and

phenotype mean.

As an extension to previous work [9], GWIS now operates

directly using this summary data rather than full genotype and

phenotype information; this improvement is very important for

applications to meta-analysis where only the summary data is

available. Furthermore, GWIS now implements Bayesian logistic

regression for dichotomous traits using iterative reweighted least

squares [10].

Best SNP in Gene
The MINSNP p-value is the p-value for the best SNP within a

gene, computed either directly from a parametric distribution or

from permutations for a SNP with low allele frequency. In

MinSNP-Gene, single-SNP F-statistics are computed for each SNP

within a gene; the best F-statistic within the gene is used as its test

statistic; and this is converted to a p-value with gene-based

permutations to correct for gene size.

BIMBAM
Bimbam uses the average Bayes Factor for all possible K-SNP

models within a gene as the test statistic. By default the sum is

limited to K~1, single-SNP models, because computing all 2-SNP

models is computationally intensive. The Bayes Factor for a single-

SNP model is

Bayes Factor~N DVD0:5s{1
a ½

Y0Y{B0V{1B

Y0Y{N �YY 2
�, ð2Þ

where the number of individuals is N ; the N|2 genotype matrix

X has first column 1 and second column the genotype dosages; Y

is the phenotype column vector; �YY is the scalar phenotype mean;

the matrix t is diagonal with terms s{2
a , where s2

a is an adjustable

parameter representing the typical additive variance for a SNP;

V~(TzX0X){1; and B~VX0Y is a 2-component column vector

of regression coefficients [11]. We have implemented the test

statistic for both genotype dosages and summary data using linear

regression for continuous phenotypes and logistic regression for

dichotomous phenotypes. The logistic regression model uses the

Laplace method to estimate posterior distributions of model

parameters, and the distribution modes are obtained using the

Fletcher-Reeves conjugate gradient algorithm.

VEGAS
The Versatile Gene-Based Test for Genome-wide Association

[12] uses the sum of single SNP chi-squares as the proposed test

statistic for a gene, with p-values corrected for LD. In FAST, the test

statistic can be calculated using either linear or logistic models

using both genotype dosages and summary data. The significance

of each gene is evaluated using permutations when genotype data

is available and using simulations for summary data.

GATES
The Gates test [13] extends the Simes procedure [14] to

integrate association evidence from single SNP p-values within a

gene. The effective number of independent tests within a gene is

denoted me and is estimated from the eigenvalues of the matrix of

p-value correlations. With the ascending p-values of m SNPs

within a gene denoted p1, � � � ,pm, the test statistic is

min
mepj

me(j)

� �
, ð3Þ

where me(j) is the effective number of independent p-values among

the top j SNPs. The test statistic has an approximate uniform (0,1)

distribution and is regarded as the gene’s p-value.

Single SNP
FAST also computes single SNP regression coefficients and

standard errors using all input SNPs, whether genic or intergenic,

for both linear and logistic regression. This method allows direct

comparison of gene-based p-values of the implemented methods

with the single SNP p-values and also facilitates discovery of

associations from intergenic regions.

Software features
The application is implemented in C and depends only on the

GNU Scientific Library. Command-line options provide access to

different methods and parameters. Single chromosomes or regions

can be specified, permitting easy parallelization of different regions

across multiple compute nodes. When multiple CPUs are available

in a node, FAST further allows multi-threaded parallelization of

permutations. To reduce memory footprint, FAST processes each

chromosome gene-by-gene and retains only the SNPs mapped to

that particular gene. Covariates can be specified along with

genotype data and are included in all models explored. In absence

of genotype data, when the phenotype is case-control, FAST uses

linear regression to approximate the calculations of the test

statistics for GWIS and Bimbam (See Materials S2). FAST can run

several different tests simultaneously and a script (with dependen-

cies on Perl) combines the results into a single output file.

Computation of genotype-genotype inner products from

reference populations. Several methods require genotype-

genotype and genotype-phenotype inner products, which must be

estimated from reference populations such as 1000 Genomes when

Fast Association Tests for Genes with FAST
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only summary data (single SNP regression coefficients and

standard errors, phenotype mean and variance) are available.

The covariance SXi,XjT for SNPs i and j is estimated from

covariances SX r
i ,X r

j T in the reference population as

SXi,XjT~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SXi,XiTSXj ,XjT

SX r
i ,X r

i TSX r
j ,X r

j T

s
SX r

i ,X r
j T:

The variance for SNP i with minor allele frequency pi is

SXi,XiT~2Npi(1{pi):

The genotype-phenotype inner products are computed using the

summary data SNP regression coefficients bi and standard errors

sei:

zi:
bi

sei

and SXi,YT~zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SY,YTSXi,XiT

z2
i zN{2

s

Pre-computing the inner products (as implemented in VEGAS)

results in SNP-SNP correlation matrices that are extremely high

dimensional and occupy several gigabytes. We have instead

compute the inner products for a given pair of SNPs dynamically

when needed. SNP data is read using pre-generated index files for

memory- and CPU-efficient random file access to haplotype data.

Pre-computed haplotype files and their corresponding index files

from the 1000 Genomes project (release May 2012) are available

from https://bitbucket.org/baderlab/fast/wiki/RefHaps.

Permutations
For each implemented test statistic except GATES, p-values are

obtained using permutations. When individual level genotype and

phenotype data are available, permutations are conducted at the

gene level using the Fisher-Yates shuffle algorithm [15].

For summary data, the empirical p-values are computed by

simulating z-scores under the null using random variates sampled

from a multivariate normal distribution with covariance matrix

computed from the linkage disequilibrium between the SNPs in an

appropriate reference population. Under the null, for large N, the

z-score for a single SNP is approximately Normal(0,1). If S
denotes the correlation matrix for the m SNPs in a gene, under the

null, the correlation matrix among the z-scores is also S.

Therefore, the null distribution of the z-scores in a gene is

multivariate normal with mean 0 and correlation matrix S.

Permutations are performed by simulating this distribution using

LDL factorization of the correlation matrix: S~LDLt , in which

L is unit lower triangular and the matrix D is diagonal. Details are

discussed in Materials S1.

Results

To evaluate the performance of FAST, case-control data

containing 500 cases and 5500 controls with genotypes from

10,000 independent SNPs were simulated using PLINK [7]. Out of

the 10,000 SNPs, 10 SNPs were simulated to be disease associated

with a multiplicative risk of 1.5 for the homozygotes. In addition,

182 genes were simulated covering all the SNPs sequentially

without overlap, starting from the base-pair position of the first

SNP. Each gene has length uniformly random between 10 and

100 SNPs, with an average of 55 SNPs per gene. To obtain

runtime performance of each implemented test, each test statistic

was computed independently and p-values were obtained with

1000 permutations using genotype data, or with 1 million

permutations using summary data from single SNP analysis

(Table 1, AMD Opteron 2.3 GHz CPU, 7.8 GB RAM). Also,

available standalone implementations of Bimbam version 1.0

(http://www.bcm.edu/cnrc/mcmcmc/bimbam) and PLINK were

run with genotype data with both linear and logistic models;

VEGAS version 0.8.27 (http://gump.qimr.edu.au/VEGAS/) and

GATES version 2.0 (http://bioinfo1.hku.hk:13080/kggweb/) were

run with summary data from single SNP analysis. FAST has smaller

or substantially shorter runtime, with similar or substantially

reduced memory requirements (Table 1).

Discussion

FAST provides an integrated whole-genome analysis platform for

several gene-based tests as well as conventional single SNP tests.

While single-SNP GWAS have been quite successful in identifying

many genetic associations for human diseases [16,17], they can

miss true associations arising from multiple independent associa-

tions within a single gene. Gene-based tests complement the

traditional univariate GWAS, can improve power when single-

SNP tests did not reach genome-wide significance, can identify

how many independent effects are within a genomic region, and

are directly compatible with gene-based analysis of networks and

pathways.

By combining several gene-based tests in a single application,

FAST provides several advantages:

N Despite the evidence that gene-based tests can be more

powerful than single SNP based tests, different gene-based tests

are likely to perform better under different genetic architec-

tures (multiple independent signals vs. single signal in a gene,

size of gene, patterns of LD in the gene). Therefore, FAST

provides a natural platform to run several gene-based tests

concurrently and enable identification of significant associa-

tions using the best performing test.

N FAST improves the basic capabilities of the existing gene-based

tests. GWIS is extended to use logistic model for dichotomous

traits; both GWIS and Bimbam are improved to run with

summary data; and all methods are enabled for real-valued

imputed data rather than integer allele counts.

N The implementations of the existing tests are substantially

improved, reducing CPU and memory requirements. When

multiple CPUs are available, FAST further boosts performance

by parallelizing permutations.

N Efficient computation of multiple tests simultaneously is

achieved by taking advantage of shared calculations and data

structures.

N FAST eliminates the nuisance of separate data formats and

driver scripts for each method, and provides an additional

control by running each method on the same set of

permutations.

N FAST integrates the output from different tests into a single file

for cross-comparison.

The test statistics incorporated in Fast have discovered several

gene-based associations missed by single-SNP tests: the PPRAD

gene for fasting insulin [18]; genes CYP2C9 and ADORA2A for

caffeine intake [19]; clusters of genome-wide significant markers

located using gene-based tests at chromosomes 19p12, 11q25, and

8p23.2 [20]; gene locus SCN5A-SCN10A for ECG QRS interval

[9]. While other gene-based tests have been recently proposed

[21,22], the tests currently implemented in Fast are chosen to

provide a mix of frequentist and Bayesian motivated test statistics.

Fast Association Tests for Genes with FAST
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The newer tests will be incorporated into our application in future

releases depending on their usage in gene-based association

studies.

FAST provides gene-based statistics for common variants that

can potentially be combined with gene-based tests for rare variants

discovered by exome or whole-genome sequencing. Whole-

genome rare variant analysis methods are still being developed,

with no clear consensus on the best methods. When the dominant

methods become clear, FAST will be an ideal platform to extend to

rare-variant tests.

With the rapidly increasing count of SNPs available for GWAS

and availability of imputed genotypes, our application reduces the

time and cost of running several gene-based analysis methods as

well as single SNP tests genome-wide and facilitates discovery of

potentially unknown disease causing genes through comparison

and assimilation of output from the different tests.
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3000 and 5000. Figure S3, Comparing minSNP Gene test

statistic and gene p-values between logistic regression
(genotype data) and linear regression (summary data)
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Vegas test statistic and gene p-values between logistic
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