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Recruitment of cofactors to specific DNA sites is integral for specificity in gene regulation. As a
model system, we examined how targeting and transcriptional control of the sulfur metabolism
genes in Saccharomyces cerevisiae is governed by recruitment of the transcriptional co-activator
Met4. We developed genome-scale approaches to measure transcription factor (TF) DNA-binding
affinities and cofactor recruitment to 41300 genomic binding site sequences. We report that genes
responding to the TF Cbf1 and cofactor Met28 contain a novel ‘recruitment motif’ (RYAAT), adjacent
to Cbf1 binding sites, which enhances the binding of a Met4–Met28–Cbf1 regulatory complex, and
that abrogation of this motif significantly reduces gene induction under low-sulfur conditions.
Furthermore, we show that correct recognition of this composite motif requires both non-DNA-
binding cofactors Met4 and Met28. Finally, we demonstrate that the presence of an RYAAT motif next
to a Cbf1 site, rather than Cbf1 binding affinity, specifies Cbf1-dependent sulfur metabolism genes.
Our results highlight the need to examine TF/cofactor complexes, as novel specificity can result
from cofactors that lack intrinsic DNA-binding specificity.
Molecular Systems Biology 7: 555; published online 6 December 2011; doi:10.1038/msb.2011.89
Subject Categories: functional genomics; chromatin & transcription
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Introduction

Individual transcription factors (TFs) typically bind to a
relatively broad set of DNA binding site sequences
(Badis et al, 2009), yet must coordinate the exquisitely specific
gene expression responses fundamental to cellular function.
Therefore, a variety of mechanisms exist to differentiate
the binding of a TF at different genomic loci, such as TF
binding site affinity (Jiang and Levine, 1993; Gaudet and
Mango, 2002; Rowan et al, 2010), TF binding site clustering
(Berman et al, 2002; Frith et al, 2002; Markstein et al, 2002;
Pramila et al, 2002; Giorgetti et al, 2010), cooperative
interactions between TFs (Stein and Baldwin, 1993; Joshi
et al, 2007; Mann et al, 2009), and synergistic recruitment of
cofactors by TFs (Carey, 1998; Merika and Thanos, 2001).
However, despite the known functions of many TFs in
recruiting non-DNA-binding transcriptional cofactors to target
sites in the genome (Dilworth and Chambon, 2001; Struhl,
2005), the sequence dependence of cofactor recruitment has
remained largely unexplored.

To address this issue, we examined the roles of TF binding
site affinity and differential cofactor recruitment in regulating a
set of target genes. As a model system, we selected the Met4-
dependent genes that control sulfur metabolism in the yeast
S. cerevisiae as both the recruited cofactors (Met4 and Met28)
and the sequence-specific DNA-binding TFs (Cbf1, Met31, and

Met32) had been characterized. Met4 is the sole transcrip-
tional activator of the sulfur metabolism genes but exhibits no
intrinsic DNA-binding activity (Lee et al, 2010). To promote
transcription, Met4 is recruited to target gene promoters by the
TFs Cbf1, Met31, or Met32 (Kuras et al, 1997; Blaiseau and
Thomas, 1998). Cbf1 is a basic helix-loop-helix (bHLH)-
containing TF that binds as a homodimer to a palindromic
E-box site with a consensus CACGTG core, while Met31 and
Met32 are paralogous C2H2 zinc finger-containing TFs that
bind to sites with a TGTGGC core (Kuras et al, 1996, 1997;
Blaiseau et al, 1997; Blaiseau and Thomas, 1998; Badis et al,
2008; Zhu et al, 2009). An additional transcriptional cofactor,
Met28, has been shown to bind with Met4 to these TFs in DNA-
bound, multi-protein complexes (Blaiseau et al, 1997; Kuras
et al, 1997; Blaiseau and Thomas, 1998). Like Met4, Met28
does not exhibit intrinsic DNA-binding activity, but binding of
Met28 has been shown to stabilize DNA-bound Met4–Met28–
Cbf1 complexes (Kuras et al, 1997).

In a recent comprehensive analysis of the Met4 transcrip-
tional system, examining gene expression and TF promoter
occupancy in multiple yeast strains deficient for key regulators
of sulfur metabolism genes, Lee et al (2010) described a set of
45 sulfur metabolism genes that are induced under two
different Met4-related conditions: Met4 hyperactivation and
sulfur limitation. This gene set, referred to as the Met4 core
regulon, comprises a comprehensive set of genes regulated by
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the cofactor Met4 under both of these conditions. It was further
demonstrated that induction of every Met4 core regulon gene
is abrogated in both a met4D strain and met31Dmet32D double
knockout strain, while induction is affected for only a subset of
genes in cbf1D or met28D strains. Based on their comprehen-
sive gene expression analysis, the Met4 regulon was sub-
divided into three classes: genes whose transcription is strictly
dependent on Cbf1 and Met28 in both conditions (Class 1);
genes with intermediate dependency on Cbf1 and Met28 (Class
2); genes whose expression is independent of Cbf1 and Met28
(Class 3) (Lee et al, 2010).

Here, we have examined the contributions of TF binding
site affinity and cofactor recruitment to the cis-regulatory
logic governing the expression of the Met4 core regulon genes.
We developed genome-scale approaches to measure both
protein-DNA binding affinities (Kds) and sequence specificity
in Met4 recruitment using the protein-binding microarray
(PBM) technology (Bulyk et al, 2001; Mukherjee et al,
2004; Berger et al, 2006b). Our results suggest that two
different modes of Met4 recruitment are used to target the
Met4 regulon genes: (1) recruitment of Met4 by Met31 or
Met32 to high-affinity Met31/Met32 DNA binding sites
specifies the Class 2 and 3 subsets of the regulon genes;
(2) recruitment of Met4 by Cbf1 and Met28 to variant Met4
‘recruitment sites’ specifies the Class 1, Cbf1-dependent subset
of the Met4 regulon genes.

Examining the site-specific recruitment of Met4 by Cbf1 and
Met28, we identified a strict requirement for a composite DNA
binding site composed of the Cbf1 E-box sequence (CACGTG)
flanked by a newly discovered Met4 ‘recruitment motif’
(RYAAT), separated by a 2-bp spacer. Reporter assays
confirmed the importance of this recruitment motif in vivo;
mutation of this RYAAT motif significantly reduces induction
of Cbf1-dependent (Class 1) regulon genes in low-sulfur
conditions. The identification of this motif was unexpected
as Cbf1 binding is not affected by the presence of the
recruitment motif, and neither Met4 nor Met28 exhibit
any specific DNA binding either individually or together.
Instead, selective binding to the composite DNA binding site
occurs only with the full trimeric complex. Therefore, the non-
DNA-binding cofactors Met4 and Met28 operate synergistically
to direct their own recruitment to specific DNA sites, and
thereby discriminate between Cbf1 bound at different sites.
These results reveal an under-appreciated and powerful
mechanism for enhancing DNA sequence specificity in
transcriptional cofactor recruitment that is distinct from
traditional allosteric mechanisms. Our work highlights the
need to examine the DNA binding of cofactor/TF complexes,
since novel specificity can arise even when cofactors do not
bind DNA on their own. Furthermore, we demonstrate how the
PBM technology can be used to examine these phenomena at
genome scale.

Results

Determining protein-DNA binding affinities (Kds)
using PBMs

To perform a comprehensive, genome-scale biophysical
characterization of the roles exhibited by Cbf1, Met31, and

Met32 in regulation of the Met4 core regulon, we sought an
accurate characterization of the binding affinities (Kds) of
these TFs to all predicted DNA binding sites in the S. cerevisiae
genome (a description of how these sites were identified is
provided below in the section ‘Genome-wide characterization
of Cbf1 and Met32 DNA-binding affinities’). Furthermore, to
account for any potential dependence on the sequences
flanking the individual DNA binding sites, we chose to
measure these TFs’ binding affinities to each DNA binding
site within the context of its native genomic flanking sequence.
The number of such unique binding sites (thousands)
precluded the use of conventional approaches for determining
affinities (e.g., electromobility shift assay or surface plasmon
resonance (SPR)). Therefore, we utilized the PBM technology
(Bulyk et al, 2001; Mukherjee et al, 2004; Berger and Bulyk,
2006a) to determine protein-DNA binding affinities in a
high-throughput manner.

PBMs are an in-vitro, double-stranded DNA (dsDNA)
microarray technology that allows the simultaneous charac-
terization of a protein’s DNA-binding preference to tens of
thousands of unique DNA sequences in a single experiment
(Bulyk et al, 2001; Mukherjee et al, 2004; Berger et al, 2006b).
PBM fluorescence signal intensities and derived scores for
individual DNA binding site sequences have been shown to
correlate with prior protein-DNA binding affinity measure-
ments (i.e., Kd values; Bulyk et al, 2001; Berger and Bulyk,
2006a; Badis et al, 2009). To account for the protein
concentration dependence of binding to DNA, we performed
PBM experiments using purified Cbf1 or Met32 at eight
different protein concentrations, ranging from B10 nM to
30 mM (Supplementary Table S1; Supplementary Figure S1),
and we fit saturation binding curves to the eight fluorescence
measurements for each probe on the microarray (Figure 1A;
Materials and methods). This follows an approach used
successfully by Jones et al (2006) to measure the affinities of
phosphopeptides binding to protein domains immobilized on
a protein microarray. We identified Cbf1 and Met32 binding
sites in the S. cerevisiae genome using previously published
universal PBM data (Zhu et al, 2009) (see details below), and
we incorporated those binding sites into DNA probe sequences
on custom arrays that we designed for this study. This
customized Cbf1/Met32 PBM design allowed us to better
control for the effects of binding site sequence context by
putting the Cbf1 and Met32 binding sites at a constant position
relative to the surface of the glass slide and within constant
flanking sequences.

To assess the accuracy of the PBM-determined affinity
measurements, we measured equilibrium binding affinities for
a subset of the PBM probe sequences by SPR (Materials and
methods) and compared them with the PBM data. We
observed excellent linear agreement between the natural log
values of our PBM-determined Kds (i.e., the binding energies)
and the SPR-determined Kds (R2¼0.96) over an affinity range
of 10-fold (Met32; Figure 1B) to 20-fold (Cbf1; Figure 1C). Our
PBM-determined values are also in excellent agreement
(R2¼0.97) with data obtained using a high-throughput
microfluidic approach (MITOMI) for Cbf1 binding to 64
variant sites (Maerkl and Quake, 2007) over an B300-fold
range in Kd (Figure 1D). Despite the strong linear correlation
with independent measurements, the absolute Kds derived
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solely from the PBM data are consistently higher (i.e., weaker
affinity) than Kds determined by SPR or MITOMI (Figure 1;
see Supplementary information for extended discussion).
Therefore, we implemented a hybrid strategy whereby a linear
transformation is applied to the PBM-determined energies
based on a set of SPR measurements. We assessed the accuracy
of this approach using a standard cross-validation analysis
where the linear transformation of the PBM data is performed
using n�1 of the SPR measurements and the accuracy is
assessed on the remaining measurement. Using the ratio of the
SPR affinity to the transformed PBM affinity as an indicator of
accuracy, we observed mean values of 1.05 (±0.24) for Met32
and 1.08 (±0.34) for Cbf1. Thus, the majority of the
transformed PBM affinity measurements (i.e., Kd values) are
within B30% of the SPR-determined absolute Kd values.
Therefore, the hybrid SPR-PBM approach provides a practical
approach to accurately measure the absolute binding affinity
(Kd) of a protein (or protein complex) to thousands of unique
DNA sites simultaneously.

Genome-wide characterization of Cbf1 and Met32
DNA-binding affinities

To characterize the DNA-binding affinity landscape of Cbf1
and Met32 across the yeast genome, we used the hybrid SPR-
PBM approach to measure the in-vitro DNA-binding affinities
(absolute Kds) of Cbf1 and Met32 to predicted DNA binding
sites (673 and 685, respectively), identified in B4900
intergenic regions of the S. cerevisiae genome (Materials and
methods). This set of intergenic regions contains the upstream
and downstream intergenic regions surrounding the 45 Met4
regulon genes described in Lee et al (2010), and all intergenic
regions identified as ‘bound’ (Po0.005) by any of 203
S. cerevisiae TFs examined in a chromatin immunoprecipita-
tion (ChIP) survey of in-vivo TF binding by Harbison et al
(2004). We reasoned that the ChIP-‘bound’ regions from this
large data set represented a reasonable estimate of these TFs’
potential gene regulatory regions in the genome. We measured
the binding affinities for Cbf1 and Met32, separately, to all
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1358 DNA binding sites in the context of their native genomic
flanking sequences (Figure 2A and B; Materials and methods).

Our data are in excellent agreement with previously
published data for both Cbf1 and Met32. DNA binding site
motifs constructed from the top 20 highest affinity sites agree
well with both ChIP-chip-derived (Harbison et al, 2004;
MacIsaac et al, 2006) and other PBM-determined (Berger
et al, 2006b; Badis et al, 2009; Zhu et al, 2009) motifs
(Figure 2C). For Cbf1, consistent with prior MITOMI data
(Maerkl and Quake, 2007), we also identified many high-
affinity sequences that deviated from the consensus sequence
(G/A)TCACGTG. For example, many sequences with variant
E-box sequences (CACATG, not consensus G), or variant
flanking bases (GCACGTG, not consensus T) had Kd values
within five-fold of the highest affinity site.

For Met32, the in-vitro binding data suggested a longer
binding site than the TGTGGCG core previously defined by
universal PBM experiments (Badis et al, 2008; Zhu et al, 2009;

Figure 2C). The A-rich sequence preference observed 50 to the
core agrees well with the ChIP-chip-derived motif (Harbison
et al, 2004; MacIsaac et al, 2006; Figure 2C), demonstrating
that the ChIP-identified sequence preferences are in fact
consistent with affinity differences in Met32 monomer
binding. These results also demonstrate that the previously
described AAACTGTGGC consensus (Lee et al, 2010), which
had been motivated by identification of AAACTGTGG
sequences upstream of many Met genes (Blaiseau et al,
1997), is consistent with high-affinity Met32 binding. How-
ever, our motif analysis identified additional sequence
preferences 30 to the consensus site (positions 11–13,
Figure 2C); in fact, the affinity distribution of the 17 genomic
sequences containing the consensus AAACTGTGGC (e.g.,
NNAAACTGTGGCNNNNNNNNN) ranges from 9.0 to
64.4 nM (46-fold range), demonstrating that flanking bases
beyond this high-affinity consensus sequence can have a
considerable effect on Met32 binding affinity.
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High-affinity Met31/Met32 sites specify the Met4
regulon genes with Cbf1-independent expression

To explore the relative contributions of Cbf1 and Met31/Met32
to the transcriptional regulation of the Met4 regulon genes, we
constructed a simple biophysical model of gene regulation
based on the binding of each factor to gene promoter regions.
Cbf1, Met31, and Met32 have all been shown to recruit Met4 to
DNA (Kuras et al, 1997; Blaiseau and Thomas, 1998);
therefore, we used the predicted probability of finding a factor
bound to at least one site in the gene promoter as a direct
measure for the strength of Met4 recruitment to each promoter,
and consequently for the level of gene regulation. The binding
of proteins to sites was treated using an equilibrium thermo-
dynamic model parameterized with our genome-scale binding
affinity data (see Supplementary information). Here, and for
the rest of this analysis, we have used Met32 binding data to
model binding of both Met31 and Met32. Universal PBM
experiments for these factors identified no detectable differ-
ences in their DNA-binding specificities (Badis et al, 2008).

We generated models using either Met31/Met32 or Cbf1
binding (i.e., single-TF models). We scored the promoter
regions of the Met4 regulon genes as well as 4824 additional
intergenic regions from the Harbison et al (2004) ChIP-chip

data set as described above. For analysis, we divided the Met4
regulon genes into the three classes described by Lee et al
(2010) based on the Cbf1 dependence of their expression: Cbf1
dependent (Class 1), partially Cbf1 dependent (Class 2), and
Cbf1 independent (Class 3). Scores for Met4 regulon genes
were compared with the 500 top-scoring background genes to
provide a stricter assessment of specificity and to better resolve
differences among the regulon gene classes (Figure 3A and B).
Receiver-operating characteristic (ROC) curve analyses were
used to assess the sensitivity and specificity of the model
predictions (Figure 3C and D).

We found that the Met31/Met32-specific model of binding
was strongly predictive of Class 3 (area under ROC curve
(AUC)¼0.86) and Class 2 (AUC¼0.84) regulon genes, but a
poor predictor for Class 1 genes (AUC¼0.51) (Figure 3A and
C). These results were robust to the concentration of Met31/
Met32 (the single free parameter) used in our modeling
(Supplementary Table S9). Therefore, the Met31/Met32 bind-
ing affinity provides a highly predictive measure for two gene
classes of the Met4 regulon.

In contrast to the results from the Met31/Met32-specific
model, the Cbf1-specific model yielded moderate predictions
for Class 1 (AUC¼0.66) and Class 2 (AUC¼0.65), but
poor predictions for the Cbf1-independent Class 3 genes
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(AUC¼0.41). These results were robust for nuclear Cbf1
concentrations modeled from 0.5 to 5 nM; however, at much
higher concentrations, we found that predictions for Class 2
genes improved (AUC¼0.79, [Cbf1]¼250 nM, see Supplemen-
tary Table S9), suggesting the existence of lower affinity Cbf1
sites in Class 2 gene promoters that become important in
regulating Class 2 genes at higher Cbf1 concentrations.
Paradoxically, however, the Cbf1-specific model is only
moderately predictive for the most Cbf1-dependent class of
regulon genes (Class 1). Therefore, we hypothesized that some
additional cis-regulatory feature must specify this class of
genes and explain their observed Cbf1 dependence.

Met4 is recruited equally to all Met32-bound sites

An assumption in our affinity-dependent binding models was
that the Met4 cofactor was recruited equally well to any DNA-
bound Met31/Met32 or Cbf1 protein (Supplementary informa-
tion). However, it has been demonstrated, using purified
recombinant proteins, that the multi-protein Met4–Met28–
Cbf1 complex can assemble on the MET16 UAS element, but
not on the MET28 UAS element, despite both of these elements
having a Cbf1 binding site (Kuras et al, 1997). Therefore, we
examined the possibility of DNA sequence requirements for
the assembly of Met4-containing protein complexes. We
performed a genome-scale analysis of sequence specificity in
Met4 recruitment by Met32, Cbf1, and Met28. To do this, we
adapted the standard PBM experimental approach to examine
the recruitment of Met4 to the B1300 Cbf1 or Met32 sites on
our custom, genomic microarray; specifically, we examined
the DNA binding of Met4 by PBM experiments performed in
the presence or absence of Met32, Cbf1, and Met28 (Materials
and methods).

We observed that in the absence of Met32 (Figure 4B), Met4
binds weakly and non-specifically to all 685 Met32 sites in the
PBM experiments, consistent with the reported absence of an
intrinsic DNA-binding ability (Lee et al, 2010). However, in the
presence of Met32, binding by Met4 scales with the binding
affinity (Kd) of Met32 to each site (Figure 4A). Therefore, it is
the concentration of Met32 bound to each PBM spot that
determines the concentration of bound (recruited) Met4.
Addition of Met28 had no effect on Met4 recruitment by
Met32 (Supplementary Figure S2A and B). These results
demonstrate that DNA-bound Met32 recruits Met4 equally to
all sites in a Met28-independent manner.

Met4–Met28–Cbf1 complex enhances Met4
recruitment to specific DNA sites

In striking contrast to the results for Met32 recruitment of
Met4, we found that the Cbf1–Met28–Met4 complex assembles
preferentially in a sequence-dependent manner (Figure 4E).
Cbf1 recruits Met4 weakly to the 673 Cbf1 binding sites
(Figure 4C), and we observed that the weak Met4 recruitment
correlates with Cbf1 binding affinity (Kd). Met28 does not
recruit Met4 to DNA (Figure 4D), nor does Met4 bind
specifically to Cbf1 sites on its own (Supplementary Figure
S2E), consistent with the reported absence of intrinsic DNA-
binding activity for Met4 or Met28. However, when Met4

recruitment was examined in combination with both Cbf1 and
Met28, we observed both (1) a stabilization of Met4 at all Cbf1
sites (bottom ‘cloud’ in Figure 4E that correlates with Cbf1 Kd

values) and (2) an even stronger stabilization at a distinct set
of Cbf1 sites with Kd values ranging from high (2 nM) to
moderate (10 nM) affinity. Normalizing the PBM fluorescence
values from the full Met4/Met28/Cbf1 experiment (Figure 4E)
by the non-specific signal from the Met4/Cbf1 experiment
(Figure 4C) makes it apparent that addition of the Met28
cofactor enhances binding of Met4 to all 673 Cbf1 sites by B2-
to 3-fold, but to a small subset of B35 sites by 5- to 22-fold
(Figure 4G), hereafter referred to as Met4 ‘recruitment’ sites.

Sequence specificity of Met4–Met28–Cbf1 complex
binding requires all three factors

Selective binding of the Met4–Met28–Cbf1 complex to a small
subset of Cbf1 sites (Met4 recruitment sites) does not correlate
with binding affinity of Cbf1. In fact, many of the sites had Kd

values 5- to 10-fold lower than the highest affinity Cbf1 sites
(Figure 4C). Preferred binding to the Met4 recruitment sites
was similarly not observed in the Met4/Cbf1 (Figure 4C) or
Met4/Met28 (Figure 4D; Supplementary Figure S2D) experi-
ments. It was previously shown that in-vitro Met28 could
stabilize Cbf1 binding to DNA (Kuras et al, 1997). Therefore,
we examined whether specification of Met4 recruitment sites
could be due to a Met28–Cbf1 complex. PBM experiments
with Met28 and Cbf1, however, demonstrated no enhanced
specificity for these sites (Supplementary Figure S2C). These
results demonstrate that selectivity for Met4 recruitment sites
requires the full Met4–Met28–Cbf1 complex.

Promoters of Cbf1-dependent regulon genes
are enriched for binding sites with enhanced
Met4–Met28–Cbf1 complex binding

We examined whether the Met4 recruitment sites that enhance
the binding of the Met4–Met28–Cbf1 complex are found in the
promoters of the Met4 regulon genes, and therefore might have
a role in their regulation. We found that many Cbf1 sites found
in Class 1 and Class 2 genes’ upstream regions are Met4
recruitment sites (Figure 4F and G; Supplementary Table S2).
We assessed the statistical significance of the overlap between
promoter Cbf1 sites and Met4 recruitment sites using Fisher’s
one-tailed exact test (i.e., using a hypergeometric distribution)
(Figure 4H) and found that Cbf1 sites in Class 1 and Class 2
genes are highly enriched for Met4 recruitment sites; 8/14
(P¼6.8�10�7) and 6/19 (P¼8.6�10�4), respectively. These
recruitment sites occur in the promoters of 8/12 Class 1 genes
(67%) and 5/19 Class 2 genes (26%). We note that while both
Class 1 and Class 2 gene promoters are enriched for Met4
recruitment sites, the enhanced binding of the Met4–Met28–
Cbf1 complex is stronger to the sites in Class 1 gene promoters
(Figure 4F and G), which correlates with the increased Cbf1
dependency of the expression for this gene class. Our analysis
reveals that the promoters of Met4 regulon genes that exhibit
Cbf1-dependent expression are highly enriched for specialized
Met4 recruitment sites that enhance the binding of the
Met4–Met28–Cbf1 complex.
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Figure 4 Sequence dependence of Met4 recruitment. (A–E) The median PBM probe fluorescence intensities for GST-tagged Met4 binding to 685 Met32 sites (A, B)
and 673 Cbf1 sites (C–E) in the presence of different 6xHis-tagged proteins are shown: (A) Met4 binding to Met32 sites assayed in the presence of Met32; (B) Met4
binding to Met32 sites by itself; (C) Met4 binding to Cbf1 sites assayed in the presence of Cbf1; (D) Met4 binding to Cbf1 sites in the presence of Met28; (E) Met4 binding
to Cbf1 sites in the presence of Met28 and Cbf1. X-axis coordinates are the PBM/SPR-determined Kd values for Met32 and Cbf1 binding to the respective sites. Cartoons
in each panel represent the hypothesis being tested. (F) The plot from (E) with Cbf1 sites identified in the promoters of Met4 regulon genes highlighted according to Met4
regulon Class designations of Lee et al (2010) is shown. (G) Ratio of PBM fluorescence values for the Met4/Met28/Cbf1 experiment (E) over the Met4/Cbf1 experiment
(C). Individual sites are colored as in (F). Met4 ‘recruitment sites’ are indicated as sites having a ratio 45.0. (H) Overlap of Cbf1 sites identified in upstream promoter
region of Met4 regulon genes and Met4 recruitment sites in (G). Promoter regions are defined as 1500 bp upstream of TSS or until next coding region. Significance of
observed overlap is calculated using Fisher’s one-tail exact test (hypergeometric distribution).
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RYAAT sequence motif located 50 to the Cbf1
E-box enhances Met4–Met28–Cbf1 complex binding

To determine whether specific sequence features of the Met4
recruitment sites account for the enhanced Met4–Met28–Cbf1
binding, we inspected the top-scoring Met4 recruitment sites
for any shared sequence features. We found a prominent
RYAATsequence motif located 2 bp 50 to the canonical CACGTG
E-box site and also a weaker sequence motif located more
distally on either side of the E-box core (Figure 5A; Supple-
mentary Table S2). We note that the top 20 Met4 recruitment
sites, which include Cbf1 sites from 8 of 12 Class 1 regulon
gene promoters, all have the RYAATsequence motif (or RYCAT
variant, two sequences) (Supplementary Table S2). To
investigate the role of the RYAATsequence motif, we designed
new PBM arrays and examined Met4–Met28–Cbf1 binding to
all variants of the AAT submotif (positions 3, 4, and 5 in
Figure 5A) for three Met4 recruitment sites (Figure 5B).
Deviation from Ade at position 4 reduced binding to near
background levels. Deviation from Thy at position 5 also
reduced binding, although to a lesser extent. Mutations at
position 3 exhibited varied effects, with the Ade to Cyt
substitution being tolerated best. To account for any potential

artifact that might arise due to the orientation of the RYAAT
motif in our PBM probes (i.e., proximal or distal to the glass
slide; Supplementary Figure S4), we analyzed the enhanced
binding of the Met4–Met28–Cbf1 to recruitment sites for
probes in both orientations and found that the effect was
preserved.

To determine the full width of the composite Met4
recruitment/Cbf1 binding site, we designed new custom
PBM arrays to make systematic mutations of both 50 and 30

distal nucleotide positions. For the Met4 recruitment sites
identified in the ADE3 and MET16 gene promoters, we
exhaustively tested Met4–Met28–Cbf1 binding to 256 variants
that differed at nucleotide positions �2 through 2 (Supple-
mentary Table S3). Met4–Met28–Cbf1 binding to these mutant
sequences varied considerably; examination identified a
strong sequence preference for a purine (Ade or Gua) at
position 1 followed by a pyrimidine (Cyt or Thy) at position 2
(Supplementary Figure S3A). This sequence preference was
consistent with the preferences observed for strong Met4–
Met28–Cbf1 binding sites identified in the genome (Figure 5A;
Supplementary Figure S3A). Mutations at positions 30 to the
E-box (i.e., positions 15–22 in Figure 5A) had no effect on
Met4–Met28–Cbf1 binding (data not shown). To rule out a
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Figure 5 Sequence specificity of the Met4 recruitment motif. (A) Logo determined from top 20 Met4 recruitment sites (Supplementary Table S2). These sequences
were manually oriented to align the common AAT motif. (B) Ratio of PBM probe fluorescence values (Met4/Met28/Cbf1 PBM experiment over the Met4/Cbf1 PBM
experiment) are shown for wild-type and mutant versions of three Met4 recruitment sites (shown in box). Mean and standard deviation are shown for measurements to
wild-type or mutant versions of the three sequences. X-axis indicates identity of mutated base (numbering as in (A)). BG indicates measurements over 200 Cbf1 sites
with the lowest ratio scores (i.e., background).
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sequence preference at more distal positions, we re-examined
Met4–Met28–Cbf1 binding to the 673 Cbf1 sites in the presence
of an additional 5 bp of the genomic flanking sequence on
either site (positions �5 to 25 in Figure 5A). We observed no
significant difference in Met4–Met28–Cbf1 binding (data not
shown) and a binding motif constructed from the top 20
‘extended flank’ recruitment sites showed no additional
sequence preference beyond the RYAAT motif (Supplementary
Figure S3A). These results demonstrate that enhanced Met4
recruitment in vitro by the Met4–Met28–Cbf1 complex is
dependent on the 5-bp Met4 recruitment motif RYAAT
(positions 1–5 in Figure 5A) located 50 to the E-box motif.

The RYAAT sequence motif must occur at a fixed
distance from the Cbf1 E-box to enhance
Met4–Met28–Cbf1 complex binding

Given the conserved spacing of the Met4 recruitment motif
relative to the E-box in the genomic sequences, we tested the
importance of the spacing between these two motifs for
enhanced Met4–Met28–Cbf1 binding. For the Met4 recruit-
ment sites in the ADE3 and MET16 promoters, we system-
atically varied the spacing of the Met4 recruitment motif
relative to the E-box from 0 bp (i.e., ACAATCACGTG) to 2 bp
(i.e., ACAATNNCACGTG, 16 variants) and examined the effect
on Met4–Met28–Cbf1 binding (Supplementary Table S3;
Supplementary Figure S3B). Binding was reduced to near
background levels for all spacing variants except for the native
2-bp spacing, suggesting a strict requirement for exact 2 bp
spacing between the AATof the Met4 recruitment motif and the
Cbf1 E-box motif for enhanced Met4–Met28–Cbf1 binding.
Therefore, the Met4 recruitment motif is a highly specific
composite binding motif with strong spacing and sequence
requirements for functionality.

A second RYAAT sequence motif can further
enhance Met4–Met28–Cbf1 binding

Motivated by the observation that Cbf1 binds the E-box as a
homodimer (Kuras et al, 1996), we asked whether adding a
second Met4 recruitment motif on the opposite (30) side of the
E-box would result in a binding site with even stronger Met4–
Met28–Cbf1 binding. We observed that adding a second,
symmetrically positioned Met4 recruitment motif significantly
improves Met4–Met28–Cbf1 binding (Supplementary Figure
S3B). Furthermore, as Met28 concentration increases, the PBM
signal is enhanced more greatly for sites with a second
recruitment motif than to sites with a single recruitment motif.
These results demonstrate that the increased Met4 binding (i.e.,
PBM signal) is due to additional Met28 binding (or recruitment)
to the second recruitment site and suggests a direct role for Met28
in the recognition of the Met4 recruitment motif.

Mutations to the RYAAT motif compromise
induction of genes in low-sulfur conditions

We examined the contribution of the RYAATrecruitment motif
to gene induction under conditions of low-sulfur growth. Yeast
strains were constructed in which wild-type or RYAAT-mutant

versions of the promoter regions from two Class 1 genes,
YHR112C and MET14, were inserted upstream of LYS2, which
we employed here as a reporter gene (Materials and methods;
Figure 6A, Supplementary Figure S5). Both YHR112C and
MET14 contained high-scoring Met4 recruitment sites (Sup-
plementary Table S2). The ability of the wild-type and mutant
promoters to drive LYS2 gene expression was examined under
low-sulfur growth conditions. Mutations to the promoter
regions were limited to the RYAAT motif (i.e., RYAAT to
RYTTA; see Figure 6A) so as not to perturb Cbf1 binding itself.
We observed significant reduction in the promoter activity for
RYAAT-mutant versions of the promoters: YHR112C (B2-fold
reduced; P¼3.2�10�6) and MET14 (B3-fold reduced;
P¼6.6�10�6) (Figure 6B). Many Class 1 gene promoters
contain a moderate affinity Met31/Met32 binding site in
addition to a composite Met4 recruitment site. To examine
the potential dependence on the proximity of Met31/Met32
sites, we chose MET14 and YHR112C as examples of promoters
in which these sites are proximal to each other (MET14,
30 bp; Supplementary Figure S5) or distal (YHR112C, 186 bp;
Supplementary Figure S5). While both mutant promoters
exhibited considerably reduced activity, some activity
remained, which might have resulted from Met4 recruitment
to these moderate affinity Met31/Met32 sites. Our results
demonstrate that the RYAAT motif is a bone fide cis-regulatory
element necessary for the full induction of Class 1 target genes
of the Met4–Met28–Cbf1 complex under conditions of
low-sulfur growth.

Met4 recruitment sites specify Cbf1-dependent
Met4 regulon genes

The presence of the RYAAT motif next to the Cbf1 binding site,
in addition to enhancing Met4–Met28–Cbf1 complex binding,
provides a means to functionally distinguish Cbf1 sites within
the genome. This suggested that Met4 recruitment ability of a
Cbf1 site (i.e., the presence of an adjacent RYAAT motif) rather
than Cbf1 binding site affinity may specify the Class 1 genes
within the genome. To investigate this, we scored genes by the
Met4 recruitment strength of Cbf1 sites present in their
promoters, and compared the regulon genes with the top 500
scoring non-regulon genes as was done previously (Figure 3C
and D). Met4 recruitment strength of Cbf1 sites was scored
as in Figure 4G. We found that the Class 1 regulon genes are
predicted strongly by Met4 recruitment strength alone
(AUC¼0.84) (Figure 6C). While Class 2 genes do contain
Met4 recruitment sites (Figure 4G and H), the class as a whole
is not predicted well (AUC¼0.52). Scoring genes based on the
presence of an RYAAT motif adjacent to Cbf1 sites, as a proxy
for Met4 recruitment strength, performed identically (data not
shown). These results demonstrate that Met4 recruitment
strength of Cbf1 sites, rather than Cbf1 binding site affinity, is
what distinguishes Class 1 regulon genes within the genome.

Discussion

Achieving specificity in transcriptional regulation requires
that TFs are able to identify specific genomic loci. However,
in eukaryotes the degenerate binding of TFs and large
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genome sizes means that single binding sites occur too
often to explain the specificity observed for gene transcription
(Wunderlich and Mirny, 2009). As a model system, we have
examined the role of TF binding site affinity and sequence-
specific cofactor recruitment in specifying the previously
described Met4 regulon genes (Lee et al, 2010). Our results
suggest that at least two distinct mechanisms are used to
achieve specific recruitment of the Met4 transcriptional
activator to Met4 regulon gene promoters. For Class 2 and
Class 3 Met4 regulon genes (those with expression only
weakly dependent or independent of Cbf1, respectively),
the presence of high-affinity Met31/Met32 binding sites
(which represent binding by either Met31 or Met32) provides
specificity and distinguishes these Met4 regulon genes
from other genes in the genome. Consistent with this, we
found that Met32 can recruit Met4 equally well to any binding
site; therefore, it is the binding of Met31 or Met32 itself
that provides the specificity. In contrast, for the strongly
Cbf1-dependent (Class 1) regulon genes, the presence of
novel Met4 recruitment sites that enhance binding by the
Met4–Met28–Cbf1 complex provides specificity. We find that
the ability of Cbf1 sites to be bound by the Met4–Met28–Cbf1
complex is considerably more predictive of this gene class
than is Cbf1 binding affinity alone (AUC¼0.84 versus 0.65,
Figures 3 and 6, respectively). Furthermore, our demonstra-
tion that the recognition of the Met4 recruitment sites
requires the full trimeric complex provides an explanation
for the observed Cbf1 and Met28 dependence of the Class 1

subset of the Met4 regulon genes: deletions of either Cbf1
or Met28 will abrogate the trimeric complex required to
recognize the Met4 recruitment sites present in Class 1 gene
promoters. These results demonstrate that TF targeting
specificity (Met4 targeting in this system) can be achieved
by different mechanisms even within a tightly co-expressed set
of genes.

Previous work has described still additional mechanisms for
achieving specificity, such as stabilized binding of Met4–
Met28–Met32 by proximally bound Cbf1 (Blaiseau and
Thomas, 1998) and differential reporter gene expression based
on altered spacing of Met31/Met32 and Cbf1 binding sites
(Chiang et al, 2006). Future work examining these additional
mechanisms of specificity should lead to an even more
complete model of transcriptional regulatory control for the
Met4 regulon genes.

To investigate the role of DNA-binding affinity, we devel-
oped a hybrid SPR-PBM methodology that readily allows the
measurement of absolute binding affinities (Kds) of a TF or TF
complex to thousands of individual DNA binding sequences.
With currently available array densities (e.g., Agilent 1�1 M
array format), this approach could be extended readily to
hundreds of thousands of sites. In this study, we applied this
approach to measure the binding affinities of Met32 and Cbf1
to 41300 unique DNA binding sites from the S. cerevisiae
genome. We demonstrate that this approach can provide
accurate affinity measurements, which are in excellent
agreement with other published methods (Figure 1D).
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The cooperative assembly of the Met4–Met28–Cbf1 complex
on DNA that we report is consistent with results of Kuras
et al (1997). Moreover, our results provide an explanation
for the differential binding that they observed in vitro for
the Met4–Met28–Cbf1 complex on E-box sites from the
MET16 (ATCATTTCACGTG) and the MET28 (TAAGTCACGTG
CACTCAG) gene promoters: the E-box (shown in bold)
from the MET16 gene promoter has a Met4 recruitment
motif adjacent to it (underlined), while the site from the
MET28 promoter does not. However, in contrast to their
observation that Met4–Met28–Cbf1 would not assemble on
the MET28 E-box sequence, we find that there is weak
non-specific stabilization of the Met4–Met28–Cbf1 complexes
to all E-box sequences, and that this stabilization correlates
with the DNA-binding affinity of the Cbf1 site (compare
Figure 4C and D with Figure 4E). This inconsistency
may be due to the different protein concentrations or
experimental approaches that were employed in our study
versus theirs, or may be due to the different Cbf1 protein
constructs that were used; we used GST-tagged, full-length
Cbf1, whereas Kuras et al used a 6xHis-tagged, N-terminally
truncated version of Cbf1.

The ability of the Met4 recruitment motif RYAAT (Figure 5A)
to enhance the assembly of the Met4–Met28–Cbf1 complexes
on E-box sites was unexpected. Cbf1 does not preferentially
bind to sites adjacent to the Met4 recruitment motif, nor do the
pairwise complexes of Met4–Cbf1, Met28–Cbf1, or Met28–
Met4 (Figure 4B and D; Supplementary Figure S2). Therefore,
specific recognition of the Met4 recruitment motif requires all
three proteins to be present in the bound complex. While it
remains unclear what part of the Met4–Met28–Cbf1 complex
recognizes the Met4 recruitment motif, we find it unlikely that
some unknown portion of Cbf1 protein confers the specific
recognition of the RYAAT motif. First, it was previously shown
that the region of Cbf1 N-terminal to the bHLH DNA-binding
domain (amino acids 1–209) was unnecessary for differential
recognition of the MET28 and MET16 UAS elements by a Met4–
Met28–Cbf1DN complex (Kuras et al, 1997). Second, the Cbf1
bHLH DNA-binding domain is itself unlikely to make strong
DNA contacts 7 bp from the E-box core, and the B80 amino-

acid long region C-terminal to the bHLH domain does not
contain any known DNA-binding domains.

In contrast, despite exhibiting no intrinsic DNA-binding
ability, both Met28 and Met4 contain a bZIP DNA-binding
motif (Blaiseau and Thomas, 1998). Based on the considera-
tions of protein sequence and structure, we propose a model in
which the Met28 subunit of the Met4–Met28–Cbf1 complex
makes base-specific contacts to select for the Met4 recruitment
motif. Sequence analysis identified a weak homology between
the bZIP regions of Met28 and C/EBPa from mouse (BLASTP
E-value¼0.15, see Materials and methods), and a striking
similarity between amino-acid residues of Met28 and those of
the C/EBPa paralog C/EBPb (Figure 7B) that make base-
specific contacts with a GCAAT binding sequence in an X-ray
co-crystal structure (Tahirov et al, 2002). Furthermore, the
GCAAT half-site from the C/EBPb crystal structure itself is a
perfect match to the RYAAT Met4 recruitment motif
(Figure 7C). We favor a model where the Met28 subunit of
the Met4–Met28–Cbf1 complex makes base-specific contacts
to select for the Met4 recruitment motif. We propose that a
plausible configuration for the trimeric complex is one in
which a Met4/Met28 bZIP heterodimer, dimerizing via leucine
zippers, is positioned adjacent to the Cbf1 homodimer
(Figure 7A); this configuration would allow for Met28 to
adopt a binding orientation analogous to the C/EBPb subunit
that similarly recognizes a GCAAT half-site.

Selective binding of the Met4–Met28–Cbf1 complex to the
composite (RYAATNNCACGTG) Met4 recruitment site is
strikingly similar to the situation described for the Oct-1–
HCF-1–VP16 complex that recognizes the consensus site
TAATGARAT (Babb et al, 2001). In both situations, non-DNA-
binding transcriptional activators (Met4 and VP16) are
recruited to DNA by sequence-specific binding TFs (Cbf1 and
Oct-1, respectively), and this recruitment is facilitated by non-
DNA-binding cofactors (Met28 and HCF-1, respectively).
Furthermore, in both situations the multi-protein complex
selects for binding sites where a ‘recruitment motif’ (RYAAT
and GARAT, respectively) occurs adjacent to the TF binding
site motif (CACGTG for Cbf1 and TAAT for Oct-1). The extent to
which this shared mechanism exists beyond these two systems
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remains to be discovered; however, they highlight the need to
examine the DNA-binding specificity of multi-protein com-
plexes even when the recruited cofactors are not known to
interact with DNA. A direct role for non-DNA-binding
cofactors in refining the gene targeting of regulatory complexes
might represent a widespread mechanism to achieve greater
complexity in eukaryotic gene regulation.

Materials and methods

TF cloning and preparation of protein samples

Full-length CBF1, MET32, MET28, and MET4 open reading frames were
cloned into Gateway pDEST15 (N-terminal GST tag) and pDEST17 (N-
terminal 6xHis tag) expression vectors. GST-Met32, GST-Cbf1, and GST-
Met4 were overexpressed in E. coli BL21 (DE3) cells (New England
BioLabs) and purified by FPLC (AKTAprime plus) using 1 ml GSTrapt
FF affinity columns (GE Healthcare). Samples were then concentrated
by centrifugation using Amicon Ultra (10 K) filter devices (Millipore)
and stored in 10% glycerol at �801C. Protein concentrations were
quantified by standard Bradford assay using Coomassie Plus Protein
Assay reagent (Thermo Scientific); stock concentrations of the purified
proteins were as follows: GST-Met32 (45mM), GST-Cbf1 (43mM), GST-
Met4 (5mM). All 6xHis-tagged proteins produced by in-vitro transcrip-
tion and translation (IVT) were made using the PURExpress kit (New
England BioLabs) from purified plasmids. Western blots were
performed for each protein to assess quality and to approximate
protein concentration relative to a dilution series of recombinant GST
standard (Sigma). See Supplementary information for further details.

Genomic binding site identification and PBM
probe construction

We identified potential DNA binding sites in yeast intergenic regions by
scanning their sequence with universal PBM data for Cbf1 and Met32
(Zhu et al, 2009). We identified all high-scoring ungapped 8-mers
(PBM enrichment score 40.48) in the genome and aligned them to
10 bp position weight matrices (PWMs) defining the core binding site
motifs for Cbf1 (GTCACGTGAC) or Met31/Met32 (CTGTGGCGCT) to
determine a common sequence register. The identified genomic
sequences constituting the core 10 bp motif plus 5 bp of flanking
sequence on each side were incorporated into 60 bp probe sequences
on a new, custom-designed DNA microarray (Figure 2A and B;
Supplementary information).

PBM experiments and analysis

PBM experiments were performed using custom-designed oligonucleo-
tide arrays (Agilent Technologies, Inc., 8�15 K array platform; see
Supplementary information). Two different custom PBMs were designed
and used for this work: design #1 (Agilent Technologies Inc., AMADID
#024623) had genomic Cbf1 and Met32 binding sites (Figures 1, 2 and 4;
Supplementary Figures S1, S2 and S4); design #2 (Agilent Technologies
Inc., AMADID #028293) had mutant versions of Met4 recruitment sites
(Figure 5; Supplementary Figure S3; Supplementary Table S3). For PBM
experiments used in the hybrid SPR-PBM approach to determine binding
affinities, GST-tagged protein (Met32 or Cbf1) was applied at eight
different concentrations on a single design #1 array (Supplementary
Table S1). For PBM experiments assessing Met4 recruitment (Figure 4),
protein samples were applied at the concentrations indicated in
Supplementary Table S4. PBM DNA probe sequences are provided in
Supplementary File 1. Full PBM data and hybrid SPR-PBM determined Kd

values are provided (Supplementary Tables S6 and S7).

SPR experiments

SPR was performed on a Biacore 3000 instrument. Biotinylated
oligonucleotides were immobilized onto a Sensor Chip SA (Biacore).

Serial concentrations of protein sample were diluted into a running
buffer (10 mM Tris–HCl, pH 7.4; 3 mM dithiothreitol (DTT); 0.2 mM
EDTA, 0.02% Triton X-100; 120 mM NaCl; 10% glycerol; 0.2 mm filtered
and de-gassed) and applied to the Sensor Chip at 25ml/min (KINJECT
option: 250ml samples/150 s dissociation phase). Binding constants
(Kd values) were determined using Scrubber2 software (BioLogic
Software). Probes sequences and Kd values are provided (Supplemen-
tary Table S5).

Generating yeast strains

Wild-type and RYAAT-mutant promoter constructs were inserted
upstream of the native LYS2 gene in the S. cerevisiae genome (yMT-
2450 strain; Lee et al, 2010) (Supplementary Figure S5A; Supplemen-
tary information). The inserted promoter constructs displace the
native LYS2 promoter (i.e., in the 50 direction relative to the gene) and
do not remove it. Wild-type and mutant promoter regions for YHR112C
and MET14 (Figure 6A; Supplementary Figure S5B) were constructed
by gene synthesis (GenScript). The high-efficiency transformation
protocol of Gietz and Woods (2002) was used for all transformations.

Gene expression experiments

Gene expression was examined under conditions of low-sulfur growth
as described in Lee et al (2010) (see Supplementary information).
Expression was measured in log-phase growth in minimal B-media
with 0.5 mM methionine as sole sulfur source (t¼0) and 2 h after
switching to minimal B-media lacking a sulfur source (t¼2 h).
Expression was monitored by quantitative PCR (qPCR) for both
wild-type and RYAAT-mutant promoter strains. All measurements
were performed in biological triplicate (i.e., three independent
induction experiments) and technical triplicate (i.e., three indepen-
dent PCRs).

Biophysical modeling

Met4 recruitment was modeled using an equilibrium thermodynamic
model (Bintu et al, 2005; Rowan et al, 2010). Gene activation is
modeled as the probability of Met4 being bound at a promoter region.
The model was parameterized using our PBM-determined protein-
DNA binding affinities (Cbf1 and Met32) and site-specific Met4
recruitment data. The model was implemented in Perl. See Supple-
mentary information for full details.

Sequence analysis

Protein similarity searches for Met28 and Met4 bZIP regions (Met28
a.a. 91–160; Met4 a.a. 581–640) were performed by blastp search from
the NCBI BLAST website (http://blast.ncbi.nlm.nih.gov/Blast.cgi)
against the non-redundant protein database.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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