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Abstract: Waldenström’s macroglobulinemia (WM) is a relatively uncommon, indolent malig-

nancy of immunoglobulin M-producing B cells. The World Health Organization classifies it as a 

lymphoplasmacytic lymphoma and patients typically present with anemia, hepatosplenomegaly 

and diffuse lymphadenopathies. Historically, the genetic characterization of the disease has 

been hampered by the relatively low proliferative rate of WM cells, thus making karyotyping 

challenging. The use of novel technologies such as fluorescence in situ hybridization, gene array, 

and whole genome sequencing has contributed greatly to establishing candidate genes in the 

pathophysiology of WM and to identifying potential treatment targets, such as L265P MYD88. 

The discovery of microRNAs and the recognition of epigenetics as a major modulatory mechanism 

of oncogene expression and/or oncosuppressor silencing have aided in further understanding the 

pathogenesis of WM. Once thought to closely resemble multiple myeloma, a cancer of terminally 

differentiated, immunoglobulin-secreting plasma cells, WM appears to genetically cluster with 

other indolent B-cell lymphomas such as chronic lymphocytic leukemia/small cell lymphoma. 

The relative high incidence of familial cases of WM and other B-cell malignancies has been 

helpful in identifying high-risk gene candidates. In this review, we focus on the established genes 

involved in the pathogenesis of WM, with special emphasis on the key role of derangement of 

the nuclear factor kappa B signaling pathway and epigenetic mechanisms.

Keywords: genetics, familial cases, NF-κB, whole genome sequencing, MYD88

Introduction
Waldenström’s macroglobulinemia (WM) is a non-Hodgkin’s lymphoma (NHL) 

typically characterized by bone marrow infiltration by lymphoplasmacytic cells 

and production of a serum monoclonal immunoglobulin (Ig) M.1 WM derives its 

name from Jan Gosta Waldenström, a Swedish physician and luminary who first 

reported on two patients presenting with oral mucosa bleeding, epistaxis, and diffuse 

lymphadenopathies.2 Laboratory evaluation of these patients revealed normochromic 

anemia, thrombocytopenia, elevated erythrocyte sedimentation rate, and decreased 

fibrinogen and albumin. Waldenström noticed two crucial differences between this 

condition and multiple myeloma (MM): first, his patients did not have any bone pain 

or bone lesions, and, second, the bone marrow was infiltrated by lymphocytic rather 

than plasmacytic cells.2,3 Waldenström’s preliminary observations have largely been 

included in the current diagnostic criteria for WM.

WM is defined by the presence of a monoclonal IgM (M spike) of any degree, more 

than 10% bone marrow involvement by a lymphoplasmacytic infiltrate, and presence 

of end organ damage directly attributable to either the B-cell clone or the M protein.3,4 

Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
33

R e v iew 

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/TACG.S42690

mailto:aldo_roccaro@dfci.harvard.edu
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/TACG.S42690


The Application of Clinical Genetics 2013:6

The latter criterion distinguishes WM from smoldering WM, 

in which there is no end organ dysfunction directly attribut-

able to the cancer. IgM monoclonal gammopathy of unclear 

significance (MGUS), a benign condition with premalignant 

potential, has been recently reported to precede WM with a 

rate of progression of 2.0% to 2.5% per year. Three diagnostic 

criteria are required to be fulfilled for a diagnosis of IgM-

MGUS: ,10% lymphoplasmacytic infiltration of the bone 

marrow, ,3 g/dL IgM spike, and absence of symptoms or 

end organ damage attributable to WM.4

Ontologically, WM is thought to derive from post-

germinal-center B cells that have undergone the process 

of somatic hypermutation but not isotype class switching.5 

WM cells are characterized by a specific immunophenotype 

(positive: surface IgM, cluster of differentiation (CD) 19, 

CD20, CD22, CD25, CD27, FMC7; negative: CD10, CD23, 

CD103, CD138; and variable CD5 expression), which is 

helpful in distinguishing WM from other NHL and MM that 

can appear morphologically similar.

WM is a rare cancer, affecting about six persons per 

million people, per year in the USA, with incidence increas-

ing with age. Median age at diagnosis is between 63 and 

68 years.6 Men are twice as commonly affected than women 

and incidence is 2–3 times higher in whites than in blacks.7

Patients with WM typically present with nonspecific 

symptoms such as asthenia and malaise, often related to 

anemia, which, together with a circulating monoclonal pro-

tein IgM detectable on serum protein electrophoresis and/or 

immunofixation, represents the most common laboratory 

abnormality.8 The etiology of the most common presenting 

symptoms and signs of WM can be explained by several 

mechanisms: cytopenias secondary to bone marrow infiltra-

tion by WM cells and impairment of normal hematopoiesis; 

hepatosplenomegaly and lymphadenopathy as a result of 

parenchymal infiltration by malignant cells; and peripheral 

neuropathy and hyperviscosity related to the nature and 

quantity of the M protein, respectively. Rarely, WM patients 

develop amyloid light-chain (AL) amyloidosis from deposi-

tion of monoclonal light chain, more often lambda.9 The latter 

diagnosis is associated with a dismal prognosis, especially 

when cardiac involvement is present.

Several negative prognostic factors have been identi-

fied in newly diagnosed WM patients and an internation-

ally recognized prognostic algorithm (the International 

Prognostic Scoring System [IPSS]) was recently developed 

to help risk-stratify WM patients.10 Age over 65 years, 

hemoglobin , 11.5 g/dL, thrombocytopenia , 100,000/µL, 

β2-microglobulin . 3 mg/L, and monoclonal IgM . 7 g/dL 

are the adverse prognostic factors on which the IPSS is 

based.11

Although WM is incurable, it is typically character-

ized by an indolent clinical course. For this reason, active 

treatment is not recommended until symptoms arise and/

or end organ damage ensues. In particular, therapy should 

commence in the setting of hyperviscosity syndrome and 

AL amyloidosis. Although the median survival of WM 

patients has been estimated at around 5 years, this number 

is likely to overestimate the aggressiveness of the disease 

for two reasons.11 First, the estimation includes all causes 

of mortality rather than cancer-related mortality in a popu-

lation that is demographically at risk for other morbidities. 

Second, this figure was obtained by calculating overall 

survival from the time of commencement of treatment, 

rather than diagnosis, not accounting thus for the months 

or years during which WM patients remain under close 

surveillance without therapy. Indeed, a recently published 

study found that disease-specific survival in patients with 

WM exceeds 10 years.10

The treatment armamentarium for WM currently includes 

the anti-CD20 monoclonal antibody rituximab, alkylating 

agents, purine nucleoside analogs, and the proteasome 

inhibitor bortezomib, either alone or in combination.12,13 

Bench and clinical research has focused on developing drugs 

against novel targets important to sustain the maladaptive 

interaction between the cancer clone and microenvironment, 

such as the mammalian target of rapamycin (mTOR) or 

phosphatidil insositol 3 kinase-protein kinase B (PI3K-AKT) 

pathway and the ubiquitin–proteasome axis.14,15 Autologous 

stem cell transplantation is used in selected patients, while 

allogeneic stem cell transplant is generally not implemented 

due to high procedure-related morbidity and mortality and 

the overall indolent course of the disease.16

Historically, cytogenetics has been difficult to perform in 

WM cells due to their low proliferation rate, hampering the 

possibility of obtaining metaphases. However, the introduc-

tion of fluorescence in situ hybridization (FISH), gene array, 

and whole genome sequencing has provided significant help 

in the pursuit of a genetic signature for WM that would help 

understand the pathogenesis of the disease and design target 

treatment.17

In this paper, we review the available data regarding 

target genes in WM, with a special emphasis on mutations 

in the nuclear factor kappa B (NF-κB) pathway, especially 

MYD88, and on recent findings in the field of microRNAs 

(miRs) and epigenetics. The most common genetic mutations 

in WM are summarized in Table 1.
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Table 1 Outline of the most frequently occurring genetic aberrancies in Waldenström macroglobulinemia (WM) with an emphasis on 
targeted genes

Chromosomal  
abnormality

Encoded  
protein

Incidence Function Comments

SNM 3p22.2 MYD88 90% Activator of canonical NF-κB • � Non-conservative, missense, gain of 
function, mutation in codon 265 (L265)

•  �Identified via whole genome sequencing
+3 Unknown,  

possibly BCL6
10% Unknown • � Shared with MZL, CLL, and MM

+4 Unknown 10%–20% Unknown • � Familial studies suggest candidate gene to 
map on 4q33–4q34

•  �Specific for WM
• � Occasionally the only genetic mutation

+6p Unknown 17% Unknown • � Occurs concomitantly with -6q
6q-
Locus 21
Locus 23

Blimp1
TNFAIP3

40%–50%
Transcription repressor
Ubiquitin-editing enzyme

• � Del6q discriminates WM from IgM-MGUS
• � Occurs commonly in MM and NHL

7q- Unknown 7% • � Shared with MZL, CLL, and MM
11q- Possibly ATM 10% Serine-threonine kinase.  

Activates P53, leading to DNA repair,  
cell cycle arrest, and apoptosis

• � Shared with MZL, CLL, and MM

13q14- miR 15A  
and 16-1

10%–13% Target proteins involved in cell cycle,  
proliferation and anti-apoptosis

• � Shared with MZL, CLL, and MM

14q32- TRAF3 5% Inhibitor of noncanonical NF-κB
17p13- P53 8% DNA repairer, cell cycle arrester,  

and apoptosis generator
• � Associated with shortened DFS but  

not OS
+18 BCL2, Malt1 15% Anti-apoptotic, NF-κB activator • � Shared with MZL, CLL, and MM

• � Often associated with +4

Abbreviations: ATM, ataxia telangiectasia mutated; CLL, chronic lymphocytic leukemia; DFS, disease-free survival; Ig, immunoglobulin; MGUS, monoclonal gammopathy of 
unknown significance; MM, multiple myeloma; MZL, marginal zone lymphoma; NHL, non-Hodgkin’s lymphoma; OS, overall survival; SNM, single-nucleotide mutation.

Familial WM cases: an insight into 
high-risk gene candidates
Although the majority of WM cases are sporadic, familial 

clustering of WM or co-aggregation with other hematologic 

malignancies, particularly chronic lymphocytic leukemia 

(CLL), Hodgkin’s lymphoma and NHL, has been reported 

in as many as 20% of cases.18,19 Common genetic variants 

in 152  genes involved in cell proliferation, apoptosis, 

inflammation, and DNA repair were investigated in families 

with two or more individuals affected by the same type 

of lymphoma, resulting in over 1500  genotyped single-

nucleotide pairs (SNPs).20 SNPs in the genes codifying for 

B-cell lymphoma 2 (BCL2), interleukin 10 (IL10), tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL), 

and tumor necrosis factor-related apoptosis-inducing ligand 

receptor 1 (TRAILR1) were associated with both WM and 

CLL; SNPs in IL-6 were common between WM and Hodg-

kin’s lymphoma, thus providing a potential explanation for 

their shared familial clustering.

Family studies also revealed that first-degree relatives 

of WM patients carry an increased incidence of the prema-

lignant condition IgM-MGUS.21,22 Linkage studies in such 

families identified chromosome 1q, 3q, and 4q as potentially 

responsible for this genetic predisposition. Paratarg-7 (P-7), 

a ubiquitous protein whose function is unclear, was reported 

to be the antigenic target of circa 15% monoclonal IgA 

and IgG in patients with MGUS or MM.23,24 Similarly, a 

German group showed the monoclonal protein of patients 

with WM or IgM-MGUS reacts against a hyperphosphory-

lated form of P-7 (pP-7) in around 11% of cases.25 Family 

linkage analysis showed pP-7 to be inherited according to 

an autosomal dominant pattern.26 Given the low prevalence 

of pP-7 expression in the healthy population (2%), indi-

viduals expressing hyperphosphorylated P-7 proved six 

times more likely to develop WM or IgM-MGUS than the 

general population, thus suggesting a causative role for this 

antigenic target.25

Similarities and differences between 
WM and other hematologic 
malignancies: from karyotype  
to gene-expression profiling (GEP)
WM shares with several B-cell derived malignancies 

(marginal zone lymphoma (MZL), CLL, and MM) several 
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genetic aberrancies such as trisomy 3, trisomy 18, deletion 

7q, deletion 11q, and deletion 13q.27 In contrast to MM and 

MZL, WM cells only rarely carry a translocation involving 

the heavy immunoglobulin (IgH) locus (3%).28 Trisomy 4 is 

identified in about 10%–20% of WM patients and appears 

to be specific for WM and occasionally the only genetic 

aberration noticed.29 Although no discrete candidate gene 

has yet been identified on chromosome 4, a genome-wide 

linkage analysis in individuals from a family with high 

prevalence of WM showed high nonparametric linkage on 

4q33–4q34, suggesting a pathogenic role for the gene(s) 

contained in this region.30 Trisomy 18, a frequently found 

abnormality in MZL, associates with trisomy 4 and is 

present in about 15% of WM patients.31 Deletion 17p is 

typically associated with loss of TP53 and underscores a 

poor prognosis in CLL, MM, and MZL. Del17p occurs in 

about 8% of WM patients and correlates with shortened 

disease-free survival but not overall survival, thus sug-

gesting no clear role for it as a negative prognostic factor 

in WM.31

Contradicting what was previously predicated, GEP 

in B-cell-derived malignancies showed WM to cluster 

more closely to CLL than MM.32,33 Using a class predic-

tion model, four genes were able to discriminate between 

CLL- and WM-derived cells with 100% accuracy: lymphoid 

enhancer-binding factor 1 (LEF1), ataxin 1 (ATXN1), 

fibromodulin (FMOD), and myristoylated alanine-rich 

protein kinase C substrate (MARCKS). The first three were 

upregulated in CLL while MARCKS was upregulated in 

WM. GEP also revealed a higher expression of IL-6 in 

WM than in both MM and CLL. While the role of IL-6 in 

mediating cell proliferation and drug resistance in MM 

has been established, its function in the pathogenesis of 

WM remains unclear.34–37 It is widely accepted that IL-6 

activates the mitogen-activated protein kinase/extracellular 

signal-regulated kinase (MAPK/ERK) pathway and the 

transcription factor signal transducer and activator of 

transcription (STAT) 3 via the tyrosine kinase receptor 

signaling of Janus kinase 1 and 2. In the absence of any 

identified activating mutation of the MAPK/ERK pathway 

in WM, IL-6 is believed to be directly responsible for the 

chronic activation of this signaling cascade.38 Moreover, the 

activation of the Janus kinase/STAT pathway by cytokines 

such as IL-6 and IL-21 has been recently advocated as 

the mechanism underlying the hypersecretion of IgM by 

WM cells, which is a major contributor to WM-related 

morbidity.39,40

Deletion of the long arm  
of chromosome 6: the most 
common and first identified 
karyotype abnormality in WM
The indolent nature of WM is reflected in the low prolif-

eration rate of WM cells, which has historically compro-

mised the success of karyotype analysis with conventional 

cytogenetics.41 The in vitro use of immunostimulatory fac-

tors and cytokines has been instrumental in increasing the 

mitotic rate of WM cells and thus the success rate of con-

ventional cytogenetics, which is currently exceeding 80% in 

several series.31 In a recently published randomized clinical 

trial conducted in 174 newly diagnosed WM patients, an 

abnormal karyotype was identified by conventional cytoge-

netics in 47% of patients, with translocations being present 

in about 35% of cases.31

Deletion 6q (-6q or del6q) is the first and most frequently 

identified chromosomal abnormality in WM.42 Recent studies 

based on high-resolution array-based comparative genom-

ics hybridization and FISH reported the presence of del6q 

in about 40%–50% of WM patients.27,43 Importantly, the 

presence of this mutation proved to confer an unfavorable 

prognosis in active WM.41,44 While frequent in WM, del6q 

is not exclusive to this disease. Loss of four distinct mini-

mal deleted regions on the long arm of chromosome 6 was 

detected in several B-cell-derived malignancies, including 

MM and MZL.45

More sophisticated techniques such as array-based 

comparative genomics hybridization have identified B 

lymphocyte-induced maturation protein 1 (BLIMP1) and 

tumor necrosis factor α-induced protein 3 (TNFAIP3 or 

A20) as candidate tumor suppressor genes mapping in 

two distinct minimal deleted regions on the long arm of 

chromosome 6.32,46 The function of BLIMP1 and TNFAIP3 

is discussed following.

BLIMP1: an oncosuppressor crucial  
for plasma cell differentiation
BLIMP1, also known as positive-regulatory domain I binding 

factor 1 or PR domain containing 1 (PRDM1), a transcription 

factor with mainly repressor function, plays a pivotal role 

in orchestrating the differentiation of B cells into plasma 

cells.47–49 It exerts gene repression both directly, via a histone 

methyltransferase domain (PR domain), and indirectly, via five 

zinc-finger domains that bind to the DNA and recruit histone 

deacetylases (HDACs) of the Groucho family.50,51 In humans, 
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BLIMP1 exists in two different isoforms arising from alter-

nate promoters: PRDM1α encodes the full-length BLIMP1 

protein, while PRDM1β lacks the first 101 amino acids, result-

ing in loss of most of the PR domain and reduced function 

as a transcriptional repressor.52 BLIMP1 orchestrates mature 

plasma cell differentiation by suppressing genes necessary for 

commitment and maintenance of B-cell identity and for cell 

proliferation.53 Among the genes silenced by BLIMP1 are the 

B-cell surface markers CD19, CD20 and CD45; MIP-1β and 

CD69, which participate in B-cell activation; the transcrip-

tion factors BCL6, PAX5, STAT6, and several B-cell-receptor 

signaling cascade molecules such as SYK, BLNK, CD79a, 

PKCβ, and LYN.54,55 PAX5 is fundamental for commitment to 

B-cell lineage during early hematopoiesis and its suppression 

is necessary for B cells to differentiate into plasma cells.56–58 

Among its functions, PAX5 represses the transcription factor 

X-binding protein-1 (XBP-1), the only known substrate of 

the endoribonuclease activity of inositol-requiring enzyme 

(IRE-1), one of the three sensor branches in mammalian 

unfolded protein response (UPR).59,60 XBP-1 was shown to be 

necessary for terminal differentiation of B lymphocytes into 

plasma cells by inducing expression of genes involved in the 

process of immunoglobulin synthesis and folding.49,61

Class II transactivator (CTIIA), the master regulator of 

expression of major histocompatibility complex class II, 

is also a target of BLIMP1-mediated gene repression, thus 

accounting for the downregulation of major histocompat-

ibility complex class II in antibody-secreting plasma cells.62 

BLIMP1 also mediates the repression of genes involved in 

DNA replication and repair and in cell cycle progression, 

including C-MYC, which is necessary, but does not suffice 

to drive the terminal differentiation of B lymphocytes.63 In 

light of the spectrum of genes inhibited by BLIMP1, a role as 

a tumor suppressor gene has been recently proposed.64

TNFAIP3: a key molecule  
in terminating canonical NF-κB 
pathway activation
Initially identified as a gene induced by TNF-α, TNFAIP3 

(also known as A20) codifies for a downstream molecule 

in the NF-κB pathway and exerts a crucial function in the 

negative feedback loop that terminates NF-κB signaling.65 

Its induction is mediated by engagement of several recep-

tors involved in inflammation and infection signaling, most 

prominently tumor necrosis factor receptor 1 (TNFR1), the 

B-cell receptor CD40, toll-like receptors (TLRs), NOD-like 

receptors, and the interleukin-1 receptor (IL-1R).66

Structurally, TNFAIP3 is an ubiquitin-editing enzyme 

characterized by an N-terminal deubiquitin (DUB) domain 

and a C terminus containing seven zinc-finger domains with 

direct ubiquitin binding and ubiquitin ligase (E3) activity.67 

Among the substrates of the DUB activity of TNFAIP3 is 

receptor-interacting protein 1 (RIP1). In response to TNF 

alpha signaling, RIP1 is ubiquitinated at lysine (K) 63, 

which results in recruitment of transforming growth fac-

tor β-activated kinase 1 (TAK1), TAK1-binding protein 2, 

and IκB kinase γ, also known as NEMO. This complex is 

responsible for the phosphorylation of NF-κB inhibitor-α, 

IκBα which results in its polyubiquitination via K48 and 

subsequent proteasomal degradation. Proteasome-mediated 

degradation of IκBα causes activation of the canonical 

NF-κB pathway. TNFAIP3 causes inhibition of the canonical 

NF-κB pathway by deubiquitinating RIP1, thus abolishing 

the recruitment of the TAK1, TAK1-binding protein 2, and 

NEMO complex.

The E3 ubiquitin ligase, TNF receptor-associated factor 

6 (TRAF6) is also substrate of the DUB activity of A20.68 

Upon engagement of TLR4 and IL-1R, TRAF6 binds to 

Ubc13 (or Ubc5), an E2, ubiquitin-conjugating enzyme. 

This association causes TRAF6 activation via K63 autou-

biquitination. Polyubiquitinated TRAF6 activates the IκB 

kinase complex (IKK), resulting in IκB phosphorylation, 

its proteasomal degradation, and activation of the canonical 

NF-κB pathway.69

The E3 domain of A20 is  involved in K48-

polyubiquitination of several E2 enzymes, including UBCH5 

and UBC13, which promotes the activation of the signaling 

molecules RIP1, TRAF6, IκB kinase γ, and RIP2 via K63 

ubiquitination. In a close regulatory feedback, RIP1 is also 

a direct target of the ubiquitin ligase activity of TNFAIP3, 

leading to its proteasomal degradation.66

TNFAIP3 appears to mediate inhibition of the NF-κB 

pathway also via direct binding of ubiquitin chains on 

IKK and TNFR1, resulting in non-catalytic interference 

with their signaling function. In vitro studies have shown 

that the zinc-finger domains 4 and 7 are responsible for 

this action.70

Given the activity of A20 in terminating NF-κB signaling, 

its loss of function by mutation or deletion has been advocated 

to play a major role in several inflammatory, autoimmune, and 

malignant human diseases, including WM.65,66 In particular, 

TNFAIP3 is deleted in around 40% of WM patients, with 5% 

presenting with bi-allelic inactivation, suggesting that it has 

an important role as oncosuppressor in this disease.46
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Importance of non canonical NF-κB 
pathway deregulation in the 
pathogenesis of WM: identification 
of mutations in tumor necrosis 
factor-receptor-associated  
factor 3 (TRAF3)
The canonical pathway of NF-κB activation involves phos-

phorylation of IκB by the IKK complex (composed by two 

catalytic subunits, IKKα and IKKβ, and a regulatory sub-

unit, IKKλ), resulting in its degradation via the proteasome. 

Proteolysis of the inhibitory subunit relieves cytosolic 

sequestration of the active dimers 50/RelA and p50/c-Rel, 

which then translocate to the nucleus and exert their function 

as transcription factors. Instead, the noncanonical pathway of 

NF-κB activation requires proteasome-mediated proteolytic 

activation of the precursor protein of NF-κB2 (p100) into 

the p52 active component in order to allow its dimerization 

with RelB and thus activation of signaling.71 Such activat-

ing cleavage occurs after IKKα-mediated phosphorylation 

and ubiquitination of p100, a signaling induced by NF-κB-

inducing kinase (NIK). TRAF3 mediates proteasomal deg-

radation of de novo synthesized NIK by recruiting the E3, 

ubiquitin ligase complex, TRAF2-cIAP (cellular inhibitor 

of apoptosis). In the absence of TRAF3, NIK is not targeted 

for degradation, thus resulting in chronic NF-κB signaling. 

This function has been advocated to explain the tumor sup-

pressor role of TRAF3.72 This gene is located on the long arm 

of chromosome 14 at cytoband 32.32. Bi-allelic deletions or 

inactivating mutations at this site were noticed in about 5% 

of WM patients in a recently published microarray-based 

study of 42 WM patients.46,73

Impact of whole genome sequencing: 
the identification of MYD88
Cytogenetics, FISH, and GEP provided significant infor-

mation regarding the genetics of WM but did not reveal 

any specific molecular signature capable of distinguishing 

WM from other B-cell malignancies.27 This observation 

suggests that SNPs, small genetic mutations, and/or epi-

genetic mechanisms might be responsible for the unique 

WM phenotype. Whole genome sequencing and Sanger 

sequencing revealed the presence of a recurrent, missense, 

single-nucleotide mutation on chromosome 3p22  in 30 

patients with WM.74

This non-synonymous mutation causes a leucine to 

proline substitution in codon 265 (L265P) of the Myeloid 

Differentiation Primary Response Gene 88 (MYD88).74 

MYD88 is believed to be a key player in the activation of 

the canonical NF-κB pathway, downstream of TLR and 

IL-1R signaling.75,76 Upon TLR or IL-1R activation, MYD88 

homodimerizes and forms a complex with interleukin-1 

receptor-associated kinase (IRAK) 4, resulting in activa-

tion of IRAK1 and IRAK2.77 The former is responsible for 

the activation of TRAF6, which cooperates with TAK1 in 

phosphorylating and activating the IKK complex.77,78 The 

latter targets IκB for degradation, thus leading to canonical 

NF-κB signaling.

The L265P MYD88  mutation was first reported in 

diffuse large B-cell lymphoma and has recently been 

shown to be present in over 90% of WM patients when 

assessed via whole genome sequencing, Sanger sequenc-

ing, or allele-specific polymerase chain reaction (AS-

PCR).74,79,80 Given the role of MYD88 as an amplificator 

and transducer molecule downstream of TLR and IL-1R, 

the L265P mutation is believed to result in gain of 

function and chronic activation of the canonical NF-κB 

pathway.

While L265P MYD88 was detected in only 10%–12% 

of IgM-MGUS via whole genome sequencing, in a recent 

study that utilized AS-PCR, it was found present in around 

50% of 24 patients analyzed. This observation suggests that 

L265P MYD88 mutation might be an early oncogenic or 

driving mutation in the evolution of IgM-MGUS to WM.80 

Interestingly, the three IgM-MGUS patients who progressed 

to WM in the same study presented a high level of expression 

of L265P MYD88 mutation when assessed by real-time poly-

merase chain reaction and were also all positive for mutation 

on sequencing. These data suggest a potential prognostic role 

of L265P MYD88 in stratifying IgM-MGUS patients for risk 

of progression to WM.

In WM patients, the presence of L265P MYD88 correlated 

with a higher burden of bone marrow involvement compared 

with patients who did not carry the mutation and response to 

treatment resulted in decreased levels of L265P MYD88 as 

assessed by real-time AS-PCR.80 Moreover, when combined 

with immunoglobulin heavy chain variable region (IGHV) 

mutation status, the L265P MYD88 mutation appears to out-

line a unique genetic signature that distinguishes WM from 

other similar B-cell malignancies.81 Taken together, these 

data suggest that L265P MYD88 may be used as a molecular 

marker for diagnosis, risk stratification, and monitoring of 

disease response to treatment in patients with WM. Given its 

putative role in the uncontrolled activation of the canonical 

NF-κB pathway, L265P MYD88 is an extremely attractive 

target for pharmacologic inhibition in WM.
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Epigenetics and miRs: a different way 
of targeting genes in malignancy
“Epigenetics” (from the ancient Greek “epi,” meaning above, 

and “genesis,” meaning origin) is the study of heritable 

changes in gene expression caused by mechanisms other than 

modifications in the nucleotide sequence. DNA methylation, 

acetylation, and miRs are some of the major mechanisms to 

modulate gene expression and cellular phenotype without 

altering gene sequence.

miRs are noncoding RNA oligonucleotides about 20 

bases long that exert their function by binding to newly 

transcribed, target messenger RNAs, thus inhibiting their 

translation. Each miR can interfere with the translation of a 

pool of genes, rather than a single transcript, thus allowing 

modulation of multiple targets at once. Recently, miRs have 

been reported to play a major role as either oncogenes or 

oncosuppressors in both hematologic and solid malignancies, 

depending on the function of their target genes.82

Via comparative analysis of miR expression in WM cells 

and their normal counterparts (CD19+ cells isolated from 

the peripheral blood and bone marrow of healthy donors), 

a distinct pattern has emerged that distinguishes the former 

from the latter. WM cells showed upregulation of miRs 

155, 184, 206, 363, 494, and 542-3p and downregulation of 

miR-9.83 In patients, this signature miR profile correlated 

with an elevated IPSS score at diagnosis, thus suggesting a 

role for it as a prognostic factor. Moreover, in vitro treatment 

with anti-WM drugs such as rituximab, perifosine, and bort-

ezomib resulted in decreased level of the upregulated miRs 

and increased miR-9 level, suggesting miRs have a primary 

etiopathologic role and potential function as a predictive 

factor of response to therapy.

miR-155 was shown to be overexpressed in several can-

cers of B-cell origin and to act as an oncogene by deregulating 

NF-κB, PI3K-AKT and MAPK/ERK signaling pathways.84–87 

miR-155 was also shown to be involved in WM cell adhesion 

to fibronectin and in chemotaxis in response to stromal-

derived factor 1 (SDF-1), thus suggesting a key role in 

mediating the localization and retention of cancer cells into 

the nurturing bone marrow niche. To further substantiate this 

function, miR-155 knockdown WM cells were investigated 

and showed impaired homing and trafficking when injected 

into mice.88 Further, these animals were noticed to have 

prolonged survival when compared with animals injected 

with wild-type cells. GEP also showed decreased expression 

of cyclins D1, D2, D3, and E; of cyclin-dependent kinase-2, 

-4, and -6; and increased expression of the cyclin-dependent 

kinase inhibitors p18, p19, p21, and p27 which altogether 

resulted in G1-G0 arrest and decreased progression to S 

phase. miR-155 knockdown in WM cells also results in 

decreased Mdm2 expression with consequent increased p53 

level and activity.89

miR-206 and miR-9 have an amplif ied epigenetic 

function by targeting histone deacetylase (HDAC) and 

histone acetyltransferase (HAT), respectively. In particular, 

overexpression of miR-206 in WM results in increased levels 

of HDAC-2, -4, -5, -6, -8 and -9 while the downregulation 

of miR-9 mediates decreased expression of HAT1, 2 and 3. 

Overall, the net balance of their functions is increased his-

tone acetylation leading to enhanced gene transcription.90

Deletion of 13q14 was reported in about 10%–13% of 

patients with WM.27,31 The minimal deleted region of this 

genetic abnormality includes the miR genes MIRN15A 

and MIRN16-1, which have been previously reported to 

be downregulated or lost in about 70% of CLL patients.91 

Both miRs are believed to act as tumor suppressors by 

inhibiting the transcription of a pool of mRNAs encoding 

for proteins involved in cell cycle, proliferation, and anti-

apoptosis, such as BCL2.92 Previously regarded as a sign 

of disease progression and aggressive biologic behavior, 

deletion 13q was recently reported to have no prognostic 

value in WM.31

Conclusion
Genetic studies in WM have been historically hampered by 

the low proliferation rate of tumor cells. With the evolu-

tion of methods and technologies in the biomedical field, 

the past 15 years have witnessed an exponential growth in 

knowledge about gene aberrations in WM. This increased 

fund of information is helping to delineate a genomic sig-

nature that will serve not only as a risk stratifying measure 

for WM patients but also as a tool to better understand the 

etiopathogenic bases of the disease.

From standard cytogenetics to gene array and whole 

genome sequencing, aberrations in the NF-κB pathway have 

been proven to play a central role as a pathogenic mechanism 

in WM, opening the way toward the design of target therapies. 

WM cells have also been shown to harbor mutations in genes 

coding for miRs, HATs, and HDACs, with a net result of 

generalized increase in gene transcription. These data have 

helped expand our understanding of the role of epigenetics in 

tumorigenesis and paved the way for the design of therapies 

to target miRs as a tool to affect multiple potential targets 

simultaneously.

On the basis of the recently gathered genetic data, in 

particular the highly represented L265P MYD88 mutation, 
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the scientific community looks forward to the identification 

of the molecular mechanisms of WM pathogenesis and the 

development of specific inhibitors against this newly identi-

fied molecular target.
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