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Abstract

Pyruvate dehydrogenase kinases (PDK1-4) play a critical role in the inhibition of the mitochondrial pyruvate dehydrogenase
complex especially when blood glucose levels are low and pyruvate can be conserved for gluconeogenesis. Under diabetic
conditions, the Pdk genes, particularly Pdk4, are often induced, and the elevation of the Pdk4 gene expression has been
implicated in the increased gluconeogenesis in the liver and the decreased glucose utilization in the peripheral tissues.
However, there is no direct evidence yet to show to what extent that the dysregulation of hepatic Pdk genes attributes to
hyperglycemia and insulin resistance in vivo. To address this question, we crossed Pdk2 or Pdk4 null mice with a diabetic
model that is deficient in hepatic insulin receptor substrates 1 and 2 (Irs1/2). Metabolic analyses reveal that deletion of the
Pdk4 gene had better improvement in hyperglycemia and glucose tolerance than knockout of the Pdk2 gene whereas the
Pdk2 gene deletion showed better insulin tolerance as compared to the Pdk4 gene inactivation on the Irs1/2 knockout
genetic background. To examine the specific hepatic effects of Pdks on diabetes, we also knocked down the Pdk2 or Pdk4
gene using specific shRNAs. The data also indicate that the Pdk4 gene knockdown led to better glucose tolerance than the
Pdk2 gene knockdown. In conclusion, our data suggest that hepatic Pdk4 may be critically involved in the pathogenesis of
diabetes.
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Introduction

Mitochondrial pyruvate dehydrogenase complex (PDC) plays

an essential role in glucose metabolism by converting pyruvate

to acetyl-CoA in glycolysis [1]. The activity of PDC is not only

allosterically regulated by acetyl-CoA and NADH, but also by

covalent modifications such as phosphorylation that is con-

trolled by four pyruvate dehydrogenase kinases (Pdks) and two

pyruvate dehydrogenase phosphatases (Pdps) [1]. Pdks have

differential tissue distribution: Pdk1 is abundant in the heart and

is expressed at a low level in other organs; Pdk2 is ubiquitously

expressed in most tissues; Pdk3 is abundant in testis and is

expressed at a low level in other organs; Pdk4 is highly

expressed in the heart and skeletal muscle and is also expressed

at an intermediate level in the liver, lung, and kidney [2–6].

Among these Pdks, Pdk4 is highly inducible by starvation and it

is also elevated under insulin resistance [6–15]. Systemic Pdk4

knockout leads to hypoglycemia after the prolonged starvation

[16]. In contrast, Pdk2 null mice only manifest a moderate

reduction in blood glucose under non-fasted conditions [17].

When challenged by a high-fat diet, Pdk4 knockout mice exhibit

lower blood glucose levels and better glucose tolerance relative

to the control wild-type mice [18].

The Pdk4 gene expression can be suppressed by insulin under

normal physiological conditions [10]. Insulin receptor substrates

(Irs) play an essential role in the insulin signal transduction through

a direct mediation of insulin receptor activities [19]. There are

four Irs genes in mammals, and among them, Irs1 and Irs2 are

ubiquitously expressed. Mouse genetic data have shown that

deletion of Irs1 and Irs2 genes in the mouse liver (IrsLDKO) causes

severe insulin resistance and early onset of diabetes [20,21]. It is

also noticed that Pdk4 gene expression is highly induced in the liver

of the IrsLDKO mice due to the impairment of insulin signaling

[20]; however, it is not clear that, to what extent, the elevated

Pdk4 contributes to the diabetes in the IrsLDKO mice. To address

this question, we genetically inactivated Pdk2 or Pdk4 in the

IrsLDKO mice. Our results indicate that Pdk4 indeed plays a

more significant role in the development of hyperglycemia and

glucose intolerance in this hepatic insulin resistance model.
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Materials and Methods

Animals
Irs1 and Irs2 floxed mice and Pdk2/4 null mice were generated

as previously described [16,17,20]. Transgenic mice that carry a

Cre coding sequence plus the Albumin gene promoter were

purchased from the Jackson Laboratory. For insulin stimulation,

animals were anesthetized before a bolus of 5 units of insulin

(human regular insulin — humulin R, Eli Lilly) was injected via

vena cava for 3 min.

Ethics statement
All procedures were performed in accordance with the Guide

for Care and Use of Laboratory Animals of the National Institutes

of Health and were approved by the Institutional Animal Use and

Care Committee of Indiana University School of Medicine (study

10322).

Blood chemistry and metabolic analysis
Blood glucose levels were measured using a glucose meter under

ad libitum (fed) or overnight 16-hour fasting. Serum insulin was

measured using commercial assay kits (ALPCO). Glucose and

Figure 1. Knockout of the Pdk genes in wild-type and IrsLDKO mice. A, Control wild-type and IrsLDKO mice (n = 3) were fasted overnight for
16 hours and half of them were fed for 4 hours immediately after the fasting. Pdks gene expression in the liver was analyzed by real-time PCR and
data were normalized to an internal control gene — Ppia. B, Western blot analysis of liver lysates from control and knockout mice. C, Body weight
measurements in control and knockout mice (n = 6–20). D, Serum triglycerides (TG) were measured in overnight fasted control and knockout mice
(n = 6–8). E, Liver TG analysis in control and knockout mice (n = 6–8). Pdk2KO, Pdk2 knockout; Pdk4KO, Pdk4 knockout; IrsLDKO, Irs1/2 liver-specific
double knockout. Data are presented as means 6 SEM. *, P,0.05 relative to corresponding controls.
doi:10.1371/journal.pone.0071997.g001

Role of Pdk2/4 in Diabetes
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insulin tolerance tests were performed as previously described

[22], and 2 g glucose and 1 unit human regular insulin per kg

body weight were used, respectively.

Immunoblot analysis
Liver tissue was homogenized in the lysis buffer (50 mM Hepes,

pH 7.5, 150 mM NaCl, 10% Glycerol, 1% Triton X-100,

1.5 mM MgCl2, 1 mM EGTA, 10 mM Sodium Pyrophosphate,

100 mM Sodium Fluoride and freshly added 100 uM Sodium

Vanadate, 1 mM PMSF, 10 ug/ml Aprotinin, and 10 ug/ml

Leupeptin). Protein extracts were resolved on an SDS-PAGE gel

and transferred to nitrocellulose membrane. Proteins were probed

using the following antibodies: Irs1 and Irs2 (Millipore), Pdk2,

Pdk4, b-actin and Actinin (Santa Cruz Biotechnology), total and

phosphorylated Akt and Erk (Cell Signaling Technology). Protein

signals were detected by incubation with HRP-conjugated

secondary antibodies, followed by ECL detection reagent (Thermo

Fisher Scientific Inc.).

Adenovirus-mediated gene knockdown in vivo
Gene-specific shRNAs were designed using the BLOCK-iT

RNAi Designer (Invitrogen) and cloned using a BLOCK-iT

system (Invitrogen). The target template sequences are the

followings: shGFP, 59-GCATCAAGGTGAACTTCAAGA-39;

shPdk2, 59-GGCTCTTCAGCTACATGTACT-39; and shPdk4,

59-GGAAGGAATCAAAGCACTTTA-39. Adenoviruses were

prepared following the standard procedure. Mice were injected

with adenoviruses (16109 pfu/animal) via tail vein as previously

described [23]. Three days post-injection, glucose tolerance tests

were performed. Five days post-injection, insulin tolerance tests

were performed. On day 7 post-injection, animals were fasted

overnight for 16 hours before tissues were collected for further

analysis.

Real-time PCR
Liver RNA isolation was performed as previously described (6).

Quantitative RT-PCR (RT-qPCR) was performed in two steps:

first, cDNA was synthesized using a cDNA synthesis kit (Applied

Biosystems Inc.); second, cDNA was analyzed by real-time PCR

Figure 2. Deletion of the Pdk4 gene improves hyperglycemia in
IrsLDKO mice. A, Blood glucose was measured in overnight fasted
control and knockout mice. B, Blood glucose was measured in ad
libitum fed control and knockout mice. Data are presented as means 6
SEM, n = 8–23. *, P,0.05 relative to corresponding controls.
doi:10.1371/journal.pone.0071997.g002

Figure 3. Ablation of Pdks improves glucose tolerance in
IrsLDKO mice. A, Glucose tolerance tests (GTT) were performed in
age-matched control and knockout mice (n = 8–12). B and C, Expression
of gluconeogenic genes Pck1 and G6pc was analyzed in the liver of
overnight fasted control and knockout mice (n = 3). Data are presented
as means 6 SEM. *, P,0.05 relative to corresponding controls.
doi:10.1371/journal.pone.0071997.g003

Role of Pdk2/4 in Diabetes
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using SYBR Green Master Mix (Promega). Primer sequences for

the specific genes are as follows: Ppia forward 59-CACCG-

TGTTCTTCGACATCA-39; Ppia reverse 59-CAGTGCTCA-

GAGCTCGAAAGT-39; Pdk2 forward 59- TGGAAAGCTCC-

GAGTTCAGT; Pdk2 reverse 59- GGAGACTGGCACTCAC-

CACT-39; Pdk4 forward 59- GATTGACATCCTGCCTGACC-

39; Pdk4 reverse 59- CATGGAACTCCACCAAATCC-39; Pck1

forward ATCATCTTTGGTGGCCGTAG; Pck1 reverse

TGATGATCTTGCCCTTGTGT; G6pc forward TCGGA-

GACTGGTTCAACCTC; G6pc reverse TCACAGGTGA-

CAGGGAACTG.

Statistics
Data are presented as means 6 SEM. Student’s t-test (2-way)

was performed to test significance between two groups. P,0.05

was considered as a statistical significance.

Results

Inactivation of Pdk2 or Pdk4 improves glucose
homeostasis in IrsLDKO mice

It has been previously reported that hepatic Irs1 and Irs2 play a

crucial role in glucose homeostasis because simultaneous deletions

of both genes in the liver (IrsLDKO) lead to diabetes in mice

[20,21]. Since Pdks can promote hepatic gluconeogenesis, it is

possible that they contribute to the development of hyperglycemia

in the IrsLDKO mice. To test this hypothesis, we first analyzed

expression of all four Pdk genes in the liver of control wild-type

and IrsLDKO mice after an overnight 16-hour fasting or

immediately followed by 4-hour refeeding. According to mRNA

analysis, Pdk2 is the most abundant among four Pdks in the liver

of wild-type mice whereas Pdk4 was induced most in the fasted

IrsLDKO livers (Figure 1A). Interestingly, refeeding could still

suppress the hepatic Pdk4 gene expression in the IrsLDKO mice

(Figure 1A). To further investigate the role of Pdk2 and Pdk4 in

the pathogenesis of diabetes in the IrsLDKO mice, we deleted

either the Pdk2 or Pdk4 gene on the IrsLDKO genetic

background (Figure 1B). While Pdk4 knockout mice were

significantly smaller than control wild-type mice, Pdk4 deletion

had no effect on the body weight of growth-retarded IrsLDKO

mice (Figure 1C). Neither Pdk2 nor Pdk4 deletion had any

significant effect on serum or hepatic triglycerides in the

IrsLDKO mice (Figure 1, D and E). We then monitored blood

glucose levels in control wild-type, single, double, and triple

knockout mice. Deletion of Pdk2 or Pdk4 on the IrsLDKO

genetic background (IrsLDKO:Pdk2KO and IrsLD-

KO:Pdk4KO, respectively) significantly lowered blood glucose

levels under the fasting conditions (Figure 2A). In contrast, only

IrsLDKO:Pdk4KO mice showed a significant decrease in blood

glucose levels under the non-fasting conditions (Figure 2B).

Additionally, deletion of either Pdk2 or Pdk4 also improved

glucose metabolism during glucose tolerance tests, but ablation

of the Pdk4 gene had a more significant effect (Figure 3A). Gene

expression analysis also revealed a significant decrease in Pck1

(phosphoenoylpyruvate carboxykinase 1) but not G6pc (glucose-

6-phosphatase, catalytic) mRNAs, suggesting that hepatic

gluconeogenesis might be reduced in the IrsLDKO:Pdk4KO

mice (Figure 3, B and C).

Deletion of Pdk2 or Pdk4 improves insulin resistance in
IrsLDKO mice

To examine whether Pdk2 or Pdk4 knockout might affect insulin

resistance in IrsLDKO mice, we performed insulin tolerance tests.

The data showed that either Pdk2 or Pdk4 gene deletion

remarkably improved insulin tolerance in the IrsLDKO mice

(Figure 4A). In addition, fasting plasma insulin levels were also

significantly reduced in IrsLDKO:Pdk2KO and IrsLD-

KO:Pdk4KO mice (Figure 4B). The HOMA-IR (homeostatic

model analysis-insulin resistance) analysis indicated improved

insulin resistance in those triple knockout mice (Figure 4C). In

order to understand molecular changes during insulin action, we

also analyzed insulin signaling in the liver and skeletal muscle. Akt

phosphorylation (Ser473) was moderately elevated in the liver of

Figure 4. Inactivation of Pdks improves insulin sensitivity in
IrsLDKO mice. A, Insulin tolerance tests (ITT) were performed in age-
matched control and knockout mice (n = 8–20). B, Fasting plasma
insulin was analyzed in age-matched control and knockout mice (n = 5–
9). C, HOMA-IR (homeostatic model assessment-insulin resistance) was
analyzed using fasting glucose and insulin data. Data are presented as
means 6 SEM. *, P,0.05 relative to corresponding controls.
doi:10.1371/journal.pone.0071997.g004

Role of Pdk2/4 in Diabetes
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IrsLDKO:Pdk2KO and IrsLDKO:Pdk4KO mice, and Erk1/2

phosphorylation (Thr202/Tyr204) was not significantly changed

in the IrsLDKO:Pdk4KO or IrsLDKO:Pdk2 livers as compared

to IrsLDKO livers (Figure 5A). No significant changes in insulin

signaling were observed in the skeletal muscle of IrsLD-

KO:Pdk2KO or IrsLDKO:Pdk4KO mice in comparison to

IrsLDKO mice (Figure 5B).

Liver-specific knockdown of Pdk2 or Pdk4 in IrsLDKO
mice

In order to directly assess the role of hepatic Pdks in glucose

homeostasis, we used adenovirus-mediated shRNAs to knock

down Pdk2 or Pdk4 specifically in the liver. Pdk2 and Pdk4 mRNA

levels were reduced 85% and 60%, respectively (Figure 6A).

Interestingly, although the Pdk4 knockdown efficiency was less

than that of Pdk2, glucose tolerance was improved only in the

Pdk4 knockdown mice in the last two time points during the

glucose tolerance tests and the area under curve was significantly

decreased in the Pdk4 knockdown group (Figure 6, B and C).

Insulin tolerance tests did not reveal a significant improvement in

either Pdk2 or Pdk4 knockdown mice although Pdk4 knockdown

had a trend of improvement of insulin resistance (Figure 7, A and

B). Insulin signaling analysis did not reveal any significant

improvement in Akt phosphorylation in the liver or skeletal

Figure 5. Insulin signaling analysis in the control and knockout mice. A and B, Animals were stimulated with 5 units of human insulin (saline
as a vehicle control) for 3 min before liver and skeletal muscle samples were collected for Akt and Erk phosphorylation analyses. Western blot signals
were quantified using the Quantity One software (Bio-Rad). Data are presented as means 6 SEM. *, P,0.05 relative to corresponding controls.
doi:10.1371/journal.pone.0071997.g005

Role of Pdk2/4 in Diabetes
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muscle of shPdk2 or shPdk4 mice as compared to shGFP control

mice (Figure 7, C–F).

Discussion

In this study, we directly assessed the involvement of Pdk2 and

Pdk4 in the pathogenesis of diabetes. As Pdks regulate glucose

homeostasis at least in two ways — inhibiting glycolysis and

promoting gluconeogenesis, deletion of Pdk genes is expected

to improve hyperglycemia and glucose tolerance. Indeed,

both Pdk2 and Pdk4 ablations can improve glucose tolerance

in the IrsLDKO mice, but only the Pdk4 gene inactivation

lowers both fasting and non-fasting glucose levels whereas

the Pdk2 gene deletion only decreases fasting blood glucose.

This is quite intriguing because both Pdk2 and Pdk4 genes

are ubiquitously expressed in most tissues and Pdk2 has been

shown to be more potent for the inhibition of the PDC

activity [3,4,17]. However, Pdk2 has also been shown to be

more sensitive than other Pdks in response to allosteric

regulators like pyruvate, NADH, and acetyl-CoA [24,25].

Under non-diabetic conditions, Pdk2 deficiency causes a

modest decrease in fed glucose levels whereas Pdk4

deficiency results in lower fasting glucose levels in mice as

compared to the wild-type controls [17]. The differential

effects can also be attributable to their respective modulation

of the PDC activity since Pdk2 deficiency leads to increased

PDC activity only in a fed state and Pdk4 deficiency affects

the PDC activity in both fed and fasting states [17]. It seems

that Pdk2 mainly regulates glucose utilization whereas Pdk4

may be involved in both hepatic gluconeogenesis and

systemic glucose metabolism. In diabetic IrsLDKO mice

that have severe hepatic insulin resistance, although glucose

disposal may be decreased, the unsuppressed hepatic glucose

production may be the major cause of hyperglycemia [26].

Under this condition, inactivation of the Pdk4 gene produces

a better effect than that by the Pdk2 gene deletion largely

because of a stronger role of Pdk4 in hepatic gluconeogen-

esis. This interpretation is supported by our data of the

better glucose tolerance in the IrsLDKO:Pdk4 mice and the

better insulin-stimulated glucose metabolism in the IrsLD-

KO:Pdk2 mice.

Although IrsLDKO mice are only deficient in hepatic Irs1

and Irs2, they manifest systemic insulin resistance as well

[20,21], which is indicated by decreased phosphorylation of

Akt and Erk in the skeletal muscle (Figure 5B). In addition to

the liver, the role of Pdks in other tissues including skeletal

muscle and fat may be also critical for glucose homeostasis.

This interpretation is consistent with our liver-specific

knockdown of the Pdk4 gene since the Pdk4 knockdown only

results in moderate changes in glucose tolerance in the

IrsLDKO mice. But we should caution not to over-interpret

the data due to the less ideal knockdown efficiency for the

Pdk4 gene.

The importance of Pdk4 in metabolism is evidenced by its

dynamic gene expression in response to numerous factors,

including insulin, glucocorticoid, fatty acids, bile acids, thyroid

hormone, angiotensin II, retinoic acids, prolactin, growth

hormone, adiponectin, epinephrine, thiazolidinediones, fibrates,

statins, metformin, and others [7,8,13,14,22,27–40]. Moreover,

Pdk4 gene expression is often induced in the liver and skeletal

muscle under insulin resistance and diabetes conditions [6–15].

From this and other gene knockout studies [17,18,41,42], it

seems likely that a selective inhibition of the Pdk4 activity may

be useful to normalize glucose metabolism and improve insulin

resistance.

In summary, hepatic Pdk4 gene expression is highly induced in

diabetes. Inactivation of the Pdk4 gene can improve hyperglyce-

mia, glucose tolerance, and insulin resistance in diabetic mice.

Overall, our data suggest that Pdk4 may be a useful therapeutic

target for type 2 diabetes.

Figure 6. Hepatic Pdk4 knockdown moderately improves
glucose tolerance in IrsLDKO mice. A, Gene knockdown efficiency
was analyzed by real-time PCR in IrsLDKO livers transduced with shRNA
adenoviruses against GFP (shGFP), Pdk2 (shPdk2), or Pdk4 (shPdk4). B,
Glucose tolerance tests were performed in shRNA adenoviruses infected
IrsLDKO mice. C, Area under curve analysis (AUC) was performed for the
above glucose tolerance test data. Data are presented as means 6 SEM,
n = 4–5. *, P,0.05 relative to corresponding controls.
doi:10.1371/journal.pone.0071997.g006
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